1
|
Lacroix A, Bourdeau I, Chasseloup F, Kamenický P, Lopez AG, Louiset E, Lefebvre H. Aberrant hormone receptors regulate a wide spectrum of endocrine tumors. Lancet Diabetes Endocrinol 2024; 12:837-855. [PMID: 39326429 DOI: 10.1016/s2213-8587(24)00200-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/27/2024] [Accepted: 07/11/2024] [Indexed: 09/28/2024]
Abstract
Aberrant G-protein coupled receptor (GPCR) expression is highly prevalent in cortisol-secreting primary bilateral macronodular adrenal hyperplasia (PBMAH) and unilateral adenomas. The aberrant expression of diverse GPCRs and their ligands play an important role in the over-function of various endocrine tumours. Examples include aberrant expression of MC2R, 5-HT4R, AVPR1A, LHCGR, and GnRHR in primary aldosteronism; GCGR, LHCGR, and 5-HT4R in phaeochromocytomas and paragangliomas; TRHR, GnRHR, GIPR, and GRP101 in pituitary somatotroph tumours; AVPR2, D2DR, and SSTR5 in pituitary corticotroph tumours; GLP1R, GIPR, and somatostatin receptors in medullary thyroid carcinoma; and SSTRs, GLP1R, and GIPR in other neuroendocrine tumours. The genetic mechanisms causing the ectopic expression of GIPR in cortisol-secreting PBMAHs and unilateral adenomas have been identified, but distinct mechanisms are implicated in other endocrine tumours. Development of functional imaging targeting aberrant GPCRs should be useful for identification and for specific therapies of this wide spectrum of tumours. The aim of this review is to show that the regulation of endocrine tumours by aberrant GPCR is not restricted to cortisol-secreting adrenal lesions, but also occurs in tumours of several other organs.
Collapse
Affiliation(s)
- André Lacroix
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l' Université de Montréal (CHUM), Montréal, QC, Canada.
| | - Isabelle Bourdeau
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l' Université de Montréal (CHUM), Montréal, QC, Canada
| | - Fanny Chasseloup
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Le Kremlin-Bicêtre, France
| | - Peter Kamenický
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Le Kremlin-Bicêtre, France
| | - Antoine-Guy Lopez
- Univ Rouen Normandie, Inserm, NorDiC UMR 1239, Rouen, France; Department of Endocrinology, Diabetes and Metabolic Diseases, Rouen, France
| | - Estelle Louiset
- Univ Rouen Normandie, Inserm, NorDiC UMR 1239, Rouen, France; Department of Endocrinology, Diabetes and Metabolic Diseases, Rouen, France
| | - Hervé Lefebvre
- Univ Rouen Normandie, Inserm, NorDiC UMR 1239, Rouen, France; Department of Endocrinology, Diabetes and Metabolic Diseases, Rouen, France
| |
Collapse
|
2
|
Daly AF, Beckers A. The Genetic Pathophysiology and Clinical Management of the TADopathy, X-Linked Acrogigantism. Endocr Rev 2024; 45:737-754. [PMID: 38696651 DOI: 10.1210/endrev/bnae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/21/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
Pituitary gigantism is a rare manifestation of chronic growth hormone (GH) excess that begins before closure of the growth plates. Nearly half of patients with pituitary gigantism have an identifiable genetic cause. X-linked acrogigantism (X-LAG; 10% of pituitary gigantism) typically begins during infancy and can lead to the tallest individuals described. In the 10 years since its discovery, about 40 patients have been identified. Patients with X-LAG usually develop mixed GH and prolactin macroadenomas with occasional hyperplasia that secrete copious amounts of GH, and frequently prolactin. Circulating GH-releasing hormone is also elevated in a proportion of patients. X-LAG is caused by constitutive or sporadic mosaic duplications at chromosome Xq26.3 that disrupt the normal chromatin architecture of a topologically associating domain (TAD) around the orphan G-protein-coupled receptor, GPR101. This leads to the formation of a neo-TAD in which GPR101 overexpression is driven by ectopic enhancers ("TADopathy"). X-LAG has been seen in 3 families due to transmission of the duplication from affected mothers to sons. GPR101 is a constitutively active receptor with an unknown natural ligand that signals via multiple G proteins and protein kinases A and C to promote GH/prolactin hypersecretion. Treatment of X-LAG is challenging due to the young patient population and resistance to somatostatin analogs; the GH receptor antagonist pegvisomant is often an effective option. GH, insulin-like growth factor 1, and prolactin hypersecretion and physical overgrowth can be controlled before definitive adult gigantism occurs, often at the cost of permanent hypopituitarism.
Collapse
Affiliation(s)
- Adrian F Daly
- Department of Endocrinology, Centre Hospitalier Universitaire (CHU) de Liège, University of Liège, Domaine Universitaire Sart Tilman, 4000 Liège, Belgium
| | - Albert Beckers
- Department of Endocrinology, Centre Hospitalier Universitaire (CHU) de Liège, University of Liège, Domaine Universitaire Sart Tilman, 4000 Liège, Belgium
| |
Collapse
|
3
|
Unger N, Theodoropoulou M, Schilbach K. [Clinically active pituitary tumors]. INNERE MEDIZIN (HEIDELBERG, GERMANY) 2024; 65:672-680. [PMID: 38869654 DOI: 10.1007/s00108-024-01729-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 06/14/2024]
Abstract
The widespread use of diagnostic imaging has led to an increase in the incidence of pituitary tumors. The majority of incidentalomas are hormone-inactive (HI) pituitary microadenomas. The most common clinically relevant pituitary adenomas are prolactin-secreting, followed by HI, and far less common are growth hormone (GH)-, adrenocorticotropic hormone (ACTH)- and thyroid-stimulating hormone (TSH)-secreting adenomas. Pituitary adenomas are usually benign, although aggressive growth and invasion occurs in individual cases. Very rarely, they give rise to metastases and are then termed pituitary carcinomas. All pituitary tumors require endocrine testing for pituitary hormone excess. In addition to the medical history and clinical examination, laboratory diagnostics are very important. Symptoms such as irregular menstruation, loss of libido or galactorrhea often lead to the timely diagnosis of prolactinomas, and hyperprolactinemia can easily confirm the diagnosis (considering the differential diagnoses). Diagnosis is more difficult for all other hormone-secreting pituitary adenomas (acromegaly, Cushing's disease, TSHoma), as the symptoms are often non-specific (i.e., headaches, weight gain, fatigue, joint pain). Furthermore, comorbidities such as hypertension, diabetes, and depression are such widespread diseases that pituitary adenomas are rarely considered as the underlying cause. Timely diagnosis and appropriate treatment have a significant impact on morbidity, mortality, and quality of life. Therefore, the role of primary care physicians is very important for achieving an early diagnosis. In addition, patients with pituitary adenomas should always be referred to endocrinologists to ensure optimal diagnosis as well as treatment.
Collapse
Affiliation(s)
- Nicole Unger
- Klinik für Endokrinologie, Diabetologie und Stoffwechsel, Universitätsklinikum Essen, Essen, Deutschland
| | - Marily Theodoropoulou
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, Ziemssenstr. 5, 80336, München, Deutschland
| | - Katharina Schilbach
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, Ziemssenstr. 5, 80336, München, Deutschland.
- Technische Hochschule Deggendorf, Deggendorf, Deutschland.
| |
Collapse
|
4
|
Courcelles L, Stoenoiu M, Haufroid V, Lopez-Sublet M, Boland L, Wauthier L, Beauloye C, Maiter D, Januszewicz A, Kreutz R, Persu A, Gruson D. Laboratory Testing for Endocrine Hypertension: Current and Future Perspectives. Clin Chem 2024; 70:709-726. [PMID: 38484135 DOI: 10.1093/clinchem/hvae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/22/2023] [Indexed: 05/03/2024]
Abstract
BACKGROUND Secondary hypertension (SH) is a form of high blood pressure caused by an identifiable underlying condition. Although, it accounts for a small fraction of the overall hypertensive population, detection and management of SH is of utmost importance, because SH phenotypes carry a high cardiovascular risk and can possibly be cured by timely treatment. CONTENT This review focuses on the endocrine causes of SH, such as primary aldosteronism, Cushing syndrome, thyroid disease, pheochromocytoma and paraganglioma, acromegaly, and rare monogenic forms. It discusses current biomarkers, analytical methods, and diagnostic strategies, highlighting advantages and limitations of each approach. It also explores the emerging -omics technologies that can provide a comprehensive and multidimensional assessment of SH and its underlying mechanisms. SUMMARY Endocrine SH is a heterogeneous and complex condition that requires proper screening and confirmatory tests to avoid diagnostic delays and improve patient outcomes. Careful biomarker interpretation is essential due to potential interferences, variability, and method-dependent differences. Liquid chromatography-tandem mass spectrometry is a superior method for measuring low-concentration hormones and metabolites involved in SH, but it requires expertise. Omics approaches have great potential to identify novel biomarkers, pathways, and targets for SH diagnosis and treatment, especially considering its multifactorial nature.
Collapse
Affiliation(s)
- Louisiane Courcelles
- Department of Laboratory Medicine, Cliniques Universitaires St-Luc and Université Catholique de Louvain, Brussels, Belgium
| | - Maria Stoenoiu
- Department of Internal Medicine, Rheumatology, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Vincent Haufroid
- Department of Laboratory Medicine, Cliniques Universitaires St-Luc and Université Catholique de Louvain, Brussels, Belgium
- Louvain centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Marilucy Lopez-Sublet
- AP-HP, Hôpital Avicenne, Centre d'Excellence Européen en Hypertension Artérielle, Service de Médecine Interne, Paris, France
- INSERM UMR 942 MASCOT, Paris 13-Université Paris Nord, Bobigny, France
- FCRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), CHRU de Nancy - Hôpitaux de Brabois, Vandoeuvre-lès-Nancy, France
- Division of Cardiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Lidvine Boland
- Department of Laboratory Medicine, Cliniques Universitaires St-Luc and Université Catholique de Louvain, Brussels, Belgium
- Louvain centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Loris Wauthier
- Department of Laboratory Medicine, Cliniques Universitaires St-Luc and Université Catholique de Louvain, Brussels, Belgium
| | - Christophe Beauloye
- Division of Cardiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Dominique Maiter
- Department of Endocrinology and Nutrition, Cliniques Universitaires St-Luc and Université Catholique de Louvain, Brussels, Belgium
| | - Andrzej Januszewicz
- Department of Hypertension, National Institute of Cardiology, Warsaw, Poland
| | - Reinhold Kreutz
- Charité-Universitätsmedizin Berlin, Institute of Clinical Pharmacology and Toxicology, Charitéplatz 1, 10117 Berlin, Germany
| | - Alexandre Persu
- Division of Cardiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Damien Gruson
- Department of Laboratory Medicine, Cliniques Universitaires St-Luc and Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
5
|
Panagopoulos I, Andersen K, Gorunova L, Lobmaier I. Fusion of Platelet Derived Growth Factor Receptor Alpha ( PDGFRA) With Ubiquitin Specific Peptidase 8 ( USP8) in a Calcified Chondroid Mesenchymal Neoplasm Harboring t(4;15)(q12;q21) as a Sole Aberration. Cancer Genomics Proteomics 2024; 21:252-259. [PMID: 38670591 PMCID: PMC11059595 DOI: 10.21873/cgp.20444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND/AIM The term "calcified chondroid mesenchymal neoplasm" was introduced in 2021 to describe a group of tumors characterized by various morphological features, including the formation of cartilage or chondroid matrix. These tumors frequently carry chimeric genes where the 5'-end partner gene is fibronectin 1 and the 3'-end partner gene codes for receptor tyrosine kinase. Our study explores fusion of the genes platelet-derived growth factor receptor alpha (PDGFRA) and ubiquitin-specific peptidase 8 (USP8) in calcified chondroid mesenchymal neoplasm. CASE REPORT Genetic investigations were conducted on a tumor located in the leg of a 71-year-old woman. G-banding analysis of short-term cultured tumor cells revealed the karyotype 46,XX,t(4;15)(q12;q21)[6]/46,XX[4]. RNA sequencing detected in-frame PDGFRA::USP8 and USP8::PDGFRA chimeric transcripts, which were validated by RT-PCR/Sanger sequencing. The PDGFRA::USP8 chimeric protein is predicted to have cell membrane location and functions as a chimeric ubiquitinyl hydrolase. The USP8::PDGFRA protein was predicted to be nuclear and function as a positive regulator of cellular metabolic process. CONCLUSION We report, for the first time, a calcified chondroid mesenchymal neoplasm carrying a balanced t(4;15)(q12;q21) chromosomal translocation, resulting in the generation of both PDGFRA::USP8 and USP8::PDGFRA chimeras. The PDGFRA::USP8 protein is located on the cell membrane and functions as a chimeric ubiquitinyl hydrolase, activated by PDGFs. Conversely, USP8::PDGFRA is a nuclear protein regulating metabolic processes.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway;
| | - Kristin Andersen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ludmila Gorunova
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
6
|
Sakamoto M, Kurosawa K, Tanoue K, Iwama K, Ishida F, Watanabe Y, Okamoto N, Tsuchida N, Uchiyama Y, Koshimizu E, Fujita A, Misawa K, Miyatake S, Mizuguchi T, Matsumoto N. A heterozygous germline deletion within USP8 causes severe neurodevelopmental delay with multiorgan abnormalities. J Hum Genet 2024; 69:85-90. [PMID: 38030753 DOI: 10.1038/s10038-023-01209-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
Ubiquitin-specific protease 8 (USP8) is a deubiquitinating enzyme involved in deubiquitinating the enhanced epidermal growth factor receptor for escape from degradation. Somatic variants at a hotspot in USP8 are a cause of Cushing's disease, and a de novo germline USP8 variant at this hotspot has been described only once previously, in a girl with Cushing's disease and developmental delay. In this study, we investigated an exome-negative patient with severe developmental delay, dysmorphic features, and multiorgan dysfunction by long-read sequencing, and identified a 22-kb de novo germline deletion within USP8 (chr15:50469966-50491995 [GRCh38]). The deletion involved the variant hotspot, one rhodanese domain, and two SH3 binding motifs, and was presumed to be generated through nonallelic homologous recombination through Alu elements. Thus, the patient may have perturbation of the endosomal sorting system and mitochondrial autophagy through the USP8 defect. This is the second reported case of a germline variant in USP8.
Collapse
Affiliation(s)
- Masamune Sakamoto
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Koji Tanoue
- Department of General Medicine, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Kazuhiro Iwama
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
- Perinatal Center for Maternity and Neonate, Yokohama City University Medical Center, Yokohama, Japan
| | - Fumihiko Ishida
- Perinatal Center for Maternity and Neonate, Yokohama City University Medical Center, Yokohama, Japan
| | - Yoshihiro Watanabe
- Children's Medical Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Kazuharu Misawa
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
- Riken Center for Advanced Intelligence Project, Tokyo, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan.
| |
Collapse
|
7
|
de Freminville JB, Amar L, Azizi M, Mallart-Riancho J. Endocrine causes of hypertension: literature review and practical approach. Hypertens Res 2023; 46:2679-2692. [PMID: 37821565 DOI: 10.1038/s41440-023-01461-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 10/13/2023]
Abstract
Hypertension (HTN) affects more than 30% of adults worldwide. It is the most frequent modifiable cardiovascular (CV) risk factor, and is responsible for more than 10 million death every year. Among patients with HTN, we usually distinguish secondary HTN, that is HTN due to an identified cause, and primary HTN, in which no underlying cause has been found. It is estimated that secondary hypertension represents between 5 and 15% of hypertensive patients [1]. Therefore, routine screening of patients for secondary HTN would be too costly and is not recommended. In addition to the presence of signs suggesting a specific secondary cause, screening is based on specific criteria. Identifying secondary HTN can be beneficial for patients in certain situations, because it may lead to specific treatments, and allow better control of blood pressure and sometimes even a cure. Besides, it is now known that secondary HTN are more associated with morbidity and mortality than primary HTN. The main causes of secondary HTN are endocrine and renovascular (mainly due to renal arteries abnormalities). The most frequent endocrine cause is primary aldosteronism, which diagnosis can lead to specific therapies. Pheochromocytoma and Cushing syndrome also are important causes, and can have serious complications. Other causes are less frequent and can be suspected on specific situations. In this article, we will describe the endocrine causes of HTN and discuss their treatments.
Collapse
Affiliation(s)
- Jean-Baptiste de Freminville
- Hypertension Unit, AP-HP, Hôpital Européen Georges Pompidou, F-75015, Paris, France.
- Université Paris Cité,, F-75015, Paris, France.
| | - Laurence Amar
- Hypertension Unit, AP-HP, Hôpital Européen Georges Pompidou, F-75015, Paris, France
- Université Paris Cité,, F-75015, Paris, France
| | - Michel Azizi
- Hypertension Unit, AP-HP, Hôpital Européen Georges Pompidou, F-75015, Paris, France
- Université Paris Cité,, F-75015, Paris, France
| | - Julien Mallart-Riancho
- Hypertension Unit, AP-HP, Hôpital Européen Georges Pompidou, F-75015, Paris, France
- Université Paris Cité,, F-75015, Paris, France
| |
Collapse
|
8
|
Marrero-Rodríguez D, Vela-Patiño S, Martinez-Mendoza F, Valenzuela-Perez A, Peña-Martínez E, Cano-Zaragoza A, Kerbel J, Andonegui-Elguera S, Glick-Betech SS, Hermoso-Mier KX, Mercado-Medrez S, Moscona-Nissan A, Taniguchi-Ponciano K, Mercado M. Genomics, Transcriptomics, and Epigenetics of Sporadic Pituitary Tumors. Arch Med Res 2023; 54:102915. [PMID: 37981525 DOI: 10.1016/j.arcmed.2023.102915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023]
Abstract
Pituitary tumors (PT) are highly heterogeneous neoplasms, comprising functioning and nonfunctioning lesions. Functioning PT include prolactinomas, causing amenorrhea-galactorrhea in women and sexual dysfunction in men; GH-secreting adenomas causing acromegaly-gigantism; ACTH-secreting corticotrophinomas causing Cushing disease (CD); and the rare TSH-secreting thyrotrophinomas that result in central hyperthyroidism. Nonfunctioning PT do not result in a hormonal hypersecretion syndrome and most of them are of gonadotrope differentiation; other non-functioning PT include null cell adenomas and silent ACTH-, GH- and PRL-adenomas. Less than 5% of PT occur in a familial or syndromic context whereby germline mutations of specific genes account for their molecular pathogenesis. In contrast, the more common sporadic PT do not result from a single molecular abnormality but rather emerge from several oncogenic events that culminate in an increased proliferation of pituitary cells, and in the case of functioning tumors, in a non-regulated hormonal hypersecretion. In recent years, important advances in the understanding of the molecular pathogenesis of PT have been made, including the genomic, transcriptomic, epigenetic, and proteomic characterization of these neoplasms. In this review, we summarize the available molecular information pertaining the oncogenesis of PT.
Collapse
Affiliation(s)
- Daniel Marrero-Rodríguez
- Endocrine Research Unit, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Sandra Vela-Patiño
- Endocrine Research Unit, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Florencia Martinez-Mendoza
- Endocrine Research Unit, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Alejandra Valenzuela-Perez
- Endocrine Research Unit, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Eduardo Peña-Martínez
- Endocrine Research Unit, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Amayrani Cano-Zaragoza
- Endocrine Research Unit, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Jacobo Kerbel
- Endocrine Research Unit, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Sergio Andonegui-Elguera
- Endocrine Research Unit, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Shimon S Glick-Betech
- Endocrine Research Unit, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Karla X Hermoso-Mier
- Endocrine Research Unit, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Sophia Mercado-Medrez
- Endocrine Research Unit, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Alberto Moscona-Nissan
- Endocrine Research Unit, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Keiko Taniguchi-Ponciano
- Endocrine Research Unit, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.
| | - Moises Mercado
- Endocrine Research Unit, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
9
|
Лапшина АМ. [Molecular genetic abnormalities in ACTH-secreting pituitary tumors (corticotropinomas): fundamental research and prospects for use in clinical practice]. PROBLEMY ENDOKRINOLOGII 2023; 70:23-30. [PMID: 39069770 PMCID: PMC11334230 DOI: 10.14341/probl13273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/16/2023] [Accepted: 11/02/2023] [Indexed: 07/30/2024]
Abstract
In recent years, a large number of studies have been carried out to research molecular genetic abnormalities in ACTH--secreting pituitary tumors. This review presents a comprehensive analysis of exome studies results (germline and somatic mutations, chromosomal abnormalities in corticotropinomas which developed as part of hereditary syndromes MEN 1, 2, 4, DICER1, Carney complex etc., and isolated tumors, respectively) and transcriptome (specific genes expression profiles in hormonally active and inactive corticotropinomas, regulation of cell cycles and signal pathways). Modern technologies (next-generation sequencing - NGS) allow us to study the state of the microRNAome, DNA methylome and inactive chromatin sites, in particular using RNA sequencing. Thus, a wide range of fundamental studies is shown, the results of which allow us to identify and comprehend the key previously known and new pathogenesis mechanisms and biomarkers of corticotropinomas. The characteristics of the most promising molecular genetic factors that can be used in clinical practice for screening and earlier diagnosis of hereditary syndromes and isolated corticotropinomas, differential diagnosis of various forms of endogenous hypercorticism, sensitivity to existing and potential therapies and personalized outcome determination of Cushing`s disease.
Collapse
Affiliation(s)
- А. М. Лапшина
- Национальный медицинский исследовательский центр эндокринологии
| |
Collapse
|
10
|
Sumal AKS, Zhang D, Heaney AP. Refractory corticotroph adenomas. Pituitary 2023; 26:269-272. [PMID: 36917358 PMCID: PMC10333410 DOI: 10.1007/s11102-023-01308-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/04/2023] [Indexed: 03/16/2023]
Abstract
The majority of corticotroph adenomas are benign but some are locally invasive, demonstrate high rates of recurrence, and exhibit a relatively poor response to often repeated surgical, medical, and radiation treatment. Herein, we summarize the currently known somatic and genetic mutations and other molecular factors that influence the pathogenesis of these tumors and discuss currently available therapies. Although recent molecular studies have advanced our understanding of the pathogenesis and behavior of these refractory corticotroph adenomas, these insights do not reliably guide treatment choices at present. Development of additional diagnostic tools and novel tumor-directed therapies that offer efficacious treatment choices for patients with refractory corticotroph adenomas are needed.
Collapse
Affiliation(s)
- Amit K S Sumal
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Dongyun Zhang
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Anthony P Heaney
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Fleseriu M. Special issue: Cushing's disease update. Pituitary 2022; 25:687-688. [PMID: 36001219 DOI: 10.1007/s11102-022-01271-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Maria Fleseriu
- Departments of Medicine and Neurological Surgery, Pituitary Center, Oregon Health & Science University, 3303 South Bond Avenue, Mail Code CH8N, Portland, OR, 97239, USA.
| |
Collapse
|