1
|
Jiménez RÁP, Maze A, Bruckert F, Bensaid F, El-Kechai N, Weidenhaupt M. Evaluating surfactant effectiveness in preventing antibody adsorption directly on medical surfaces using a novel device. Eur J Pharm Biopharm 2024:114539. [PMID: 39437981 DOI: 10.1016/j.ejpb.2024.114539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/16/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Biopharmaceuticals, specifically antibody-based therapeutics, have revolutionized disease treatment. Throughout their lifecycle, these therapeutic proteins are exposed to several stress conditions, for example at interfaces, posing a risk to the drug product stability, safety and quality. Therapeutic protein adsorption at interfaces may lead to loss of active product and protein aggregation, with potential immunogenicity risks. Non-ionic surfactants are commonly added in formulations to mitigate protein-surface interactions. However, their effectiveness varies with the monoclonal antibody (mAb), and model surface material. Extrapolating findings from model surfaces to real medical surfaces is challenging due to diverse properties. This study pioneers the evaluation of surfactant effectiveness in preventing mAb adsorption directly on medical surfaces at the medical bag/formulation interface, utilizing the ELIBAG device. The adsorption of different protein modalities, mAbs and antibody-drug conjugate (ADC), using three surfactants (PS80, PS20, and P188), was examined across various medical surfaces, IV bags and manufacturing bags, and model surfaces. Our findings reveal that surfactants prevent mAb adsorption depending on the mAb modality, surfactant type and concentration, and surface material. This research underscores the importance of considering real medical surfaces in direct contact with formulations, offering insights for enhancing drug product development and ensuring material-protein compatibility in real world use.
Collapse
Affiliation(s)
- Rosa Álvarez-Palencia Jiménez
- Univ. Grenoble Alpes, CNRS, Grenoble INP* (*Institute of Engineering) LMGP, 38000 Grenoble, France; Sanofi, 94400 Vitry-sur-Seine, France
| | - Antoine Maze
- Univ. Grenoble Alpes, CNRS, Grenoble INP* (*Institute of Engineering) LMGP, 38000 Grenoble, France
| | - Franz Bruckert
- Univ. Grenoble Alpes, CNRS, Grenoble INP* (*Institute of Engineering) LMGP, 38000 Grenoble, France
| | | | | | - Marianne Weidenhaupt
- Univ. Grenoble Alpes, CNRS, Grenoble INP* (*Institute of Engineering) LMGP, 38000 Grenoble, France.
| |
Collapse
|
2
|
Manning MC, Holcomb RE, Payne RW, Stillahn JM, Connolly BD, Katayama DS, Liu H, Matsuura JE, Murphy BM, Henry CS, Crommelin DJA. Stability of Protein Pharmaceuticals: Recent Advances. Pharm Res 2024; 41:1301-1367. [PMID: 38937372 DOI: 10.1007/s11095-024-03726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
There have been significant advances in the formulation and stabilization of proteins in the liquid state over the past years since our previous review. Our mechanistic understanding of protein-excipient interactions has increased, allowing one to develop formulations in a more rational fashion. The field has moved towards more complex and challenging formulations, such as high concentration formulations to allow for subcutaneous administration and co-formulation. While much of the published work has focused on mAbs, the principles appear to apply to any therapeutic protein, although mAbs clearly have some distinctive features. In this review, we first discuss chemical degradation reactions. This is followed by a section on physical instability issues. Then, more specific topics are addressed: instability induced by interactions with interfaces, predictive methods for physical stability and interplay between chemical and physical instability. The final parts are devoted to discussions how all the above impacts (co-)formulation strategies, in particular for high protein concentration solutions.'
Collapse
Affiliation(s)
- Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO, USA.
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Ryan E Holcomb
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Robert W Payne
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
3
|
Aryal B, Lehtimaki M, Rao VA. Stress-mediated polysorbate 20 degradation and its potential impact on therapeutic proteins. Pharm Res 2024; 41:1217-1232. [PMID: 38740663 PMCID: PMC11196320 DOI: 10.1007/s11095-024-03700-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/07/2024] [Indexed: 05/16/2024]
Abstract
PURPOSE Polysorbates are the most commonly used surfactants in formulations to stabilize therapeutic proteins against interfacial stresses. Polysorbates can undergo oxidative or enzyme-mediated hydrolytic degradation to produce free fatty acids (FFAs) and subvisible particles in formulations. To determine which product related variables contribute to PS20 degradation, we investigated the effects of storage temperature, formulation, pH, presence of hydrolytic enzymes, and specific fatty acid composition on different grades of PS20 in relation to their PS20 degradation profile and consequently the quality of protein drug products. METHODS Bevacizumab and T-DM1 were reformulated in the freshly prepared therapeutic protein formulations containing either compendial PS20 or non-compendial PS20 with high % lauric acid and spiked with exogenous esterase or lipase. The release of FFAs and formation of particles were monitored at 4°C and 37°C. Protein quality was assessed for secondary structures, purity, and biological activity. RESULTS Hydrolytic release of FFAs and formation of subvisible particles were found to be dependent on grades of PS20, types of enzymes used, incubation temperature, and pH. Esterase- or lipase-mediated degradation of PS20 and formation of subvisible particles in drug formulation showed no significant impact on the biological activity and stability of therapeutic proteins against degradation or aggregation. CONCLUSIONS Our study suggests that degradation of PS20 and formation of FFA particles depend on the fatty acid composition of PS20, types of hydrolytic enzymes, pH, and temperature. The presence of FFA subvisible particles showed no significant impact on the purity and biological activity of the therapeutic proteins under the tested conditions.
Collapse
Affiliation(s)
- Baikuntha Aryal
- Laboratory of Applied Biochemistry, Division of Biotechnology Research and Review III, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administrations, Silver Spring, MD, 20993, USA
| | - Mari Lehtimaki
- Laboratory of Applied Biochemistry, Division of Biotechnology Research and Review III, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administrations, Silver Spring, MD, 20993, USA
| | - V Ashutosh Rao
- Laboratory of Applied Biochemistry, Division of Biotechnology Research and Review III, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administrations, Silver Spring, MD, 20993, USA.
| |
Collapse
|
4
|
Escobar ELN, Griffin VP, Dhar P. Correlating Surface Activity with Interface-Induced Aggregation in a High-Concentration mAb Solution. Mol Pharm 2024; 21:1490-1500. [PMID: 38385557 DOI: 10.1021/acs.molpharmaceut.3c01125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Interface-induced aggregation resulting in protein particle formation is an issue during the manufacturing and storage of protein-based therapeutics. High-concentration formulations of therapeutic proteins are even more prone to protein particle formation due to increased protein-protein interactions. However, the dependence of interface-induced protein particle formation on bulk protein concentration is not understood. Furthermore, the formation of protein particles is often mitigated by the addition of polysorbate-based surfactants. However, the details of surfactant-protein interactions that prevent protein particle formation at high concentrations remain unclear. In this work, a tensiometer technique was used to evaluate the surface pressure of an industrially relevant mAb at different bulk concentrations, and in the absence and presence of a polysorbate-based surfactant, polysorbate 20 (PS20). The adsorption kinetics was correlated with subvisible protein particle formation at the air-water interface and in the bulk protein solution using a microflow imaging technique. Our results showed that, in the absence of any surfactant, the number of subvisible particles in the bulk protein solutions increased linearly with mAb concentration, while the number of protein particles measured at the interface showed a logarithmic dependence on bulk protein concentration. In the presence of surfactants above the critical micelle concentration (CMC), our results for low-concentration mAb solutions (10 mg/mL) showed an interface that is surfactant-dominated, and particle characterization results showed that the addition of the surfactant led to reduced particle formation. In contrast, for the highest concentration (170 mg/mL), coadsorption of proteins and surfactants was observed at the air-water interface, even for surfactant formulations above CMC and the surfactant did not mitigate subvisible particle formation. Our results taken together provide evidence that the ratio between the surfactant and mAb molecules is an important consideration when formulating high-concentration mAb therapeutics to prevent unwanted aggregation.
Collapse
Affiliation(s)
- Estephanie L N Escobar
- Department of Chemical and Petroleum Engineering, The University of Kansas, 1530W 15th Street, Lawrence, Kansas 66045, United States
| | - Valerie P Griffin
- Department of Chemical and Petroleum Engineering, The University of Kansas, 1530W 15th Street, Lawrence, Kansas 66045, United States
| | - Prajnaparamita Dhar
- Department of Chemical and Petroleum Engineering, The University of Kansas, 1530W 15th Street, Lawrence, Kansas 66045, United States
| |
Collapse
|
5
|
Dasnoy S, Illartin M, Queffelec J, Nkunku A, Peerboom C. Combined Effect of Shaking Orbit and Vial Orientation on the Agitation-Induced Aggregation of Proteins. J Pharm Sci 2024; 113:669-679. [PMID: 37611666 DOI: 10.1016/j.xphs.2023.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
Orbital shaking in a glass vial is a commonly used forced degradation test to evaluate protein propensity for agitation-induced aggregation. Vial shaking in horizontal orientation has been widely recommended to maximize the air-liquid interface area while ensuring solution contact with the stopper. We evaluated the impact of shaking orbit diameter and frequency, and glass vial orientation (horizontal versus vertical) on the aggregation of three proteins prepared in surfactant-free formulation buffers. As soon as an orbit-specific frequency threshold was reached, an increase in turbidity was observed for the three proteins in vertical orientation only when using a 3 mm agitation orbit, and in horizontal orientation only when using a 30 mm agitation orbit. Orthogonal analyses confirmed turbidity was linked to protein aggregation. The most turbid samples had a visually more homogeneous appearance in vertical than in horizontal orientation, in line with the predicted dispersion of air and liquid phases obtained from computational fluid dynamics agitation simulations. Both shaking orbits were used to assess the performance of nonionic surfactants. We show that the propensity of a protein to aggregate in a vial agitated in horizontal or vertical orientation depends on the shaking orbit, and confirm that Brij® 58 and FM1000 prevent proteins from agitation-induced aggregation at lower concentrations than polysorbate 80.
Collapse
Affiliation(s)
| | - Marion Illartin
- UCB Pharma, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium; Institut Mines-Télécom (IMT) Mines Albi, Allée des Sciences, 81000 Albi, France
| | - Julie Queffelec
- UCB Pharma, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium; Institut Mines-Télécom (IMT) Mines Albi, Allée des Sciences, 81000 Albi, France
| | - Aubrey Nkunku
- UCB Pharma, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium; ALTEN Belgium, Chaussée de Charleroi 112, 1060 Bruxelles, Belgium
| | - Claude Peerboom
- UCB Pharma, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium
| |
Collapse
|
6
|
Cheng W, Lin X, Wang T, Zhang X, Xu F, Wang L, Wang M, Zhang M, Xia T, Zhang D, Qian S, Yang W, Hu A, Tang M, Hu X, Wang Y, Zhao Q. Healthy plant-based diet might be inversely associated with gastric precancerous lesions: new evidence from a case-control study based on dietary pattern and fecal metabolic profiling. Int J Food Sci Nutr 2024; 75:102-118. [PMID: 37941094 DOI: 10.1080/09637486.2023.2279916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Preventing the progression of gastric precancerous lesions (GPLs) can reduce the morbidity and mortality of gastric cancer (GC). The preventive effect of a plant-based diet on cancers has been widely recognised. In this case-control study, 1,130 subjects were included using 1:1 propensity score matching for age and sex. Dietary habits, anthropometry and sample collection were conducted using standard and effective methods. Plant-based diet indices (PDIs) were calculated using a previously reported method. Faecal samples were analysed by untargeted metabolomics. Our study found that adherence to a healthy plant-based diet was inversely associated with the occurrence of GPLs. Metabolomic analysis identified six different metabolites correlated with GPLs, among which luteolin-related metabolites may be used as biomarkers of the association between PDIs and GPLs. In addition, the difference in N-acyl amides found in PDIs needs further verification. Our findings suggest that a healthy plant-based diet may have a protective effect against GPLs.
Collapse
Affiliation(s)
- Wenli Cheng
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Xiao Lin
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Tingting Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Xiaohui Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Fang Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Li Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Min Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Meng Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Tao Xia
- Department of Gastroenterology, Lujiang County People's Hospital, Hefei, China
| | - Daoming Zhang
- Department of Gastroenterology, Lujiang County People's Hospital, Hefei, China
| | - Shiqing Qian
- Department of Pathology, Lujiang County People's Hospital, Hefei, China
| | - Wanshui Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Anla Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Min Tang
- Department of Gastroenterology and Hepatology, the Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiangpeng Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yalei Wang
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qihong Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Cucuzza S, Brosig S, Serno T, Bechtold-Peters K, Cerar J, Kammüller M, Gallou F. Modular and tunable alternative surfactants for biopharmaceuticals provide insights into Surfactant's Structure-Function relationship. Int J Pharm 2024; 650:123692. [PMID: 38081561 DOI: 10.1016/j.ijpharm.2023.123692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Surface-induced aggregation of protein therapeutics is opposed by employing surfactants, which are ubiquitously used in drug product development, with polysorbates being the gold standard. Since poloxamer 188 is currently the only generally accepted polysorbate alternative, but cannot be ubiquitously applied, there is a strong need to develop surfactant alternatives for protein biologics that would complement and possibly overcome known drawbacks of existing surfactants. Yet, a severe lack of structure-function relationship knowledge complicates the development of new surfactants. Herein, we perform a systematic analysis of the structure-function relationship of three classes of novel alternative surfactants. Firstly, the mode of action is thoroughly characterized through tensiometry, calorimetry and MD simulations. Secondly, the safety profiles are evaluated through cell-based in vitro assays. Ultimately, we could conclude that the alternative surfactants investigated possess a mode of action and safety profile comparable to polysorbates. Moreover, the biophysical patterns elucidated here can be exploited to precisely tune the features of future surfactant designs.
Collapse
Affiliation(s)
- Stefano Cucuzza
- Novartis Pharma AG, TRD Biologics & CGT, GDD, 4002 Basel, Switzerland
| | - Sebastian Brosig
- Novartis Pharma AG, TRD Biologics & CGT, GDD, 4002 Basel, Switzerland
| | - Tim Serno
- Novartis Pharma AG, TRD Biologics & CGT, GDD, 4002 Basel, Switzerland
| | | | - Jure Cerar
- Novartis Pharma AG, TRD Biologics & CGT, GDD, 1234 Menges, Slovenia
| | | | | |
Collapse
|
8
|
Li J, Wang H, Wang L, Yu D, Zhang X. Stabilization effects of saccharides in protein formulations: A review of sucrose, trehalose, cyclodextrins and dextrans. Eur J Pharm Sci 2024; 192:106625. [PMID: 37918545 DOI: 10.1016/j.ejps.2023.106625] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/13/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Saccharides are a popular group of stabilizers in liquid, frozen and freeze dried protein formulations. The current work reviewed the stabilization mechanisms of three groups of saccharides: (i) Disaccharides, specifically sucrose and trehalose; (ii) cyclodextrins (CDs), a class of cyclic oligosaccharides; and (iii) dextrans, a class of polysaccharides. Compared to sucrose, trehalose exhibits a more pronounced preferential exclusion effect in liquid protein formulations, due to its stronger interaction with water molecules. However, trehalose obtains higher phase separation and crystallization propensity in frozen solutions, resulting in the loss of its stabilization function. In lyophilized formulations, sucrose has a higher crystallization propensity. Besides, its glass matrix is less homogeneous than that of trehalose, thus undermining its lyoprotectant function. Nevertheless, the hygroscopic nature of trehalose may result in high water absorption upon storage. Among all the CDs, the β form is believed to have stronger interactions with proteins than the α- and γ-CDs. However, the stabilization effect, brought about by CD-protein interactions, is case-by-case - in some examples, such interactions can promote protein destabilization. The stabilization effect of hydroxypropyl-β-cyclodextrin (HPβCD) has been extensively studied. Due to its amphiphilic nature, it can act as a surface-active agent in preventing interfacial stresses. Besides, it is a dual functional excipient in freeze dried formulations, acting as an amorphous bulking agent and lyoprotectant. Finally, dextrans, when combined with sucrose or trehalose, can be used to produce stable freeze dried protein formulations. A strong stabilization effect can be realized by low molecular weight dextrans. However, the terminal glucose in dextrans yields protein glycation, which warrants extra caution during formulation development.
Collapse
Affiliation(s)
- Jinghan Li
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States
| | - Hongyue Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Lushan Wang
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States; Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States
| | - Dongyue Yu
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, NJ 08540, USA
| | - Xiangrong Zhang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
9
|
Gregoritza K, Theodorou C, Heitz M, Graf T, Germershaus O, Gregoritza M. Enzymatic degradation pattern of polysorbate 20 impacts interfacial properties of monoclonal antibody formulations. Eur J Pharm Biopharm 2024; 194:74-84. [PMID: 38042510 DOI: 10.1016/j.ejpb.2023.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Polysorbate 20 (PS20) is widely used to maintain protein stability in biopharmaceutical formulations. However, PS20 is susceptible to hydrolytic degradation catalyzed by trace amounts of residual host cell proteins present in monoclonal antibody (mAb) formulations. The resulting loss of intact surfactant and the presence of PS20 degradation products, such as free fatty acids (FFAs), may impair protein stability. In this study, two hydrolytically-active immobilized lipases, which primarily targeted either monoester or higher-order ester species in PS20, were used to generate partially-degraded PS20. The impact of PS20 degradation pattern on critical micelle concentration (CMC), surface tension, interfacial rheology parameters and agitation protection was assessed. CMC was slightly increased upon monoester degradation, but significantly increased upon higher-order ester degradation. The PS20 degradation pattern also significantly impacted the dynamic surface tension of a mAb formulation, whereas changes in the equilibrium surface tension were mainly caused by the adsorption of FFAs onto the air-water interface. In an agitation protection study, monoester degradation resulted in the formation of soluble mAb aggregates and proteinaceous particles, suggesting that preferential degradation of PS20 monoester species can significantly impair mAb stability. Additional mAbs should be tested in the future to assess the impact of the protein format.
Collapse
Affiliation(s)
- Kathrin Gregoritza
- Pharmaceutical and Processing Development, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| | - Christos Theodorou
- Pharmaceutical and Processing Development, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Marc Heitz
- Pharmaceutical and Processing Development, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Tobias Graf
- Analytical Development and Quality Control, Pharma Technical Development Biologics Europe, Roche Diagnostics GmbH, Penzberg, Germany
| | - Oliver Germershaus
- Institute for Pharma Technology, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Manuel Gregoritza
- Analytical Development and Quality Control, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| |
Collapse
|
10
|
Weber J, Buske J, Mäder K, Garidel P, Diederichs T. Oxidation of polysorbates - An underestimated degradation pathway? Int J Pharm X 2023; 6:100202. [PMID: 37680877 PMCID: PMC10480556 DOI: 10.1016/j.ijpx.2023.100202] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/03/2023] [Accepted: 07/24/2023] [Indexed: 09/09/2023] Open
Abstract
To ensure the stability of biologicals over their entire shelf-life, non-ionic surface-active compounds (surfactants) are added to protect biologics from denaturation and particle formation. In this context, polysorbate 20 and 80 are the most used detergents. Despite their benefits of low toxicity and high biocompatibility, specific factors are influencing the intrinsic stability of polysorbates, leading to degradation, loss in efficacy, or even particle formation. Polysorbate degradation can be categorized into chemical or enzymatic hydrolysis and oxidation. Under pharmaceutical relevant conditions, hydrolysis is commonly originated from host cell proteins, whereas oxidative degradation may be caused by multiple factors such as light, presence of residual metal traces, peroxides, or temperature, which can be introduced upon manufacturing or could be already present in the raw materials. In this review, we provide an overview of the current knowledge on polysorbates with a focus on oxidative degradation. Subsequently, degradation products and key characteristics of oxidative-mediated polysorbate degradation in respect of different types and grades are summarized, followed by an extensive comparison between polysorbate 20 and 80. A better understanding of the radical-induced oxidative PS degradation pathway could support specific mitigation strategies. Finally, buffer conditions, various stressors, as well as appropriate mitigation strategies, reagents, and alternative stabilizers are discussed. Prior manufacturing, careful consideration and a meticulous risk-benefit analysis are highly recommended in terms of polysorbate qualities, buffers, storage conditions, as well as mitigation strategies.
Collapse
Affiliation(s)
- Johanna Weber
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, Halle (Saale) 06120, Germany
| | - Julia Buske
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, TIP, Birkendorfer Straße 65, Biberach an der Riss 88397, Germany
| | - Karsten Mäder
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, Halle (Saale) 06120, Germany
| | - Patrick Garidel
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, Halle (Saale) 06120, Germany
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, TIP, Birkendorfer Straße 65, Biberach an der Riss 88397, Germany
| | - Tim Diederichs
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, TIP, Birkendorfer Straße 65, Biberach an der Riss 88397, Germany
| |
Collapse
|
11
|
Doyle M, Barnes A, Larson NR, Liu H, Yi L. Development of UPLC-UV-ELSD Method for Fatty Acid Profiling in Polysorbate 80 and Confirmation of the Presence of Conjugated Fatty Acids by Mass Spectrometry, UV Absorbance and Proton Nuclear Magnetic Resonance Spectroscopy. J Pharm Sci 2023; 112:2393-2403. [PMID: 37295606 DOI: 10.1016/j.xphs.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Polysorbate 80 (PS80), a chemical substance composed of sorbitol, ethylene glycol, and fatty acids, is commonly used in pharmaceutical drug products to stabilize formulations. However, recent studies have demonstrated that PS80 may hydrolyze over time and the released free fatty acids (FFAs) may lead to particle formation. Naming conventions of fatty acids in current pharmacopeia and in products' certificates of analysis (CoA) of PS80 do not typically distinguish between isomeric species of fatty acids in PS80. Thus, methods to fully characterize the fatty acid species present in PS80 raw materials are needed to enhance quality control strategies of pharmaceuticals using PS80. Here, extended effort is taken to characterize fatty acids in hydrolyzed PS80 raw materials and elucidate the identities of isomeric fatty acid species. In this work, a method was developed and optimized for separation and detection of fatty acids in alkaline hydrolyzed PS80 raw materials using ultra performance liquid chromatography (UPLC) with ultra-violet (UV) detection and evaporative light scattering detection (ELSD). Fatty acids not specified in the current pharmacopeias were detected in PS80 raw material by the developed LC-UV-ELSD method including conjugated forms of linoleic and linolenic fatty acid species. Their identities were orthogonally confirmed by retention time agreement with analytical standards, accurate mass by high resolution mass spectrometry, UV absorbance, and proton nuclear magnetic resonance spectroscopy. The detected conjugated fatty acids are theoretically more hydrophobic and less soluble than their unconjugated counterparts and may increase the propensity of PS80 to form particles upon hydrolysis. This work highlights the need for better quality control of PS80 raw material, as it may eventually play a critical role in product quality of therapeutic proteins.
Collapse
Affiliation(s)
- Michael Doyle
- Analytical Development, Biogen Inc., 5000 Davis Drive, RTP, NC, 27709, United States of America
| | - Adam Barnes
- Analytical Development, Biogen Inc., 5000 Davis Drive, RTP, NC, 27709, United States of America
| | - Nicholas R Larson
- Analytical Development, Biogen Inc., 225 Binney Street, Cambridge, MA, 02142, United States of America
| | - Haiyan Liu
- Analytical Development, Biogen Inc., 5000 Davis Drive, RTP, NC, 27709, United States of America
| | - Linda Yi
- Analytical Development, Biogen Inc., 5000 Davis Drive, RTP, NC, 27709, United States of America.
| |
Collapse
|
12
|
Ehrit J, Gräwert TW, Göddeke H, Konarev PV, Svergun DI, Nagel N. Small-angle x-ray scattering investigation of the integration of free fatty acids in polysorbate 20 micelles. Biophys J 2023; 122:3078-3088. [PMID: 37340636 PMCID: PMC10432221 DOI: 10.1016/j.bpj.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 06/22/2023] Open
Abstract
A critical quality attribute for liquid formulations is the absence of visible particles. Such particles may form upon polysorbate hydrolysis resulting in release of free fatty acids into solution followed by precipitation. Strategies to avoid this effect are of major interest for the pharmaceutical industry. In this context, we investigated the structural organization of polysorbate micelles alone and upon addition of the fatty acid myristic acid (MA) by small-angle x-ray scattering. Two complementary approaches using a model of polydisperse core-shell ellipsoidal micelles and an ensemble of quasiatomistic micelle structures gave consistent results well describing the experimental data. The small-angle x-ray scattering data reveal polydisperse mixtures of ellipsoidal micelles containing about 22-35 molecules per micelle. The addition of MA at concentrations up to 100 μg/mL reveals only marginal effects on the scattering data. At the same time, addition of high amounts of MA (>500 μg/mL) increases the average sizes of the micelles indicating that MA penetrates into the surfactant micelles. These results together with molecular modeling shed light on the polysorbate contribution to fatty acid solubilization preventing or delaying fatty acid particle formation.
Collapse
Affiliation(s)
- Jörg Ehrit
- Analytical Research and Development, NBE Analytical R&D, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany
| | - Tobias W Gräwert
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Hendrik Göddeke
- Computational Drug Discovery, Small Molecule Therapeutics & Platform Technologies, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany
| | - Petr V Konarev
- A. V. Shubnikov Institute of Crystallography, Federal Scientific Research Centre "Сrystallography and Photonics" of Russian Academy of Sciences, Moscow, Russian Federation
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany.
| | - Norbert Nagel
- Analytical Research and Development, Global Technical Centers, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany.
| |
Collapse
|
13
|
Brosig S, Cucuzza S, Serno T, Bechtold-Peters K, Buecheler J, Zivec M, Germershaus O, Gallou F. Not the Usual Suspects: Alternative Surfactants for Biopharmaceuticals. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37450418 DOI: 10.1021/acsami.3c05610] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Therapeutically relevant proteins naturally adsorb to interfaces, causing aggregation which in turn potentially leads to numerous adverse consequences such as loss of activity or unwanted immunogenic reactions. Surfactants are ubiquitously used in biotherapeutics drug development to oppose interfacial stress, yet, the choice of the surfactant is extremely limited: to date, only polysorbates (PS20/80) and poloxamer 188 are used in commercial products. However, both surfactant families suffer from severe degradation and impurities of the raw material, which frequently increases the risk of particle generation, chemical protein degradation, and potential adverse immune reactions. Herein, we assessed a total of 40 suitable alternative surfactant candidates and subsequently performed a selection through a three-gate screening process employing four protein modalities encompassing six different formulations. The screening is based on short-term agitation-induced aggregation studies coupled to particle analysis and surface tension characterization, followed by long-term quiescence stability studies connected to protein purity measurements and particle analysis. The study concludes by assessing the surfactant's chemical and enzymatic degradation propensity. The candidates emerging from the screening are de novo α-tocopherol-derivatives named VEDG-2.2 and VEDS, produced ad hoc for this study. They display protein stabilization potential comparable or better than polysorbates together with an increased resistance to chemical and enzymatic degradation, thus representing valuable alternative surfactants for biotherapeutics.
Collapse
Affiliation(s)
- Sebastian Brosig
- Novartis Pharma AG, GDD, TRD Biologics & CGT, Basel CH-4002, Switzerland
| | - Stefano Cucuzza
- Novartis Pharma AG, GDD, TRD Biologics & CGT, Basel CH-4002, Switzerland
| | - Tim Serno
- Novartis Pharma AG, GDD, TRD Biologics & CGT, Basel CH-4002, Switzerland
| | | | - Jakob Buecheler
- Novartis Pharma AG, GDD, TRD Biologics & CGT, Basel CH-4002, Switzerland
| | - Matej Zivec
- Novartis Pharma AG, GDD, TRD Biologics & CGT, Menges 1234, Slovenia
| | - Oliver Germershaus
- School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Hofackerstrasse 30, Muttenz 4132, Switzerland
| | - Fabrice Gallou
- Novartis Pharma AG, GDD, CHAD, Basel CH-4057, Switzerland
| |
Collapse
|
14
|
Fares HM, Carnovale M, Tabouguia MON, Jordan S, Katz JS. Novel Surfactant Compatibility with Downstream Protein Bioprocesses. J Pharm Sci 2023; 112:1811-1820. [PMID: 37094665 DOI: 10.1016/j.xphs.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/26/2023]
Abstract
Downstream processing of antibodies consists of a series of steps aimed at purifying the product and ensuring it is delivered to formulators structurally and functionally intact. The process can be complex and time-consuming, involving multiple filtrations, chromatography, and buffer exchange steps that can interfere with product integrity. This study explores the possibility and benefits of adding N-myristoyl phenylalanine polyether amine diamide (FM1000) as a process aid. FM1000 is a nonionic surfactant that is highly effective at stabilizing proteins against aggregation and particle formation and has been extensively explored as a novel excipient for antibody formulations. In this work, FM1000 is shown to stabilize proteins against pumping-induced aggregation which can occur while transporting them between process units and within certain processes. It is also shown to prevent antibody fouling of multiple polymeric surfaces. Furthermore, FM1000 can be removed after some steps and during buffer exchange in ultrafiltration/diafiltration, if needed. Additionally, FM1000 was compared to polysorbates in studies focusing on surfactant retention on filters and columns. While the different molecular entities of polysorbates elute at different rates, FM1000 flows through purification units as a single molecule and at a faster rate. Overall, this work defines new areas of application for FM1000 within downstream processing and presents it as a versatile process aid, where its addition and removal are tunable depending on the needs of each product.
Collapse
Affiliation(s)
- Hadi M Fares
- Colloids and Biopharma R&D, Pharma Solutions R&D, International Flavors and Fragrances, Wilmington, DE 19803
| | - Miriam Carnovale
- Colloids and Biopharma R&D, Pharma Solutions R&D, International Flavors and Fragrances, Wilmington, DE 19803
| | - Megane O N Tabouguia
- Colloids and Biopharma R&D, Pharma Solutions R&D, International Flavors and Fragrances, Wilmington, DE 19803
| | - Susan Jordan
- Colloids and Biopharma R&D, Pharma Solutions R&D, International Flavors and Fragrances, Wilmington, DE 19803
| | - Joshua S Katz
- Colloids and Biopharma R&D, Pharma Solutions R&D, International Flavors and Fragrances, Wilmington, DE 19803.
| |
Collapse
|
15
|
Bai L, Zhang Y, Zhang C, Lu Y, Li Z, Huang G, Meng B. Investigation of excipients impact on polysorbate 80 degradation in biopharmaceutical formulation buffers. J Pharm Biomed Anal 2023; 233:115496. [PMID: 37285658 DOI: 10.1016/j.jpba.2023.115496] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/17/2023] [Accepted: 05/28/2023] [Indexed: 06/09/2023]
Abstract
A study on the polysorbate 80 stability in various formulation buffers commonly used in biopharmaceuticals was performed, to investigate the excipients influence on polysorbate 80 degradation. Polysorbate 80 is a common excipient in biopharmaceutical products. However, its degradation will potentially impact the drug product quality, and may trigger protein aggregation and particles formation. Due to the heterogeneity of the polysorbates and the mutual effects with other formulation compositions, the study of polysorbate degradation is challenging. Herein, a real-time stability study was designed and performed. The polysorbate 80 degradation trend was monitored by fluorescence micelle-based assay (FMA), reversed-phase-ultra-performance liquid chromatography-evaporative light scattering detector (RP-UPLC-ELSD) assay, and LC-MS assay. These assays provide orthogonal results to reveal both the micelle-forming capability and the compositional changes of polysorbate 80 in different buffer systems. The degradation occurred after a period of storage under 25 °C in different trend, which indicates the excipients could impact the degradation kinetics. Upon comparison, the degradation is prone to happen in histidine buffer than in acetate, phosphate or citrate buffers. LC-MS confirms oxidation as an independent degradation pathway with detection of the oxidative aldehyde. Thus, it is necessary to pay more attention to the excipients selection and their potential impact on polysorbate 80 stability to achieve longer shelf life for the biopharmaceuticals. Besides, the protective roles of several additives were figured out, which could be applied as potential industrial solutions to the polysorbate 80 degradation issues.
Collapse
Affiliation(s)
- Ling Bai
- Analytical Sciences, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China
| | - Yanlan Zhang
- Analytical Sciences, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China
| | - Cai Zhang
- Analytical Sciences, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China
| | - Yuchen Lu
- Analytical Sciences, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China
| | - Zhiguo Li
- Analytical Sciences, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China
| | - Gang Huang
- Analytical Sciences, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China
| | - Bo Meng
- Analytical Sciences, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China.
| |
Collapse
|
16
|
Zhang S, Zhao B, Adaniya S, Xiao H, Li N. Ultrasensitive Quantification Method for Understanding Biologically Relevant Concentrations of Host Cell Proteins in Therapeutics. Anal Chem 2023; 95:6002-6008. [PMID: 36977129 DOI: 10.1021/acs.analchem.3c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Certain host cell proteins (HCPs) in biotherapeutic drugs may be detrimental to drug product quality even when they are present at the subppm level. Therefore, an analytical method that can reliably quantify trace amounts of HCPs is desirable. This study demonstrates a novel strategy to quantify HCPs present at subppm levels with ProteoMiner enrichment coupled with limited digestion followed by targeted analysis with nano-liquid chromatography-parallel reaction monitoring. The method can achieve LLOQ values as low as 0.06 ppm, with an accuracy of 85%-111% of the theoretical value, and inter-run and intrarun precision within 12% and 25%, respectively. The approach was applied to the quantification of five high-risk HCPs in drug products. The results indicated that 2.5 ppm lysosomal acid lipase, 0.14 ppm liver carboxylesterase, 1.8 ppm palmitoyl-protein thioesterase 1, and 1 ppm cathepsin D affected the stability of drug products, whereas drug products could safely contain 1.5 ppm lipoprotein lipase, 0.1 ppm lysosomal acid lipase, or 0.3 ppm cathepsin D. In combination with lipase activity analysis, the accurate quantification of lipases/esterases in drug products enables better understanding and comparison of the enzymatic activity of polysorbate degradation from endogenous proteins.
Collapse
Affiliation(s)
- Sisi Zhang
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6706, United States
| | - Bo Zhao
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6706, United States
| | - Stephanie Adaniya
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6706, United States
| | - Hui Xiao
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6706, United States
| | - Ning Li
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6706, United States
| |
Collapse
|
17
|
Diederichs T, Mittag JJ, Humphrey J, Voss S, Carle S, Buske J, Garidel P. Existence of a superior polysorbate fraction in respect to protein stabilization and particle formation? Int J Pharm 2023; 635:122660. [PMID: 36740078 DOI: 10.1016/j.ijpharm.2023.122660] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/02/2022] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Biologicals including monoclonal antibodies are the current flagships in pharmaceutical industry. However, they are exposed to a multitude of destabilization conditions like for instance hydrophobic interfaces, leading to reduced biological activity. Polysorbates are commonly applied to effectively stabilize these active pharmaceutical ingredients against colloidal stress. Nevertheless, chemical instability of polysorbate via hydrolysis or oxidation results in degradation products that might form particles via phase separation. Polysorbates are mixtures of hundreds of individual components, and recently purer quality grades with reduced variations in the fatty acid composition are available. As the protective function of polysorbate itself is not completely understood, even less is known about its individual components, raising the question of the existence of a superior polysorbate species in respect to protein stabilization or degradation susceptibility. Here, we evaluated the protective function of four main fractions of polysorbate 20 (PS20) in agitation studies with monoclonal antibodies, followed by particle analysis as well as protein and polysorbate content determination. The commercially-available inherent mixtures PS20 high purity and PS20 all-laurate, as well as the fraction isosorbide-POE-monolaurate showed superior protection against mechanical-induced stress (visual inspection and turbidity) at the air-water interface in comparison to sole sorbitan-POE-monolaurate, -dilaurate, and -trilaurate. Fractions composed mainly of higher-order esters like sorbitan-POE-dilaurate and sorbitan-POE-trilaurate indicated high turbidities as indication for subvisible and small particles accompanied by a reduced protein monomer content after agitation. For the isosorbide-POE-monolaurates as well as for the inherent polysorbate mixtures no obvious differences in protein content and protein aggregation (SEC) were observed, reflecting the observations from visual appearance. However, absolute polysorbate concentrations vary drastically between different species in the actual formulations. As there are still open questions in respect to protein specificity or regarding mixtures versus individual components of PS20, further studies must be performed, to gain a better understanding of a "generalized" stabilizing effect of polysorbates on monoclonal antibodies. The knowledge of the characteristics of individual polysorbate species can have the potential to pave the way to superior detergents in respect to protein stabilization and/or degradation susceptibility.
Collapse
Affiliation(s)
- Tim Diederichs
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany.
| | - Judith J Mittag
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - James Humphrey
- Croda Europe Ltd, Cowick Hall, DN14 9AA, Snaith, United Kingdom
| | - Söhnke Voss
- Croda Europe Ltd, Cowick Hall, DN14 9AA, Snaith, United Kingdom
| | - Stefan Carle
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Julia Buske
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany.
| |
Collapse
|
18
|
Characterization of Recombinantly-Expressed Hydrolytic Enzymes from Chinese Hamster Ovary Cells: Identification of Host Cell Proteins that Degrade Polysorbate. J Pharm Sci 2023; 112:1351-1363. [PMID: 36646283 DOI: 10.1016/j.xphs.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/15/2023]
Abstract
Enzymatic hydrolysis of polysorbate in drug products is a major challenge for the biopharmaceutical industry. Polysorbate hydrolysis caused by host cell proteins (HCPs) co-purified during bioprocessing can reduce the protective effects of the surfactant for the active pharmaceutical ingredient and cause the accumulation of low-solubility degradation products over the long-term storage. The identities of such HCPs are elusive due to their extremely low concentrations after the efficient purification processes of most biopharmaceuticals. In this work, 20 enzymes-selected for their known or putative hydrolytic activity and potential to degrade polysorbate-were recombinantly expressed, purified, and characterized via orthogonal methods. First, these recombinant HCPs were assessed for hydrolytic activity against a fluorogenic esterase substrate in a recently-developed, high-throughput assay. Second, these HCPs were screened for hydrolytic activity against polysorbate in a representative mAb formulation. Third, HCPs that displayed hydrolytic activities in the first two assays were subjected to more detailed characterization of their enzyme kinetics against polysorbates. Finally, these HCPs were evaluated for substrate specificity towards different sub-species of polysorbates. This work provides critical new insights for targeted LC-MS/MS approaches for identification of relevant polysorbate-degrading enzymes and supports improvements to remove such HCPs, including knockouts or targeted removal during purification.
Collapse
|
19
|
Morales AM, Sreedhara A, Buecheler J, Brosig S, Chou D, Christian T, Das T, de Jong I, Fast J, Jagannathan B, Moussa EM, Nejadnik MR, Prajapati I, Radwick A, Rahman Y, Singh S. End-to-End Approach to Surfactant Selection, Risk Mitigation, and Control Strategies for Protein-Based Therapeutics. AAPS J 2022; 25:6. [PMID: 36471030 DOI: 10.1208/s12248-022-00773-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022] Open
Abstract
A survey performed by the AAPS Drug Product Handling community revealed a general, mostly consensus, approach to the strategy for the selection of surfactant type and level for biopharmaceutical products. Discussing and building on the survey results, this article describes the common approach for surfactant selection and control strategy for protein-based therapeutics and focuses on key studies, common issues, mitigations, and rationale. Where relevant, each section is prefaced by survey responses from the 22 anonymized respondents. The article format consists of an overview of surfactant stabilization, followed by a strategy for the selection of surfactant level, and then discussions regarding risk identification, mitigation, and control strategy. Since surfactants that are commonly used in biologic formulations are known to undergo various forms of degradation, an effective control strategy for the chosen surfactant focuses on understanding and controlling the design space of the surfactant material attributes to ensure that the desired material quality is used consistently in DS/DP manufacturing. The material attributes of a surfactant added in the final DP formulation can influence DP performance (e.g., protein stability). Mitigation strategies are described that encompass risks from host cell proteins (HCP), DS/DP manufacturing processes, long-term storage, as well as during in-use conditions.
Collapse
Affiliation(s)
- Annette Medina Morales
- Dosage Form Design and Development, BioPharmaceuticals Development, R&D, AstraZeneca, 1 Medimmune Way, Gaithersburg, Maryland, 20878, USA.
| | - Alavattam Sreedhara
- Genentech, Pharmaceutical Development, South San Francisco, California, 94080, USA
| | - Jakob Buecheler
- Technical Research and Development, Novartis Pharma AG, 4002, Basel, Switzerland
| | - Sebastian Brosig
- Technical Research and Development, Novartis Pharma AG, 4002, Basel, Switzerland
| | - Danny Chou
- Compassion BioSolution, LLC, Lomita, California, 90717, USA
| | | | - Tapan Das
- Analytical Development and Attribute Sciences, Bristol Myers Squibb, New Brunswick, New Jersey, USA
| | - Isabella de Jong
- Genentech, Pharmaceutical Development, South San Francisco, California, 94080, USA
| | - Jonas Fast
- Pharmaceutical Development, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | | | - Ehab M Moussa
- Drug Product Development, AbbVie, North Chicago, Illinios, 60064, USA
| | - M Reza Nejadnik
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Indira Prajapati
- Dosage Form Design and Development, BioPharmaceuticals Development, R&D, AstraZeneca, 1 Medimmune Way, Gaithersburg, Maryland, 20878, USA
| | | | - Yusra Rahman
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Shubhadra Singh
- GlaxoSmithKline R&D, Biopharmaceutical Product Sciences, Collegeville, Philadelphia, Pennsylvania, 19426, USA
| |
Collapse
|
20
|
Wuchner K, Yi L, Chery C, Nikels F, Junge F, Crotts G, Rinaldi G, Starkey JA, Bechtold-Peters K, Shuman M, Leiss M, Jahn M, Garidel P, de Ruiter R, Richer SM, Cao S, Peuker S, Huille S, Wang T, Brun VL. Industry Perspective on the Use and Characterization of Polysorbates for Biopharmaceutical Products Part 2: Survey Report on Control Strategy Preparing for the Future. J Pharm Sci 2022; 111:2955-2967. [PMID: 36002077 DOI: 10.1016/j.xphs.2022.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 12/14/2022]
Abstract
Polysorbate (PS) 20 and 80 are the main surfactants used to stabilize biopharmaceutical products. Industry practices on various aspects of PS based on a confidential survey and following discussions by 16 globally acting major biotechnology companies is presented in two publications. Part 1 summarizes the current practice and use of PS during manufacture in addition to aspects like current understanding of the (in)stability of PS, the routine QC testing and control of PS, and selected regulatory aspects of PS.1 The current part 2 of the survey focusses on understanding, monitoring, prediction, and mitigation of PS degradation pathways in order to propose an effective control strategy. The results of the survey and extensive cross-company discussions are put into relation with currently available scientific literature.
Collapse
Affiliation(s)
- Klaus Wuchner
- Janssen R&D, DPDS BTDS Analytical Development, Hochstr. 201, 8200 Schaffhausen, Switzerland.
| | - Linda Yi
- Analytical Development, Biogen, Morrisville, NC 27709, USA
| | - Cyrille Chery
- UCB, Analytical Development Sciences for Biologicals, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium
| | - Felix Nikels
- Boehringer Ingelheim Pharma GmbH & Co KG, Innovation Unit, Birkendorfer Str. 65, 88397 Biberach an der Riss, Germany
| | - Friederike Junge
- Analytical Research and Development, NBE Analytical R&D, AbbVie Deutschland GmbH& Co. KG, Knollstraße, 67061 Ludwigshafen, Germany
| | - George Crotts
- GlaxoSmithKline, 1250 S Collegeville Rd, Collegeville, PA 19426, USA
| | - Gianluca Rinaldi
- Merck Serono SpA, Guidonia Montecelio, Italy, an affiliate of Merck KGaA, Darmstadt, Germany
| | - Jason A Starkey
- Pfizer, Inc. Biotherapeutics Pharmaceutical Sciences, Analytical Research and Development 875 W. Chesterfield Parkway, Chesterfield, MO 63017, USA
| | | | - Melissa Shuman
- GlaxoSmithKline, 1250 S Collegeville Rd, Collegeville, PA 19426, USA
| | - Michael Leiss
- Pharma Technical Development Analytics, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg, 82377, Germany
| | - Michael Jahn
- Lonza AG, Drug Product Services, Hochbergerstr. 60G, CH-4057 Basel, Switzerland
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co KG, Innovation Unit, Birkendorfer Str. 65, 88397 Biberach an der Riss, Germany
| | - Rien de Ruiter
- Byondis B.V., Downstream Processing, Nijmegen, the Netherlands
| | - Sarah M Richer
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Shawn Cao
- Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Sebastian Peuker
- Bayer AG, Product Supply, Analytical Development and Clinical QC for Biotech Products, Friedrich-Ebert-Str. 217-233, 42117 Wuppertal, Germany
| | - Sylvain Huille
- Sanofi R&D, Biologics Drug Products Development,13 quai Jules Guesde, 94403 Vitry-sur Seine, France
| | - Tingting Wang
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Virginie Le Brun
- Lonza AG, Drug Product Services, Hochbergerstr. 60G, CH-4057 Basel, Switzerland
| |
Collapse
|
21
|
Kanthe AD, Carnovale MR, Katz JS, Jordan S, Krause ME, Zheng S, Ilott A, Ying W, Bu W, Bera MK, Lin B, Maldarelli C, Tu RS. Differential Surface Adsorption Phenomena for Conventional and Novel Surfactants Correlates with Changes in Interfacial mAb Stabilization. Mol Pharm 2022; 19:3100-3113. [PMID: 35882380 PMCID: PMC9450885 DOI: 10.1021/acs.molpharmaceut.2c00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein adsorption on surfaces can result in loss of drug product stability and efficacy during the production, storage, and administration of protein-based therapeutics. Surface-active agents (excipients) are typically added in protein formulations to prevent undesired interactions of proteins on surfaces and protein particle formation/aggregation in solution. The objective of this work is to understand the molecular-level competitive adsorption mechanism between the monoclonal antibody (mAb) and a commercially used excipient, polysorbate 80 (PS80), and a novel excipient, N-myristoyl phenylalanine-N-polyetheramine diamide (FM1000). The relative rate of adsorption of PS80 and FM1000 was studied by pendant bubble tensiometry. We find that FM1000 saturates the interface faster than PS80. Additionally, the surface-adsorbed amounts from X-ray reflectivity (XRR) measurements show that FM1000 blocks a larger percentage of interfacial area than PS80, indicating that a lower bulk FM1000 surface concentration is sufficient to prevent protein adsorption onto the air/water interface. XRR models reveal that with an increase in mAb concentration (0.5-2.5 mg/mL: IV based formulations), an increased amount of PS80 concentration (below critical micelle concentration, CMC) is required, whereas a fixed value of FM1000 concentration (above its relatively lower CMC) is sufficient to inhibit mAb adsorption, preventing mAb from co-existing with surfactants on the surface layer. With this observation, we show that the CMC of the surfactant is not the critical factor to indicate its ability to inhibit protein adsorption, especially for chemically different surfactants, PS80 and FM1000. Additionally, interface-induced aggregation studies indicate that at minimum surfactant concentration levels in protein formulations, fewer protein particles form in the presence of FM1000. Our results provide a mechanistic link between the adsorption of mAbs at the air/water interface and the aggregation induced by agitation in the presence of surfactants.
Collapse
Affiliation(s)
- Ankit D Kanthe
- Sterile Product Development, Bristol Myers Squibb, New Brunswick, New Jersey 08901, United States.,Department of Chemical Engineering, The City College of New York, New York, New York 10031, United States
| | - Miriam R Carnovale
- Pharma Solutions R&D, International Flavors and Fragrances, Wilmington, Delaware 19803, United States
| | - Joshua S Katz
- Pharma Solutions R&D, International Flavors and Fragrances, Wilmington, Delaware 19803, United States
| | - Susan Jordan
- Pharma Solutions R&D, International Flavors and Fragrances, Wilmington, Delaware 19803, United States
| | - Mary E Krause
- Sterile Product Development, Bristol Myers Squibb, New Brunswick, New Jersey 08901, United States
| | - Songyan Zheng
- Sterile Product Development, Bristol Myers Squibb, New Brunswick, New Jersey 08901, United States
| | - Andrew Ilott
- Sterile Product Development, Bristol Myers Squibb, New Brunswick, New Jersey 08901, United States
| | - William Ying
- Sterile Product Development, Bristol Myers Squibb, New Brunswick, New Jersey 08901, United States
| | - Wei Bu
- NSF's ChemMatCARS, Center for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 606371, United States
| | - Mrinal K Bera
- NSF's ChemMatCARS, Center for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 606371, United States
| | - Binhua Lin
- NSF's ChemMatCARS, Center for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 606371, United States
| | - Charles Maldarelli
- Department of Chemical Engineering, The City College of New York, New York, New York 10031, United States.,Levich Institute, The City College of New York, New York, New York 10031, United States
| | - Raymond S Tu
- Department of Chemical Engineering, The City College of New York, New York, New York 10031, United States
| |
Collapse
|
22
|
A Mechanistic Understanding of Monoclonal Antibody Interfacial Protection by Hydrolytically Degraded Polysorbate 20 and 80 under IV Bag Conditions. Pharm Res 2022; 39:563-575. [PMID: 35277841 DOI: 10.1007/s11095-022-03217-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/24/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Polysorbates (PS) contain polyoxyethylene (POE) sorbitan/isosorbide fatty acid esters that can partially hydrolyze over time in liquid drug products to generate degradants and a remaining intact PS fraction with a modified ester distribution. The degradants are composed of free fatty acids (FFAs) --primarily lauric acid for PS20 and oleic acid for PS80-- and POE head groups. We previously demonstrated that under IV bag agitation conditions, mAb1 (a surface-active IgG4) aggregation increased with increasing amounts of degradants for PS20 but not for PS80. The purpose of this work is to understand the mechanism behind this observation. METHODS The surface tension of the remaining intact PS fraction without degradants was modeled and compared with that of enzymatically degraded PS solutions. Next, mAb1 aggregation in saline was measured in the presence of laurate and oleate salts during static storage. Lastly, colloidal and conformational stability of mAb1 in the presence of these salts was investigated through differential scanning fluorimetry and dynamic light scattering under IV bag solution conditions. RESULTS The surface tension was primarily influenced by FFAs rather than the modified ester distribution of the remaining intact PS. MAb1 bulk aggregation increased in the presence of laurate but not oleate salts. Both salt types increased the melting temperature of mAb1 indicating FFA-mAb1 interactions. However, only laurate salt increased mAb1 self-association potentially explaining the higher aggregation propensity in its presence. CONCLUSION Our results help explain the observed differences between hydrolytically degraded PS20 and PS80 in affecting mAb1 aggregation under IV bag agitation conditions.
Collapse
|
23
|
Industry perspective on the use and characterization of polysorbates for biopharmaceutical products Part 1: Survey report on current state and common practices for handling and control of polysorbates. J Pharm Sci 2022; 111:1280-1291. [PMID: 35192858 DOI: 10.1016/j.xphs.2022.02.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 11/20/2022]
Abstract
Polysorbates (PS) are widely used as a stabilizer in biopharmaceutical products. Industry practices on various aspects of PS are presented in this part 1 survey report based on a confidential survey and following discussions by 16 globally acting major biotechnology companies. The current practice and use of PS during manufacture across their global manufacturing sites are covered in addition to aspects like current understanding of the (in)stability of PS, the routine QC testing and control of PS, and selected regulatory aspects of PS. The results of the survey and extensive cross-company discussions are put into relation with currently available scientific literature. Part 2 of the survey report (upcoming) will focus on understanding, monitoring, prediction, and mitigation of PS degradation pathways to develop an effective control strategy.
Collapse
|
24
|
Li X, Wang F, Li H, Richardson DD, Roush DJ. The measurement and control of high-risk host cell proteins for polysorbate degradation in biologics formulation. Antib Ther 2022; 5:42-54. [PMID: 35155990 PMCID: PMC8826928 DOI: 10.1093/abt/tbac002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/21/2021] [Accepted: 01/02/2022] [Indexed: 11/13/2022] Open
Abstract
Nonionic surfactant polysorbates, including PS-80 and PS-20, are commonly used in the formulation of biotherapeutic products for both preventing surface adsorption and acting as stabilizer against protein aggregation. Trace levels of residual host cell proteins (HCPs) with lipase or esterase enzymatic activity have been shown to degrade polysorbates in biologics formulation. The measurement and control of these low abundance, high-risk HCPs for polysorbate degradation are an industry-wide challenge to achieve desired shelf life of biopharmaceuticals in liquid formulation, especially for high-concentration formulation product development. Here, we reviewed the challenges, recent advances, and future opportunities of analytical method development, risk assessment, and control strategies for polysorbate degradation during formulation development with a focus on enzymatic degradation. Continued efforts to advance our understanding of polysorbate degradation in biologics formulation will help develop high-quality medicines for patients.
Collapse
Affiliation(s)
- Xuanwen Li
- Analytical Research & Development, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, USA
- To whom correspondence should be addressed: Xuanwen Li, Analytical Research & Development Mass Spectrometry, Merck & Co. Inc., 770 Sumneytown Pike, WPP042A-4015, West Point, PA 19486. Tel: 215-652-1829;
| | - Fengqiang Wang
- Analytical Research & Development, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Hong Li
- Biologics Process Research & Development, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Douglas D Richardson
- Analytical Research & Development, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - David J Roush
- Biologics Process Research & Development, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, USA
| |
Collapse
|
25
|
Pegues MA, Szczepanek K, Sheikh F, Thacker SG, Aryal B, Ghorab MK, Wolfgang S, Donnelly RP, Verthelyi D, Rao VA. Effect of Fatty Acid Composition in Polysorbate 80 on the Stability of Therapeutic Protein Formulations. Pharm Res 2021; 38:1961-1975. [PMID: 34845573 PMCID: PMC8688393 DOI: 10.1007/s11095-021-03125-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/13/2021] [Indexed: 01/04/2023]
Abstract
Purpose Polysorbate excipients are commonly used as surfactants to stabilize therapeutic proteins in formulations. Degradation of polysorbates could lead to particle formation and instability of the drug formulation. We investigated how the fatty acid composition of polysorbate 80 impacts the degradation profile, particle formation, and product stability under stress conditions. Methods Two polysorbate 80-containing therapeutic protein formulations were reformulated with either Polysorbate 80 NF synthesized from a fatty acid mixture that contains mainly oleic acid (≥58%) or a version of polysorbate 80 synthesized with high oleic acid (>98%). Stress conditions, including high temperature and esterase spiking, were applied and changes to both the polysorbate and the therapeutic protein product were investigated for stability, purity, innate immune response and biological activity. Results The addition of esterase and storage at 37°C led to significant hydrolysis of the polysorbate and increases in sub-visible particle formation for both polysorbates tested. The fatty acid composition of polysorbate 80 did not directly alter the stability profile of either therapeutic protein as measured by size exclusion chromatography, or significantly impact innate immune response or biological activity. However, formulations with Polysorbate 80 NF showed greater propensity for sub-visible particle formation under stress conditions. Conclusions These results suggest that composition of fatty acids in polysorbate 80 may be a promoter for sub-visible particulate formation under the stress conditions tested but may not impact protein aggregation or biological activity.
Collapse
Affiliation(s)
- Melissa A Pegues
- Laboratory of Applied Biochemistry, Division of Biotechnology Research and Review III, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administrations, Silver Spring, MD, 20993, USA
| | - Karol Szczepanek
- Laboratory of Applied Biochemistry, Division of Biotechnology Research and Review III, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administrations, Silver Spring, MD, 20993, USA
| | - Faruk Sheikh
- Division of Biotechnology Research and Review II, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administrations, Silver Spring, MD, 20993, USA
| | - Seth G Thacker
- Laboratory of Immunology, Division of Biotechnology Research and Review III, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administrations, Silver Spring, MD, 20993, USA
| | - Baikuntha Aryal
- Laboratory of Applied Biochemistry, Division of Biotechnology Research and Review III, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administrations, Silver Spring, MD, 20993, USA
| | - Mohamed K Ghorab
- Policy Development and Evaluation Branch 1, Division of Regulations, Guidance and Standards, Office of Policy for Pharmaceutical Quality, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administrations, Silver Spring, MD, 20993, USA
| | - Steven Wolfgang
- Cosmetics Regulatory Activities Branch, Cosmetics Division, Office of Cosmetics and Colors, Center for Food Safety and Applied Nutrition, College Park, MD, 20740, USA
| | - Raymond P Donnelly
- Division of Biotechnology Research and Review II, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administrations, Silver Spring, MD, 20993, USA
| | - Daniela Verthelyi
- Laboratory of Immunology, Division of Biotechnology Research and Review III, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administrations, Silver Spring, MD, 20993, USA
| | - V Ashutosh Rao
- Laboratory of Applied Biochemistry, Division of Biotechnology Research and Review III, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administrations, Silver Spring, MD, 20993, USA.
| |
Collapse
|
26
|
Metal-Induced Fatty Acid Particle Formation Resulting from Hydrolytic Polysorbate Degradation. J Pharm Sci 2021; 111:743-751. [PMID: 34600939 DOI: 10.1016/j.xphs.2021.09.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022]
Abstract
The occurrence of visible particles over the shelf-life of biopharmaceuticals is considered a potential safety risk for parenteral administration. In many cases, particle formation resulted from the accumulation of fatty acids released by the enzymatic hydrolysis of the polysorbate surfactant by co-purified host cell proteins. However, particle formation can occur before the accumulated fatty acids exceed their expected solubility limit. This early onset of particle formation is driven by nucleation phenomena e.g. the presence of metal cations that promote the formation and growth of fatty acid particles. To further characterize and understand this phenomenon, we assessed the potential of different metal cations to induce fatty acid particle formation using a dynamic light scattering assay. We demonstrated that the presence of trace amounts of multivalent cations, in particular trivalent cations such as aluminum and iron, may act as nucleation seed in the process of particle formation. Finally, we developed a mitigation strategy for metal-induced fatty acid particles that deploys a chelator to reduce the risk of particle formation in biopharmaceutical formulations.
Collapse
|
27
|
Doshi N, Ritchie K, Shobha T, Giddings J, Gregoritza K, Taing R, Rumbelow S, Chu J, Tomlinson A, Kannan A, Saggu M, Cai SK, Nicoulin V, Liu W, Russell S, Luis L, Yadav S. Evaluating a Modified High Purity Polysorbate 20 Designed to Reduce the Risk of Free Fatty Acid Particle Formation. Pharm Res 2021; 38:1563-1583. [PMID: 34495486 DOI: 10.1007/s11095-021-03087-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/19/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE To evaluate a modified high purity polysorbate 20 (RO HP PS20)-with lower levels of stearate, palmitate and myristate esters than the non-modified HP PS20-as a surfactant in biopharmaceutical drug products (DP). RO HP PS20 was designed to provide functional equivalence as a surfactant while delaying the onset of free fatty acid (FFA) particle formation upon hydrolytic degradation relative to HP PS20. METHODS Analytical characterization of RO HP PS20 raw material included fatty acid ester (FAE) distribution, higher order ester (HOE) fraction, FFA levels and trace metals. Functional assessments included 1) vial and intravenous bag agitation; 2) oxidation via a placebo and methionine surrogate study; and 3) hydrolytic PS20 degradation studies to evaluate FFA particle formation with and without metal nucleation. RESULTS Interfacial protection and oxidation propensity were comparable between the two polysorbates. Upon hydrolytic degradation, FFA particle onset was delayed in RO HP PS20. The delay was more pronounced when HOEs of PS20 were preferentially degraded. Furthermore, the hydrolytic degradants of RO HP PS20 formed fewer particles in the presence of spiked aluminum. CONCLUSION This work highlights the criticality of having tighter control on long chain FAE levels of PS20 to reduce the occurrence of FFA particle formation upon hydrolytic degradation and lower the variability in its onset. By simultaneously meeting compendial PS20 specifications while narrowing the allowable range for each FAE and shifting its composition towards the shorter carbon chain species, RO HP PS20 provides a promising alternative to HP PS20 for biopharmaceutical DPs.
Collapse
Affiliation(s)
- Nidhi Doshi
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA.
| | - Kyle Ritchie
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Tamanna Shobha
- Pharmaceutical Technical Innovation, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Jamie Giddings
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Kathrin Gregoritza
- Pharma Technical Development Biologics, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4054, Basel, Switzerland
| | - Rosalynn Taing
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Stephen Rumbelow
- Croda Inc, 777 Scudders Mill Road, Bldg. 2, Plainsboro, NJ, 08536, USA
| | - Jeff Chu
- Analytical Operations, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Anthony Tomlinson
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Aadithya Kannan
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Miguel Saggu
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Si Kai Cai
- Pharma Technical Development Biologics, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4054, Basel, Switzerland
| | - Victor Nicoulin
- Pharma Technical Development Biologics, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4054, Basel, Switzerland
| | - Wenqiang Liu
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Steve Russell
- Analytical Operations, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Lin Luis
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Sandeep Yadav
- Pharmaceutical Technical Innovation, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| |
Collapse
|