1
|
Wang L, Hou J, Xu H, Zhang Y, Huang R, Wang D, He XQ. The PtoTCP20-miR396d-PtoGRF15 module regulates secondary vascular development in Populus. PLANT COMMUNICATIONS 2023; 4:100494. [PMID: 36419363 PMCID: PMC10030372 DOI: 10.1016/j.xplc.2022.100494] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/07/2022] [Accepted: 11/18/2022] [Indexed: 05/04/2023]
Abstract
Secondary vascular development is a key biological characteristic of woody plants and the basis of wood formation. Our understanding of gene expression regulation and dynamic changes in microRNAs (miRNAs) during secondary vascular development is still limited. Here we present an integrated analysis of the miRNA and mRNA transcriptome of six phase-specific tissues-the shoot apex, procambium, primary vascular tissue, cambium, secondary phloem, and secondary xylem-in Populus tomentosa. Several novel regulatory modules, including the PtoTCP20-miR396d-PtoGRF15 module, were identified during secondary vascular development in Populus. A series of biochemical and molecular experiments confirmed that PtoTCP20 activated transcription of the miR396d precursor gene and that miR396d targeted PtoGRF15 to downregulate its expression. Plants overexpressing miR396d (35S:miR396d) showed enhanced secondary growth and increased xylem production. Conversely, during the transition from primary to secondary vascular development, plants with downregulated PtoTCP20expression (PtoTCP20-SRDX), downregulated miR396 expression (35S:STTM396), and PtoGRF15 overexpression (35S:PtoGRF15) showed delayed secondary growth. Novel regulatory modules were identified by integrated analysis of the miRNA and mRNA transcriptome, and the regulatory role of the PtoTCP20-miR396d-PtoGRF15 signaling cascade in secondary vascular development was validated in Populus, providing information to support improvements in forest cultivation and wood properties.
Collapse
Affiliation(s)
- Lingyan Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jie Hou
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Huimin Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yufei Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Runzhou Huang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Donghui Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xin-Qiang He
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
2
|
Shi D, Jouannet V, Agustí J, Kaul V, Levitsky V, Sanchez P, Mironova VV, Greb T. Tissue-specific transcriptome profiling of the Arabidopsis inflorescence stem reveals local cellular signatures. THE PLANT CELL 2021; 33:200-223. [PMID: 33582756 PMCID: PMC8136906 DOI: 10.1093/plcell/koaa019] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/02/2020] [Indexed: 05/06/2023]
Abstract
Genome-wide gene expression maps with a high spatial resolution have substantially accelerated plant molecular science. However, the number of characterized tissues and growth stages is still small due to the limited accessibility of most tissues for protoplast isolation. Here, we provide gene expression profiles of the mature inflorescence stem of Arabidopsis thaliana covering a comprehensive set of distinct tissues. By combining fluorescence-activated nucleus sorting and laser-capture microdissection with next-generation RNA sequencing, we characterized the transcriptomes of xylem vessels, fibers, the proximal and distal cambium, phloem, phloem cap, pith, starch sheath, and epidermis cells. Our analyses classified more than 15,000 genes as being differentially expressed among different stem tissues and revealed known and novel tissue-specific cellular signatures. By determining overrepresented transcription factor binding regions in the promoters of differentially expressed genes, we identified candidate tissue-specific transcriptional regulators. Our datasets predict the expression profiles of an exceptional number of genes and allow hypotheses to be generated about the spatial organization of physiological processes. Moreover, we demonstrate that information about gene expression in a broad range of mature plant tissues can be established at high spatial resolution by nuclear mRNA profiling. Tissue-specific gene expression values can be accessed online at https://arabidopsis-stem.cos.uni-heidelberg.de/.
Collapse
Affiliation(s)
- Dongbo Shi
- Department of Developmental Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
- Japan Science and Technology Agency (JST), Saitama, Kawaguchi, Japan
| | - Virginie Jouannet
- Department of Developmental Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Javier Agustí
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), C/Enginyer Fausto Elio S/N. 46011 Valencia, Spain
| | - Verena Kaul
- Department of Developmental Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Victor Levitsky
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
- Department of Systems Biology, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Pablo Sanchez
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Victoria V Mironova
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
- Department of Systems Biology, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Department of Plant Systems Physiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Thomas Greb
- Department of Developmental Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
- Author for correspondence:
| |
Collapse
|
3
|
Zhang X, Yang H, Schaufelberger M, Li X, Cao Q, Xiao H, Ren Z. Role of Flavonol Synthesized by Nucleus FLS1 in Arabidopsis Resistance to Pb Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9646-9653. [PMID: 32786845 DOI: 10.1021/acs.jafc.0c02848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lead (Pb) is an important pollutant of worldwide concern with respect to extensive pollution sources and highly toxic effect. Flavonol can improve plant resistance to abiotic stress and is also responsible for the alleviating effect under Pb stress. The relationship between Pb stress and flavonol and the knowledge about the mechanisms of flavonol function are very limited. Pb affected the energy metabolism process and, thus, inhibited plant growth and development. Flavonol accumulation controlled by FLS1 (flavonol synthase) could alleviate the toxic effect. Importantly, nes (mutant of NES that allows FLS1 to enter the nucleus expression) showed better growth status and lighter oxidative damage than NES (N-terminal nucleus exclusion signal peptide prevents FLS1 from entering the nucleus expression), which indicated that nucleus flavonol synthesized by nucleus FLS1 plays a key role in plant resistance to Pb stress. Although FLS1 signals were detected in the cell membrane, cytoplasm, and nucleus, membrane flavonol, cytoplasm flavonol, and nucleus flavonol were not exercising their function in the corresponding position. The expression of nucleus FLS1 intervened in the total content and composition of flavonol. The results also revealed that nucleus flavonol could regulate the ascorbate metabolism for alleviating the damage on the chloroplast, thus maintaining the photophosphorylation pathway. Our findings provided new insights for the molecular basis of Pb tolerance and response mechanism of the plant.
Collapse
Affiliation(s)
- Xu Zhang
- School of Architecture and Urban Planning, Shandong Jianzhu University, Jinan, Shandong 250101, People's Republic of China
| | - Huanhuan Yang
- School of Life Sciences, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Myriam Schaufelberger
- Department of Plant and Microbial Biology, University of Zurich, 8008 Zürich, Switzerland
| | - Xinxin Li
- College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14850, United States
| | - Qingqing Cao
- School of Architecture and Urban Planning, Shandong Jianzhu University, Jinan, Shandong 250101, People's Republic of China
| | - Huabin Xiao
- School of Architecture and Urban Planning, Shandong Jianzhu University, Jinan, Shandong 250101, People's Republic of China
| | - Zhen Ren
- School of Architecture and Urban Planning, Shandong Jianzhu University, Jinan, Shandong 250101, People's Republic of China
| |
Collapse
|
4
|
Xie J, Li J, Jie Y, Xie D, Yang D, Shi H, Zhong Y. Comparative transcriptomics of stem bark reveals genes associated with bast fiber development in Boehmeria nivea L. gaud (ramie). BMC Genomics 2020; 21:40. [PMID: 31931705 PMCID: PMC6958601 DOI: 10.1186/s12864-020-6457-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 01/07/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Boehmeria nivea L. Gaud (Ramie) produces one of the longest natural fibers in nature. The bark of ramie mainly comprises of the phloem tissue of stem and is the raw material for fiber. Therefore, identifying the molecular regulation of phloem development is important for understanding of bast fiber biosynthesis and improvement of fiber quality in ramie. RESULTS In this study, we collected top bud (TB), bark from internode elongating region (ER) and bark from internode fully elongated region (FER) from the ramie variety Zhongzhu No. 1. Histological study indicated that these samples contain phloem tissues at different developmental and maturation stages, with a higher degree of maturation of phloem tissue in FER. RNA sequencing (RNA-seq) was performed and de novo transcriptome was assembled. Unigenes and differentially expressed genes (DEGs) in these three samples were identified. The analysis of DEGs by using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed clear differences in gene expression between ER and FER. Some unigenes involved in secondary cell wall biosynthesis were up-regulated in both ER and FER, while unigenes for some cell wall components or cell wall modifications showed differential expression between ER and FER. In addition, the ethylene respond factors (ERFs) in the ethylene signaling pathway were up-regulated in FER, and ent-kaurenoic acid oxidase (KAO) and GA 20-oxidase (GA20ox) for gibberellins biosynthesis were up-regulated while GA 2-oxidase (GA2ox) for gibberellin inactivation was down-regulated in FER. CONCLUSIONS Both morphological study and gene expression analysis supported a burst of phloem and vascular developmental processes during the fiber maturation in the ramie stem, and ethylene and gibberellin are likely to be involved in this process. Our findings provide novel insights into the phloem development and fiber maturation in ramie, which could be useful for fiber improvement in ramie and other fiber crops.
Collapse
Affiliation(s)
- Jiyong Xie
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Jiaqi Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Yucheng Jie
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Deyu Xie
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.,Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Di Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Yingli Zhong
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
5
|
Voxeur A, Soubigou-Taconnat L, Legée F, Sakai K, Antelme S, Durand-Tardif M, Lapierre C, Sibout R. Altered lignification in mur1-1 a mutant deficient in GDP-L-fucose synthesis with reduced RG-II cross linking. PLoS One 2017; 12:e0184820. [PMID: 28961242 PMCID: PMC5621668 DOI: 10.1371/journal.pone.0184820] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 08/31/2017] [Indexed: 12/31/2022] Open
Abstract
In the plant cell wall, boron links two pectic domain rhamnogalacturonan II (RG-II) chains together to form a dimer and thus contributes to the reinforcement of cell adhesion. We studied the mur1-1 mutant of Arabidopsis thaliana which has lost the ability to form GDP-fucose in the shoots and show that the extent of RG-II cross-linking is reduced in the lignified stem of this mutant. Surprisingly, MUR1 mutation induced an enrichment of resistant interunit bonds in lignin and triggered the overexpression of many genes involved in lignified tissue formation and in jasmonic acid signaling. The defect in GDP-fucose synthesis induced a loss of cell adhesion at the interface between stele and cortex, as well as between interfascicular fibers. This led to the formation of regenerative xylem, where tissue detachment occurred, and underlined a loss of resistance to mechanical forces. Similar observations were also made on bor1-3 mutant stems which are altered in boron xylem loading, leading us to suggest that diminished RG-II dimerization is responsible for regenerative xylem formation.
Collapse
Affiliation(s)
- Aline Voxeur
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Ludivine Soubigou-Taconnat
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment, Orsay, France
| | - Frédéric Legée
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Kaori Sakai
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Sébastien Antelme
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Mylène Durand-Tardif
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Catherine Lapierre
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Richard Sibout
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
- * E-mail:
| |
Collapse
|
6
|
Okumura W, Aoki D, Matsushita Y, Yoshida M, Fukushima K. Distribution of salicifoline in freeze-fixed stems of Magnolia kobus as observed by cryo-TOF-SIMS. Sci Rep 2017; 7:5939. [PMID: 28725003 PMCID: PMC5517595 DOI: 10.1038/s41598-017-06444-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/13/2017] [Indexed: 11/09/2022] Open
Abstract
Alkaloids are basic nitrogen-containing chemicals that have important physiological and pharmacological characteristics. Many vascular plant species contain alkaloids, and their roles in planta are of interest. However, the detailed distribution of alkaloids remains unclear because of their low water solubility and low concentrations in plants. In this study, we visualized the distribution of salicifoline, a water-soluble quaternary ammonium alkaloid, in the freeze-fixed stems of Magnolia kobus by cryo time-of-flight secondary ion mass spectrometry. Most of the salicifoline was distributed in living phloem tissues. In the xylem, salicifoline was detected in ray cells, lignifying wood fibres, and in vessels in the latest annual ring. The salicifoline distribution in the xylem varied with the cell wall formation stage. These results provide new insights into the storage, transportation, and role of the alkaloid salicifoline in M. kobus.
Collapse
Affiliation(s)
- Wakaba Okumura
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Dan Aoki
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan.
| | - Yasuyuki Matsushita
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Masato Yoshida
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Kazuhiko Fukushima
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| |
Collapse
|
7
|
Wei Q, Jiao C, Guo L, Ding Y, Cao J, Feng J, Dong X, Mao L, Sun H, Yu F, Yang G, Shi P, Ren G, Fei Z. Exploring key cellular processes and candidate genes regulating the primary thickening growth of Moso underground shoots. THE NEW PHYTOLOGIST 2017; 214:81-96. [PMID: 27859288 DOI: 10.1111/nph.14284] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 09/13/2016] [Indexed: 05/27/2023]
Abstract
The primary thickening growth of Moso (Phyllostachys edulis) underground shoots largely determines the culm circumference. However, its developmental mechanisms remain largely unknown. Using an integrated anatomy, mathematics and genomics approach, we systematically studied cellular and molecular mechanisms underlying the growth of Moso underground shoots. We discovered that the growth displayed a spiral pattern and pith played an important role in promoting the primary thickening process of Moso underground shoots and driving the evolution of culms with different sizes among different bamboo species. Different with model plants, the shoot apical meristem (SAM) of Moso is composed of six layers of cells. Comparative transcriptome analysis identified a large number of genes related to the vascular tissue formation that were significantly upregulated in a thick wall variant with narrow pith cavity, mildly spiral growth, and flat and enlarged SAM, including those related to plant hormones and those involved in cell wall development. These results provide a systematic perspective on the primary thickening growth of Moso underground shoots, and support a plausible mechanism resulting in the narrow pith cavity, weak spiral growth but increased vascular bundle of the thick wall Moso.
Collapse
Affiliation(s)
- Qiang Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Chen Jiao
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Lin Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yulong Ding
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Junjie Cao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Jianyuan Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Xiaobo Dong
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Linyong Mao
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Honghe Sun
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Fen Yu
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Jiangxi Agriculture University, Nanchang, Jiangxi, 330045, China
| | - Guangyao Yang
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Jiangxi Agriculture University, Nanchang, Jiangxi, 330045, China
| | - Peijian Shi
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Guodong Ren
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
8
|
Reyes-Rivera J, Rodríguez-Alonso G, Petrone E, Vasco A, Vergara-Silva F, Shishkova S, Terrazas T. Expression of the KNOTTED HOMEOBOX Genes in the Cactaceae Cambial Zone Suggests Their Involvement in Wood Development. FRONTIERS IN PLANT SCIENCE 2017; 8:218. [PMID: 28316604 PMCID: PMC5334636 DOI: 10.3389/fpls.2017.00218] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/06/2017] [Indexed: 05/28/2023]
Abstract
The vascular cambium is a lateral meristem that produces secondary xylem (i.e., wood) and phloem. Different Cactaceae species develop different types of secondary xylem; however, little is known about the mechanisms underlying wood formation in the Cactaceae. The KNOTTED HOMEOBOX (KNOX) gene family encodes transcription factors that regulate plant development. The role of class I KNOX genes in the regulation of the shoot apical meristem, inflorescence architecture, and secondary growth is established in a few model species, while the functions of class II KNOX genes are less well understood, although the Arabidopsis thaliana class II KNOX protein KNAT7 is known to regulate secondary cell wall biosynthesis. To explore the involvement of the KNOX genes in the enormous variability of wood in Cactaceae, we identified orthologous genes expressed in species with fibrous (Pereskia lychnidiflora and Pilosocereus alensis), non-fibrous (Ariocarpus retusus), and dimorphic (Ferocactus pilosus) wood. Both class I and class II KNOX genes were expressed in the cactus cambial zone, including one or two class I paralogs of KNAT1, as well as one or two class II paralogs of KNAT3-KNAT4-KNAT5. While the KNOX gene SHOOTMERISTEMLESS (STM) and its ortholog ARK1 are expressed during secondary growth in the Arabidopsis and Populus stem, respectively, we did not find STM orthologs in the Cactaceae cambial zone, which suggests possible differences in the vascular cambium genetic regulatory network in these species. Importantly, while two class II KNOX paralogs from the KNAT7 clade were expressed in the cambial zone of A. retusus and F. pilosus, we did not detect KNAT7 ortholog expression in the cambial zone of P. lychnidiflora. Differences in the transcriptional repressor activity of secondary cell wall biosynthesis by the KNAT7 orthologs could therefore explain the differences in wood development in the cactus species.
Collapse
Affiliation(s)
- Jorge Reyes-Rivera
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Gustavo Rodríguez-Alonso
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| | - Emilio Petrone
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Alejandra Vasco
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Francisco Vergara-Silva
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Svetlana Shishkova
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| | - Teresa Terrazas
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| |
Collapse
|
9
|
Barrière Y, Courtial A, Chateigner-Boutin AL, Denoue D, Grima-Pettenati J. Breeding maize for silage and biofuel production, an illustration of a step forward with the genome sequence. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 242:310-329. [PMID: 26566848 DOI: 10.1016/j.plantsci.2015.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 08/04/2015] [Accepted: 08/13/2015] [Indexed: 05/21/2023]
Abstract
The knowledge of the gene families mostly impacting cell wall digestibility variations would significantly increase the efficiency of marker-assisted selection when breeding maize and grass varieties with improved silage feeding value and/or with better straw fermentability into alcohol or methane. The maize genome sequence of the B73 inbred line was released at the end of 2009, opening up new avenues to identify the genetic determinants of quantitative traits. Colocalizations between a large set of candidate genes putatively involved in secondary cell wall assembly and QTLs for cell wall digestibility (IVNDFD) were then investigated, considering physical positions of both genes and QTLs. Based on available data from six RIL progenies, 59 QTLs corresponding to 38 non-overlapping positions were matched up with a list of 442 genes distributed all over the genome. Altogether, 176 genes colocalized with IVNDFD QTLs and most often, several candidate genes colocalized at each QTL position. Frequent QTL colocalizations were found firstly with genes encoding ZmMYB and ZmNAC transcription factors, and secondly with genes encoding zinc finger, bHLH, and xylogen regulation factors. In contrast, close colocalizations were less frequent with genes involved in monolignol biosynthesis, and found only with the C4H2, CCoAOMT5, and CCR1 genes. Close colocalizations were also infrequent with genes involved in cell wall feruloylation and cross-linkages. Altogether, investigated colocalizations between candidate genes and cell wall digestibility QTLs suggested a prevalent role of regulation factors over constitutive cell wall genes on digestibility variations.
Collapse
Affiliation(s)
- Yves Barrière
- INRA, UR889, Unité de Génétique et d'Amélioration des Plantes Fourragères, 86600 Lusignan, France.
| | - Audrey Courtial
- LRSV, Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Paul Sabatier Toulouse III / CNRS, Auzeville, BP 42617, 31326 Castanet-Tolosan, France; INRA, US1258, Centre National de Ressources Génomiques Végétales, CS 52627, 31326 Castanet-Tolosan, France
| | | | - Dominique Denoue
- INRA, UR889, Unité de Génétique et d'Amélioration des Plantes Fourragères, 86600 Lusignan, France
| | - Jacqueline Grima-Pettenati
- LRSV, Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Paul Sabatier Toulouse III / CNRS, Auzeville, BP 42617, 31326 Castanet-Tolosan, France
| |
Collapse
|
10
|
Wang Y, Wang H, Fan R, Yang Q, Yu D. Transcriptome analysis of soybean lines reveals transcript diversity and genes involved in the response to common cutworm (Spodoptera litura Fabricius) feeding. PLANT, CELL & ENVIRONMENT 2014; 37:2086-101. [PMID: 24506757 DOI: 10.1111/pce.12296] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/20/2014] [Accepted: 01/23/2014] [Indexed: 05/06/2023]
Abstract
The interaction between soybeans and the destructive common cutworm insect is complicated. In this paper, the time course of induced responses to common cutworm was characterized in two soybean lines, and the results showed that the induced resistance peaked at different times in the resistant (WX) and susceptible (NN) soybean lines. Two sets of transcriptome profiles from the WX and NN lines at the peak of their induced resistance were compared using microarray analysis. In total, 827 and 349 transcripts were differentially expressed in the WX and NN lines, respectively, with 80 probes common regulated and seven regulated in the opposite direction. All common- and unique-regulated genes were grouped into 10 functional categories based on sequence similarity searches, which showed that most of the genes were related to stress and defence responses. qRT-PCR analysis of 22 genes confirmed the results of the microarray analysis. The spatiotemporal expression patterns of the six genes revealed the consistency of systemic expression levels with the timing of the resistance response observed in the bioassay experiments. In summary, we described the conceptual model of induced resistance in two soybean lines and provided the first large-scale survey of common cutworm-induced defence transcripts in soybean.
Collapse
Affiliation(s)
- Yongli Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | | | | | | | | |
Collapse
|
11
|
Mazur E, Kurczyńska EU, Friml J. Cellular events during interfascicular cambium ontogenesis in inflorescence stems of Arabidopsis. PROTOPLASMA 2014; 251:1125-1139. [PMID: 24526327 DOI: 10.1007/s00709-014-0620-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 01/22/2014] [Indexed: 06/03/2023]
Abstract
Development of cambium and its activity is important for our knowledge of the mechanism of secondary growth. Arabidopsis thaliana emerges as a good model plant for such a kind of study. Thus, this paper reports on cellular events taking place in the interfascicular regions of inflorescence stems of A. thaliana, leading to the development of interfascicular cambium from differentiated interfascicular parenchyma cells (IPC). These events are as follows: appearance of auxin accumulation, PIN1 gene expression, polar PIN1 protein localization in the basal plasma membrane and periclinal divisions. Distribution of auxin was observed to be higher in differentiating into cambium parenchyma cells compared to cells within the pith and cortex. Expression of PIN1 in IPC was always preceded by auxin accumulation. Basal localization of PIN1 was already established in the cells prior to their periclinal division. These cellular events initiated within parenchyma cells adjacent to the vascular bundles and successively extended from that point towards the middle region of the interfascicular area, located between neighboring vascular bundles. The final consequence of which was the closure of the cambial ring within the stem. Changes in the chemical composition of IPC walls were also detected and included changes of pectic epitopes, xyloglucans (XG) and extensins rich in hydroxyproline (HRGPs). In summary, results presented in this paper describe interfascicular cambium ontogenesis in terms of successive cellular events in the interfascicular regions of inflorescence stems of Arabidopsis.
Collapse
Affiliation(s)
- Ewa Mazur
- Laboratory of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland,
| | | | | |
Collapse
|
12
|
Herrero J, Esteban Carrasco A, Zapata JM. Arabidopsis thaliana peroxidases involved in lignin biosynthesis: in silico promoter analysis and hormonal regulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 80:192-202. [PMID: 24792389 DOI: 10.1016/j.plaphy.2014.03.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/26/2014] [Indexed: 05/08/2023]
Abstract
Phytohormones such as auxins, cytokinins, and brassinosteroids, act by means of a signaling cascade of transcription factors of the families NAC, MYB, AP2 (APETALA2), MADS and class III HD (homeodomain) Zip, regulating secondary growth. When the hormonal regulation of Zinnia elegans peroxidase (ZePrx), an enzyme involved in lignin biosynthesis, was studied, it was found that this peroxidase is sensitive to a plethora of hormones which control xylem lignification. In a previous study we sought Arabidopsis thaliana homologues to ZePrx. Peroxidases 4, 52, 49 and 72 are the four peroxidases that fulfill the restrictive conditions that a peroxidase involved in lignification must have. In the present study, we focus our attention on hormonal regulation in order to establish the minimal structural and regulatory elements contained in the promoter region which an AtPrx involved in lignification must have. The results indicate that of the four peroxidases selected in our previous study, the one most likely to be homologous to ZePrx is AtPrx52. The results suggest that hormones such as auxins, cytokinins and BRs directly regulate AtPrx52, and that the AtPrx52 promoter may be the target of the set of transcription factors (NAC, MYB, AP2 and class I and III HD Zip) which are up-regulated by these hormones during secondary growth. In addition, the AtPrx52 promoter contains multiple copies of all the putative cis-elements (the ACGT box, the OCS box, the OPAQ box, the L1BX, the MYCL box and the W box) known to confer regulation by NO and H2O2.
Collapse
Affiliation(s)
- Joaquín Herrero
- Department of Life Sciences, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.
| | | | - José Miguel Zapata
- Department of Life Sciences, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
13
|
Vanholme B, Vanholme R, Turumtay H, Goeminne G, Cesarino I, Goubet F, Morreel K, Rencoret J, Bulone V, Hooijmaijers C, De Rycke R, Gheysen G, Ralph J, De Block M, Meulewaeter F, Boerjan W. Accumulation of N-acetylglucosamine oligomers in the plant cell wall affects plant architecture in a dose-dependent and conditional manner. PLANT PHYSIOLOGY 2014; 165:290-308. [PMID: 24664205 PMCID: PMC4012587 DOI: 10.1104/pp.113.233742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/21/2014] [Indexed: 05/18/2023]
Abstract
To study the effect of short N-acetylglucosamine (GlcNAc) oligosaccharides on the physiology of plants, N-ACETYLGLUCOSAMINYLTRANSFERASE (NodC) of Azorhizobium caulinodans was expressed in Arabidopsis (Arabidopsis thaliana). The corresponding enzyme catalyzes the polymerization of GlcNAc and, accordingly, β-1,4-GlcNAc oligomers accumulated in the plant. A phenotype characterized by difficulties in developing an inflorescence stem was visible when plants were grown for several weeks under short-day conditions before transfer to long-day conditions. In addition, a positive correlation between the oligomer concentration and the penetrance of the phenotype was demonstrated. Although NodC overexpression lines produced less cell wall compared with wild-type plants under nonpermissive conditions, no indications were found for changes in the amount of the major cell wall polymers. The effect on the cell wall was reflected at the transcriptome level. In addition to genes encoding cell wall-modifying enzymes, a whole set of genes encoding membrane-coupled receptor-like kinases were differentially expressed upon GlcNAc accumulation, many of which encoded proteins with an extracellular Domain of Unknown Function26. Although stress-related genes were also differentially expressed, the observed response differed from that of a classical chitin response. This is in line with the fact that the produced chitin oligomers were too small to activate the chitin receptor-mediated signal cascade. Based on our observations, we propose a model in which the oligosaccharides modify the architecture of the cell wall by acting as competitors in carbohydrate-carbohydrate or carbohydrate-protein interactions, thereby affecting noncovalent interactions in the cell wall or at the interface between the cell wall and the plasma membrane.
Collapse
|
14
|
Porth I, Klapšte J, Skyba O, Hannemann J, McKown AD, Guy RD, DiFazio SP, Muchero W, Ranjan P, Tuskan GA, Friedmann MC, Ehlting J, Cronk QCB, El-Kassaby YA, Douglas CJ, Mansfield SD. Genome-wide association mapping for wood characteristics in Populus identifies an array of candidate single nucleotide polymorphisms. THE NEW PHYTOLOGIST 2013; 200:710-726. [PMID: 23889164 DOI: 10.1111/nph.12422] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 06/18/2013] [Indexed: 05/02/2023]
Abstract
Establishing links between phenotypes and molecular variants is of central importance to accelerate genetic improvement of economically important plant species. Our work represents the first genome-wide association study to the inherently complex and currently poorly understood genetic architecture of industrially relevant wood traits. Here, we employed an Illumina Infinium 34K single nucleotide polymorphism (SNP) genotyping array that generated 29,233 high-quality SNPs in c. 3500 broad-based candidate genes within a population of 334 unrelated Populus trichocarpa individuals to establish genome-wide associations. The analysis revealed 141 significant SNPs (α ≤ 0.05) associated with 16 wood chemistry/ultrastructure traits, individually explaining 3-7% of the phenotypic variance. A large set of associations (41% of all hits) occurred in candidate genes preselected for their suggested a priori involvement with secondary growth. For example, an allelic variant in the FRA8 ortholog explained 21% of the total genetic variance in fiber length, when the trait's heritability estimate was considered. The remaining associations identified SNPs in genes not previously implicated in wood or secondary wall formation. Our findings provide unique insights into wood trait architecture and support efforts for population improvement based on desirable allelic variants.
Collapse
Affiliation(s)
- Ilga Porth
- Department of Wood Science, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Jaroslav Klapšte
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
- Department of Dendrology and Forest Tree Breeding, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, 165 21, Czech Republic
| | - Oleksandr Skyba
- Department of Wood Science, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Jan Hannemann
- Department of Biology and Centre for Forest Biology, University of Victoria, Victoria, BC, Canada, V8W 3N5
| | - Athena D McKown
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Robert D Guy
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Stephen P DiFazio
- Department of Biology, West Virginia University, Morgantown, WV, 26506-6057, USA
| | - Wellington Muchero
- BioSciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Priya Ranjan
- BioSciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Gerald A Tuskan
- BioSciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Michael C Friedmann
- Department of Botany, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Juergen Ehlting
- Department of Biology and Centre for Forest Biology, University of Victoria, Victoria, BC, Canada, V8W 3N5
| | - Quentin C B Cronk
- Department of Botany, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Carl J Douglas
- Department of Botany, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| |
Collapse
|
15
|
Filippis I, Lopez-Cobollo R, Abbott J, Butcher S, Bishop GJ. Using a periclinal chimera to unravel layer-specific gene expression in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:1039-1049. [PMID: 23725542 PMCID: PMC4223383 DOI: 10.1111/tpj.12250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 05/18/2013] [Accepted: 05/24/2013] [Indexed: 05/29/2023]
Abstract
Plant organs are made from multiple cell types, and defining the expression level of a gene in any one cell or group of cells from a complex mixture is difficult. Dicotyledonous plants normally have three distinct layers of cells, L1, L2 and L3. Layer L1 is the single layer of cells making up the epidermis, layer L2 the single cell sub-epidermal layer and layer L3 constitutes the rest of the internal cells. Here we show how it is possible to harvest an organ and characterise the level of layer-specific expression by using a periclinal chimera that has its L1 layer from Solanum pennellii and its L2 and L3 layers from Solanum lycopersicum. This is possible by measuring the level of the frequency of species-specific transcripts. RNA-seq analysis enabled the genome-wide assessment of whether a gene is expressed in the L1 or L2/L3 layers. From 13 277 genes that are expressed in both the chimera and the parental lines and with at least one polymorphism between the parental alleles, we identified 382 genes that are preferentially expressed in L1 in contrast to 1159 genes in L2/L3. Gene ontology analysis shows that many genes preferentially expressed in L1 are involved in cutin and wax biosynthesis, whereas numerous genes that are preferentially expressed in L2/L3 tissue are associated with chloroplastic processes. These data indicate the use of such chimeras and provide detailed information on the level of layer-specific expression of genes.
Collapse
Affiliation(s)
- Ioannis Filippis
- Imperial College London, South Kensington CampusLondon, SW7 2AZ, UK
| | | | - James Abbott
- Imperial College London, South Kensington CampusLondon, SW7 2AZ, UK
| | - Sarah Butcher
- Imperial College London, South Kensington CampusLondon, SW7 2AZ, UK
| | - Gerard J Bishop
- Imperial College London, South Kensington CampusLondon, SW7 2AZ, UK
- East Malling ResearchEast Malling, Kent, ME19 6BJ, UK
| |
Collapse
|
16
|
|
17
|
Hall H, Ellis B. Transcriptional programming during cell wall maturation in the expanding Arabidopsis stem. BMC PLANT BIOLOGY 2013; 13:14. [PMID: 23350960 PMCID: PMC3635874 DOI: 10.1186/1471-2229-13-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/21/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plant cell walls are complex dynamic structures that play a vital role in coordinating the directional growth of plant tissues. The rapid elongation of the inflorescence stem in the model plant Arabidopsis thaliana is accompanied by radical changes in cell wall structure and chemistry, but analysis of the underlying mechanisms and identification of the genes that are involved has been hampered by difficulties in accurately sampling discrete developmental states along the developing stem. RESULTS By creating stem growth kinematic profiles for individual expanding Arabidopsis stems we have been able to harvest and pool developmentally-matched tissue samples, and to use these for comparative analysis of global transcript profiles at four distinct phases of stem growth: the period of elongation rate increase, the point of maximum growth rate, the point of stem growth cessation and the fully matured stem. The resulting profiles identify numerous genes whose expression is affected as the stem tissues pass through these defined growth transitions, including both novel loci and genes identified in earlier studies. Of particular note is the preponderance of highly active genes associated with secondary cell wall deposition in the region of stem growth cessation, and of genes associated with defence and stress responses in the fully mature stem. CONCLUSIONS The use of growth kinematic profiling to create tissue samples that are accurately positioned along the expansion growth continuum of Arabidopsis inflorescence stems establishes a new standard for transcript profiling analyses of such tissues. The resulting expression profiles identify a substantial number of genes whose expression is correlated for the first time with rapid cell wall extension and subsequent fortification, and thus provide an important new resource for plant biologists interested in gene discovery related to plant biomass accumulation.
Collapse
Affiliation(s)
- Hardy Hall
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Currently: Swedish University of Agricultural Sciences (SLU), Umeå, 901 83, Sweden
| | - Brian Ellis
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
18
|
Gómez-Ros LV, Gabaldón C, López Núñez-Flores MJ, Gutiérrez J, Herrero J, Zapata JM, Sottomayor M, Cuello J, Ros Barceló A. The promoter region of the Zinnia elegans basic peroxidase isoenzyme gene contains cis-elements responsive to nitric oxide and hydrogen peroxide. PLANTA 2012; 236:327-342. [PMID: 22362137 DOI: 10.1007/s00425-012-1604-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 01/26/2012] [Indexed: 05/31/2023]
Abstract
NO and H2O2 are important biological messengers in plants. They are formed during xylem differentiation in Zinnia elegans and apparently play important roles during the xylogenesis. To ascertain the responsiveness of the Z. elegans peroxidase (ZePrx) to these endogenous signals, the effects of NO and H2O2 on ZePrx were studied. The results showed that ZePrx is up-regulated by NO and H2O2, as confirmed by RT-qPCR, and that its promoter contains multiple copies of all the putative cis-elements (ACGT box, OCS box, OPAQ box, L1BX, MYCL box and W box) known to confer regulation by NO and H2O2. Like other OCS elements, the OCS element of ZePrx contains the sequence TACG that is recognized by OBF5, a highly conserved bZIP transcription factor, and the 10 bp sequence, ACAaTTTTGG, which is recognized by OBP1, a Dof domain protein that binds down-stream the OCS element. Furthermore, the ZePrx OCS element is flanked by two CCAAT-like boxes, and encloses one auxin-responsive ARFAT element and two GA3-responsive Pyr boxes. Results also showed that ZePrx may be described as the first protein to be up-regulated by NO and H2O2, whose mRNA contains several short-longevity conferring elements, such as a downstream (DST) sequence analogous to the DSTs contained in the highly unstable SAUR transcripts. The presence of these regulatory elements strongly suggests that ZePrx is finely regulated, as one may expect from an enzyme that catalyzes the last irreversible step of the formation of lignins, the major irreversible sink for the photosynthetically fixed CO2.
Collapse
Affiliation(s)
- Laura V Gómez-Ros
- Department of Plant Biology, University of Murcia, 30100, Murcia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lima RB, dos Santos TB, Vieira LGE, Ferrarese MDLL, Ferrarese-Filho O, Donatti L, Boeger MRT, Petkowicz CLDO. Heat stress causes alterations in the cell-wall polymers and anatomy of coffee leaves (Coffea arabica L.). Carbohydr Polym 2012; 93:135-43. [PMID: 23465912 DOI: 10.1016/j.carbpol.2012.05.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 03/06/2012] [Accepted: 05/04/2012] [Indexed: 01/23/2023]
Abstract
Coffee plants were subjected to heat stress (37 °C) and compared with control plants (24 °C). Cell wall polysaccharides were extracted using water (W), EDTA (E) and 4M NaOH (H30 and H70). In addition, monolignols were analyzed, and the leaves were observed by microscopy. Plants under heat stress accumulated higher contents of arabinose and galactose in fraction W. Xylose contents were observed to decrease in H30 fractions after the heat stress, whereas galactose and uronic acid increased. H70 fractions from plants exposed to heat stress showed increased xylose contents, whereas the contents of arabinose and glucose decreased. Differences in the molar-mass profiles of polysaccharides were also observed. The primary monolignol contents increased after the heat stress. Structural alterations in palisade cells and ultrastructural damage in chloroplasts were also observed. Our results demonstrate that the chemical profile of coffee cell-wall polymers and structural cell anatomy change under heat stress.
Collapse
Affiliation(s)
- Rogério Barbosa Lima
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, CP 19046, 81531-980 Curitiba, PR, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Hall H, Ellis B. Developmentally equivalent tissue sampling based on growth kinematic profiling of Arabidopsis inflorescence stems. THE NEW PHYTOLOGIST 2012; 194:287-296. [PMID: 22313381 DOI: 10.1111/j.1469-8137.2012.04060.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
• Directional growth in Arabidopsis thaliana during bolting of the inflorescence stem makes this an attractive system for study of the underlying processes of tissue elongation and cell wall extension. Analysis of local molecular events accompanying Arabidopsis inflorescence stem elongation is hampered by difficulties in isolating developmentally matched tissue samples from different plants. • Here, we present a novel sampling approach in which specific developmental stages along the developing stem are defined nonintrusively in terms of their relative elemental growth rate by use of time-lapse imagery and subsequent derivation of growth kinematic profiles for individual plants. • Growth kinematic profiling reveals that key developmental transitions such as the point of maximum elongation rate and the point of cessation of elongation occur over broad and overlapping ranges across individuals within a population of the Columbia (Col-0) ecotype. The position of these transitions is only weakly correlated with overall plant height, which undermines the common assumption that physically similar plants have closely matched growth profiles. • This kinematic profiling approach provides high-resolution growth phenotyping of the developing stem and thereby enables the harvest, pooling and analysis of developmentally matched tissue samples from multiple Arabidopsis plants.
Collapse
Affiliation(s)
- Hardy Hall
- Department of Botany and the Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, Canada, V6T 1Z4
| | - Brian Ellis
- Department of Botany and the Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, Canada, V6T 1Z4
| |
Collapse
|
21
|
Chavigneau H, Goué N, Delaunay S, Courtial A, Jouanin L, Reymond M, Méchin V, Barrière Y. QTL for floral stem lignin content and degradability in three recombinant inbred line (RIL) progenies of <i>Arabidopsis thaliana</i> and search for candidate genes involved in cell wall biosynthesis and degradability. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ojgen.2012.21002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Abstract
Multicellular organisms possess pluripotent stem cells to form new organs, replenish the daily loss of cells, or regenerate organs after injury. Stem cells are maintained in specific environments, the stem cell niches, that provide signals to block differentiation. In plants, stem cell niches are situated in the shoot, root, and vascular meristems-self-perpetuating units of organ formation. Plants' lifelong activity-which, as in the case of trees, can extend over more than a thousand years-requires that a robust regulatory network keep the balance between pluripotent stem cells and differentiating descendants. In this review, we focus on current models in plant stem cell research elaborated during the past two decades, mainly in the model plant Arabidopsis thaliana. We address the roles of mobile signals on transcriptional modules involved in balancing cell fates. In addition, we discuss shared features of and differences between the distinct stem cell niches of Arabidopsis.
Collapse
Affiliation(s)
- Ernst Aichinger
- BIOSS Centre for Biological Signalling Studies, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | | | | |
Collapse
|
23
|
Mazur E, Kurczynska EU. Rays, intrusive growth, and storied cambium in the inflorescence stems of Arabidopsis thaliana (L.) Heynh. PROTOPLASMA 2012; 249:217-20. [PMID: 21311923 PMCID: PMC3249544 DOI: 10.1007/s00709-011-0266-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 01/31/2011] [Indexed: 05/08/2023]
Abstract
Arabidopsis thaliana is a model plant used in analysis of different aspects of plant growth and development. Under suitable conditions, secondary growth takes place in the hypocotyl of Arabidopsis plants, a finding which helps in understanding many aspects of xylogenesis. However, not all developmental processes of secondary tissue can be studied here, as no secondary rays and intrusive growth have been detected in hypocotyl. However, results presented here concerning the secondary growth in inflorescence stems of Arabidopsis shows that both secondary rays and intrusive growth of cambial cells can be detected, and that, in the interfascicular regions, a storied cambium can be developed.
Collapse
Affiliation(s)
- Ewa Mazur
- Laboratory of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland.
| | | |
Collapse
|
24
|
Barakate A, Stephens J, Goldie A, Hunter WN, Marshall D, Hancock RD, Lapierre C, Morreel K, Boerjan W, Halpin C. Syringyl lignin is unaltered by severe sinapyl alcohol dehydrogenase suppression in tobacco. THE PLANT CELL 2011; 23:4492-506. [PMID: 22158465 PMCID: PMC3269879 DOI: 10.1105/tpc.111.089037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 07/27/2011] [Accepted: 11/16/2011] [Indexed: 05/02/2023]
Abstract
The manipulation of lignin could, in principle, facilitate efficient biofuel production from plant biomass. Despite intensive study of the lignin pathway, uncertainty exists about the enzyme catalyzing the last step in syringyl (S) monolignol biosynthesis, the reduction of sinapaldehyde to sinapyl alcohol. Traditional schemes of the pathway suggested that both guaiacyl (G) and S monolignols are produced by a single substrate-versatile enzyme, cinnamyl alcohol dehydrogenase (CAD). This was challenged by the discovery of a novel sinapyl alcohol dehydrogenase (SAD) that preferentially uses sinapaldehyde as a substrate and that was claimed to regulate S lignin biosynthesis in angiosperms. Consequently, most pathway schemes now show SAD (or SAD and CAD) at the sinapaldehyde reduction step, although functional evidence is lacking. We cloned SAD from tobacco (Nicotiana tabacum) and suppressed it in transgenic plants using RNA interference-inducing vectors. Characterization of lignin in the woody stems shows no change to content, composition, or structure, and S lignin is normal. By contrast, plants additionally suppressed in CAD have changes to lignin structure and S:G ratio and have increased sinapaldehyde in lignin, similar to plants suppressed in CAD alone. These data demonstrate that CAD, not SAD, is the enzyme responsible for S lignin biosynthesis in woody angiosperm xylem.
Collapse
Affiliation(s)
- Abdellah Barakate
- Division of Plant Sciences, College of Life Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Jennifer Stephens
- Division of Plant Sciences, College of Life Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
- James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Alison Goldie
- Division of Plant Sciences, College of Life Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - William N. Hunter
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - David Marshall
- James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | | | - Catherine Lapierre
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique-AgroParisTech, Unité Mixte de Recherche 1318, 78026 Versailles, France
| | - Kris Morreel
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B–9052 Ghent, Belgium
- Department of Plant Biotechnology, Ghent University, B–9052 Ghent, Belgium
| | - Wout Boerjan
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B–9052 Ghent, Belgium
- Department of Plant Biotechnology, Ghent University, B–9052 Ghent, Belgium
| | - Claire Halpin
- Division of Plant Sciences, College of Life Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| |
Collapse
|
25
|
|
26
|
Agusti J, Lichtenberger R, Schwarz M, Nehlin L, Greb T. Characterization of transcriptome remodeling during cambium formation identifies MOL1 and RUL1 as opposing regulators of secondary growth. PLoS Genet 2011; 7:e1001312. [PMID: 21379334 PMCID: PMC3040665 DOI: 10.1371/journal.pgen.1001312] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 01/14/2011] [Indexed: 12/25/2022] Open
Abstract
Cell-to-cell communication is crucial for the development of multicellular organisms, especially during the generation of new tissues and organs. Secondary growth--the lateral expansion of plant growth axes--is a highly dynamic process that depends on the activity of the cambium. The cambium is a stem cell-like tissue whose activity is responsible for wood production and, thus, for the establishment of extended shoot and root systems. Attempts to study cambium regulation at the molecular level have been hampered by the limitations of performing genetic analyses in trees and by the difficulty of accessing this tissue in model systems such as Arabidopsis thaliana. Here, we describe the roles of two receptor-like kinases, REDUCED IN LATERAL GROWTH1 (RUL1) and MORE LATERAL GROWTH1 (MOL1), as opposing regulators of cambium activity. Their identification was facilitated by a novel in vitro system in which cambium formation is induced in isolated Arabidopsis stem fragments. By combining this system with laser capture microdissection, we characterized transcriptome remodeling in a tissue- and stage-specific manner and identified series of genes induced during different phases of cambium formation. In summary, we provide a means for investigating cambium regulation in unprecedented depth and present two signaling components that control a process responsible for the accumulation of a large proportion of terrestrial biomass.
Collapse
Affiliation(s)
- Javier Agusti
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna, Austria
| | - Raffael Lichtenberger
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna, Austria
| | - Martina Schwarz
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna, Austria
| | - Lilian Nehlin
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna, Austria
| | - Thomas Greb
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
27
|
Matte Risopatron JP, Sun Y, Jones BJ. The vascular cambium: molecular control of cellular structure. PROTOPLASMA 2010; 247:145-161. [PMID: 20978810 DOI: 10.1007/s00709-010-0211-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 09/09/2010] [Indexed: 05/30/2023]
Abstract
Indeterminate growth and the production of new organs in plants require a constant supply of new cells. The majority of these cells are produced in mitotic regions called meristems. For primary or tip growth of the roots and shoots, the meristems are located in the apices. These apical meristems have been shown to function as developmentally regulated and environmentally responsive stem cell niches. The principle requirements to maintain a functioning meristem in a dynamic system are a balance of cell division and differentiation and the regulation of the planes of cell division and expansion. Woody plants also have secondary indeterminate mitotic regions towards the exterior of roots, stems and branches that produce the cells for continued growth in girth. The chief secondary meristem is the vascular cambium (VC). As its name implies, cells produced in the VC contribute to the growth in girth via the production of secondary vascular elements. Although we know a considerable amount about the cellular and molecular basis of the apical meristems, our knowledge of the cellular basis and molecular functioning of the VC has been rudimentary. This is now changing as a growing body of research shows that the primary and secondary meristems share some common fundamental regulatory mechanisms. In this review, we outline recent research that is leading to a better understanding of the molecular forces that shape the cellular structure and function of the VC.
Collapse
|
28
|
Kwon SI, Cho HJ, Jung JH, Yoshimoto K, Shirasu K, Park OK. The Rab GTPase RabG3b functions in autophagy and contributes to tracheary element differentiation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:151-64. [PMID: 20659276 DOI: 10.1111/j.1365-313x.2010.04315.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The tracheary elements (TEs) of the xylem serve as the water-conducting vessels of the plant vascular system. To achieve this, TEs undergo secondary cell wall thickening and cell death, during which the cell contents are completely removed. Cell death of TEs is a typical example of developmental programmed cell death that has been suggested to be autophagic. However, little evidence of autophagy in TE differentiation has been provided. The present study demonstrates that the small GTP binding protein RabG3b plays a role in TE differentiation through its function in autophagy. Differentiating wild type TE cells were found to undergo autophagy in an Arabidopsis culture system. Both autophagy and TE formation were significantly stimulated by overexpression of a constitutively active mutant (RabG3bCA), and were inhibited in transgenic plants overexpressing a dominant negative mutant (RabG3bDN) or RabG3b RNAi (RabG3bRNAi), a brassinosteroid insensitive mutant bri1-301, and an autophagy mutant atg5-1. Taken together, our results suggest that autophagy occurs during TE differentiation, and that RabG3b, as a component of autophagy, regulates TE differentiation.
Collapse
Affiliation(s)
- Soon Il Kwon
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea RIKEN Plant Science Center, Yokohama 230-0045, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Sehr EM, Agusti J, Lehner R, Farmer EE, Schwarz M, Greb T. Analysis of secondary growth in the Arabidopsis shoot reveals a positive role of jasmonate signalling in cambium formation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:811-22. [PMID: 20579310 PMCID: PMC2988407 DOI: 10.1111/j.1365-313x.2010.04283.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 06/10/2010] [Accepted: 06/16/2010] [Indexed: 05/18/2023]
Abstract
After primary growth, most dicotyledonous plants undergo secondary growth. Secondary growth involves an increase in the diameter of shoots and roots through formation of secondary vascular tissue. A hallmark of secondary growth initiation in shoots of dicotyledonous plants is the initiation of meristematic activity between primary vascular bundles, i.e. in the interfascicular regions. This results in establishment of a cylindrical meristem, namely the vascular cambium. Surprisingly, despite its major implications for plant growth and the accumulation of biomass, the molecular regulation of secondary growth is only poorly understood. Here, we combine histological, molecular and genetic approaches to characterize interfascicular cambium initiation in the Arabidopsis thaliana inflorescence shoot. Using genome-wide transcriptional profiling, we show that stress-related and touch-inducible genes are up-regulated in stem regions where secondary growth takes place. Furthermore, we show that the products of COI1, MYC2, JAZ7 and the touch-inducible gene JAZ10, which are components of the JA signalling pathway, are cambium regulators. The positive effect of JA application on cambium activity confirmed a stimulatory role of JA in secondary growth, and suggests that JA signalling triggers cell divisions in this particular context.
Collapse
Affiliation(s)
- Eva M Sehr
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of SciencesDr Bohr-Gasse 3, 1030 Vienna, Austria
| | - Javier Agusti
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of SciencesDr Bohr-Gasse 3, 1030 Vienna, Austria
| | - Reinhard Lehner
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of SciencesDr Bohr-Gasse 3, 1030 Vienna, Austria
| | - Edward E Farmer
- Department of Plant Molecular Biology, University of LausanneBiophore, CH-1015 Lausanne, Switzerland
| | - Martina Schwarz
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of SciencesDr Bohr-Gasse 3, 1030 Vienna, Austria
| | - Thomas Greb
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of SciencesDr Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
30
|
Dharmawardhana P, Brunner AM, Strauss SH. Genome-wide transcriptome analysis of the transition from primary to secondary stem development in Populus trichocarpa. BMC Genomics 2010; 11:150. [PMID: 20199690 PMCID: PMC2846914 DOI: 10.1186/1471-2164-11-150] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 03/04/2010] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND With its genome sequence and other experimental attributes, Populus trichocarpa has become the model species for genomic studies of wood development. Wood is derived from secondary growth of tree stems, and begins with the development of a ring of vascular cambium in the young developing stem. The terminal region of the developing shoot provides a steep developmental gradient from primary to secondary growth that facilitates identification of genes that play specialized functions during each of these phases of growth. RESULTS Using a genomic microarray representing the majority of the transcriptome, we profiled gene expression in stem segments that spanned primary to secondary growth. We found 3,016 genes that were differentially expressed during stem development (Q-value = 0.05; >2-fold expression variation), and 15% of these genes encode proteins with no significant identities to known genes. We identified all gene family members putatively involved in secondary growth for carbohydrate active enzymes, tubulins, actins, actin depolymerizing factors, fasciclin-like AGPs, and vascular development-associated transcription factors. Almost 70% of expressed transcription factors were upregulated during the transition to secondary growth. The primary shoot elongation region of the stem contained specific carbohydrate active enzyme and expansin family members that are likely to function in primary cell wall synthesis and modification. Genes involved in plant defense and protective functions were also dominant in the primary growth region. CONCLUSION Our results describe the global patterns of gene expression that occur during the transition from primary to secondary stem growth. We were able to identify three major patterns of gene expression and over-represented gene ontology categories during stem development. The new regulatory factors and cell wall biogenesis genes that we identified provide candidate genes for further functional characterization, as well as new tools for molecular breeding and biotechnology aimed at improvement of tree growth rate, crown form, and wood quality.
Collapse
Affiliation(s)
- Palitha Dharmawardhana
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331-5752, USA
| | - Amy M Brunner
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA, 24061-0324, USA
| | - Steven H Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331-5752, USA
| |
Collapse
|
31
|
Charon C, Vivancos J, Mazubert C, Paquet N, Pilate G, Dron M. Structure and vascular tissue expression of duplicated TERMINAL EAR1-like paralogues in poplar. PLANTA 2010; 231:525-535. [PMID: 19943172 DOI: 10.1007/s00425-009-1066-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 10/23/2009] [Indexed: 05/28/2023]
Abstract
TERMINAL EAR1-like (TEL) genes encode putative RNA-binding proteins only found in land plants. Previous studies suggested that they may regulate tissue and organ initiation in Poaceae. Two TEL genes were identified in both Populus trichocarpa and the hybrid aspen Populus tremula x P. alba, named, respectively, PoptrTEL1-2 and PtaTEL1-2. The analysis of the organisation around the PoptrTEL genes in the P. trichocarpa genome and the estimation of the synonymous substitution rate for PtaTEL1-2 genes indicate that the paralogous link between these two Populus TEL genes probably results from the Salicoid large-scale gene-duplication event. Phylogenetic analyses confirmed their orthology link with the other TEL genes. The expression pattern of both PtaTEL genes appeared to be restricted to the mother cells of the plant body: leaf founder cells, leaf primordia, axillary buds and root differentiating tissues, as well as to mother cells of vascular tissues. Most interestingly, PtaTEL1-2 transcripts were found in differentiating cells of secondary xylem and phloem, but probably not in the cambium itself. Taken together, these results indicate specific expression of the TEL genes in differentiating cells controlling tissue and organ development in Populus (and other Angiosperm species).
Collapse
Affiliation(s)
- Céline Charon
- Institut de Biotechnologie des Plantes, CNRS (UMR8618), Université Paris-Sud 11, 91405 Orsay Cedex, France.
| | | | | | | | | | | |
Collapse
|
32
|
Ko JH, Kim WC, Han KH. Ectopic expression of MYB46 identifies transcriptional regulatory genes involved in secondary wall biosynthesis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:649-65. [PMID: 19674407 DOI: 10.1111/j.1365-313x.2009.03989.x] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
MYB46 functions as a transcriptional switch that turns on the genes necessary for secondary wall biosynthesis. Elucidating the transcriptional regulatory network immediately downstream of MYB46 is crucial to our understanding of the molecular and biochemical processes involved in the biosynthesis and deposition of secondary walls in plants. To gain insights into MYB46-mediated transcriptional regulation, we first established an inducible secondary wall thickening system in Arabidopsis by expressing MYB46 under the control of dexamethasone-inducible promoter. Then, we used an ATH1 GeneChip microarray and Illumina digital gene expression system to obtain a series of transcriptome profiles with regard to the induction of secondary wall development. These analyses allowed us to identify a group of transcription factors whose expression coincided with or preceded the induction of secondary wall biosynthetic genes. A transient transcriptional activation assay was used to confirm the hierarchical relationships among the transcription factors in the network. The in vivo assay showed that MYB46 transcriptionally activates downstream target transcription factors, three of which (AtC3H14, MYB52 and MYB63) were shown to be able to activate secondary wall biosynthesis genes. AtC3H14 activated the transcription of all of the secondary wall biosynthesis genes tested, suggesting that AtC3H14 may be another master regulator of secondary wall biosynthesis. The transcription factors identified here may include direct activators of secondary wall biosynthesis genes. The present study discovered novel hierarchical relationships among the transcription factors involved in the transcriptional regulation of secondary wall biosynthesis, and generated several testable hypotheses.
Collapse
Affiliation(s)
- Jae-Heung Ko
- Department of Forestry, Michigan State University, East Lansing, MI 48824-1222, USA
| | | | | |
Collapse
|
33
|
Elo A, Immanen J, Nieminen K, Helariutta Y. Stem cell function during plant vascular development. Semin Cell Dev Biol 2009; 20:1097-106. [PMID: 19770063 DOI: 10.1016/j.semcdb.2009.09.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 09/09/2009] [Accepted: 09/11/2009] [Indexed: 12/31/2022]
Abstract
While many regulatory mechanisms controlling the development and function of root and shoot apical meristems have been revealed, our knowledge of similar processes in lateral meristems, including the vascular cambium, is still limited. Our understanding of even the anatomy and development of lateral meristems (procambium or vascular cambium) is still relatively incomplete, let alone their genetic regulation. Research into this particular tissue type has been mostly hindered by a lack of suitable molecular markers, as well as the fact that thus far very few mutants affecting plant secondary development have been described. The development of suitable molecular markers is a high priority in order to help define the anatomy, especially the location and identity of cambial stem cells and the developmental phases and molecular regulatory mechanisms of the cambial zone. To date, most of the advances have been obtained by studying the role of the major plant hormones in vascular development. Thus far auxin, cytokinin, gibberellin and ethylene have been implicated in regulating the maintenance and activity of cambial stem cells; the most logical question in research would be how these hormones interact during the various phases of cambial development.
Collapse
Affiliation(s)
- A Elo
- Department of Biological and Environmental Sciences, Institute of Biotechnology, University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland.
| | | | | | | |
Collapse
|
34
|
Kong Y, Zhou G, Avci U, Gu X, Jones C, Yin Y, Xu Y, Hahn MG. Two poplar glycosyltransferase genes, PdGATL1.1 and PdGATL1.2, are functional orthologs to PARVUS/AtGATL1 in Arabidopsis. MOLECULAR PLANT 2009; 2:1040-50. [PMID: 19825678 DOI: 10.1093/mp/ssp068] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Several genes in Arabidopsis, including PARVUS/AtGATL1, have been implicated in xylan synthesis. However, the biosynthesis of xylan in woody plants, where this polysaccharide is a major component of wood, is poorly understood. Here, we characterize two Populus genes, PdGATL1.1 and PdGATL1.2, the closest orthologs to the Arabidopsis PARVUS/GATL1 gene, with respect to their gene expression in poplar, their sub-cellular localization, and their ability to complement the parvus mutation in Arabidopsis. Overexpression of the two poplar genes in the parvus mutant rescued most of the defects caused by the parvus mutation, including morphological changes, collapsed xylem, and altered cell wall monosaccharide composition. Quantitative RT-PCR showed that PdGATL1.1 is expressed most strongly in developing xylem of poplar. In contrast, PdGATL1.2 is expressed much more uniformly in leaf, shoot tip, cortex, phloem, and xylem, and the transcript level of PdGATL1.2 is much lower than that of PdGATL1.1 in all tissues examined. Sub-cellular localization experiments showed that these two proteins are localized to both ER and Golgi in comparison with marker proteins resident to these sub-cellular compartments. Our data indicate that PdGATL1.1 and PdGATL1.2 are functional orthologs of PARVUS/GATL1 and can play a role in xylan synthesis, but may also have role(s) in the synthesis of other wall polymers.
Collapse
Affiliation(s)
- Yingzhen Kong
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Gutiérrez J, López Núñez-Flores MJ, Gómez-Ros LV, Novo Uzal E, Esteban Carrasco A, Díaz J, Sottomayor M, Cuello J, Ros Barceló A. Hormonal regulation of the basic peroxidase isoenzyme from Zinnia elegans. PLANTA 2009; 230:767-78. [PMID: 19626339 DOI: 10.1007/s00425-009-0982-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 07/06/2009] [Indexed: 05/08/2023]
Abstract
Xylem differentiation in plants is under strict hormonal regulation. Auxins and cytokinins, together with brassinosteroids (BRs), appear to be the main hormones controlling vascular differentiation. In this report, we study the effect of these hormones on the basic peroxidase isoenzyme from Zinnia elegans (ZePrx), an enzyme involved in lignin biosynthesis. Results showed that auxins and cytokinins induce ZePrx, similarly to the way in which they induce seedling secondary growth (in particular, metaxylem differentiation). Likewise, the exogenous application of BR reduces the levels of ZePrx, in a similar way to their capacity to inhibit seedling secondary growth. Consistent with this notion, the exogenous application of BR reverses the auxin/cytokinin-induced ZePrx expression, but has no effect on the auxin/cytokinin-induced secondary growth. This differential hormonal response is supported by the analysis of the ZePrx promoter, which contains (a) cis-elements directly responsive to these hormones and (b) cis-elements targets of the plethora of transcription factors, such as NAC, MYB, AP2, MADS and class III HD Zip, which are up-regulated during the auxin- and cytokinin-induced secondary growth. Taken together, these results suggest that ZePrx is directly and indirectly regulated by the plethora of hormones that control xylem differentiation, supporting the role of ZePrx in xylem lignification.
Collapse
Affiliation(s)
- Jorge Gutiérrez
- Department of Plant Biology, University of La Coruña, 15071 La Coruña, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Courtois-Moreau CL, Pesquet E, Sjödin A, Muñiz L, Bollhöner B, Kaneda M, Samuels L, Jansson S, Tuominen H. A unique program for cell death in xylem fibers of Populus stem. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:260-74. [PMID: 19175765 DOI: 10.1111/j.1365-313x.2008.03777.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Maturation of the xylem elements involves extensive deposition of secondary cell-wall material and autolytic processes resulting in cell death. We describe here a unique type of cell-death program in xylem fibers of hybrid aspen (Populus tremula x P. tremuloides) stems, including gradual degradative processes in both the nucleus and cytoplasm concurrently with the phase of active cell-wall deposition. Nuclear DNA integrity, as determined by TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) and Comet (single-cell gel electrophoresis) assays, was compromised early during fiber maturation. In addition, degradation of the cytoplasmic contents, as detected by electron microscopy of samples fixed by high-pressure freezing/freeze substitution (HPF-FS), was gradual and resulted in complete loss of the cytoplasmic contents well before the loss of vacuolar integrity, which is considered to be the moment of death. This type of cell death differs significantly from that seen in xylem vessels. The loss of vacuolar integrity, which is thought to initiate cell degradative processes in the xylem vessels, is one of the last processes to occur before the final autolysis of the remaining cell contents in xylem fibers. High-resolution microarray analysis in the vascular tissues of Populus stem, combined with in silico analysis of publicly available data repositories, suggests the involvement of several previously uncharacterized transcription factors, ethylene, sphingolipids and light signaling as well as autophagy in the control of fiber cell death.
Collapse
|
37
|
Dettmer J, Elo A, Helariutta Y. Hormone interactions during vascular development. PLANT MOLECULAR BIOLOGY 2009; 69:347-60. [PMID: 18654740 DOI: 10.1007/s11103-008-9374-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 07/01/2008] [Indexed: 05/08/2023]
Abstract
Vascular tissue in plants is unique due to its diverse and dynamic cellular patterns. Signals controlling vascular development have only recently started to emerge through biochemical, genetic, and genomic approaches in several organisms, such as Arabidopsis, Populus, and Zinnia. These signals include hormones (auxin, brassinosteroids, and cytokinins, in particular), other small regulatory molecules, their transporters, receptors, and various transcriptional regulators. In recent years it has become apparent that plant growth regulators rarely act alone, but rather their signaling pathways are interlocked in complex networks; for example, polar auxin transport (PAT) regulates vascular development during various stages and an emerging theme is its modulation by other growth regulators, depending on the developmental context. Also, several synergistic or antagonistic interactions between various growth regulators have been described. Furthermore, shoot-root interactions appear to be important for this signal integration.
Collapse
Affiliation(s)
- Jan Dettmer
- Plant Molecular Biology Laboratory, Department of Biological and Environmental Sciences, Institute of Biotechnology, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | | | | |
Collapse
|
38
|
Minic Z, Jamet E, San-Clemente H, Pelletier S, Renou JP, Rihouey C, Okinyo DPO, Proux C, Lerouge P, Jouanin L. Transcriptomic analysis of Arabidopsis developing stems: a close-up on cell wall genes. BMC PLANT BIOLOGY 2009; 9:6. [PMID: 19149885 PMCID: PMC2649120 DOI: 10.1186/1471-2229-9-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2008] [Accepted: 01/16/2009] [Indexed: 05/17/2023]
Abstract
BACKGROUND Different strategies (genetics, biochemistry, and proteomics) can be used to study proteins involved in cell biogenesis. The availability of the complete sequences of several plant genomes allowed the development of transcriptomic studies. Although the expression patterns of some Arabidopsis thaliana genes involved in cell wall biogenesis were identified at different physiological stages, detailed microarray analysis of plant cell wall genes has not been performed on any plant tissues. Using transcriptomic and bioinformatic tools, we studied the regulation of cell wall genes in Arabidopsis stems, i.e. genes encoding proteins involved in cell wall biogenesis and genes encoding secreted proteins. RESULTS Transcriptomic analyses of stems were performed at three different developmental stages, i.e., young stems, intermediate stage, and mature stems. Many genes involved in the synthesis of cell wall components such as polysaccharides and monolignols were identified. A total of 345 genes encoding predicted secreted proteins with moderate or high level of transcripts were analyzed in details. The encoded proteins were distributed into 8 classes, based on the presence of predicted functional domains. Proteins acting on carbohydrates and proteins of unknown function constituted the two most abundant classes. Other proteins were proteases, oxido-reductases, proteins with interacting domains, proteins involved in signalling, and structural proteins. Particularly high levels of expression were established for genes encoding pectin methylesterases, germin-like proteins, arabinogalactan proteins, fasciclin-like arabinogalactan proteins, and structural proteins. Finally, the results of this transcriptomic analyses were compared with those obtained through a cell wall proteomic analysis from the same material. Only a small proportion of genes identified by previous proteomic analyses were identified by transcriptomics. Conversely, only a few proteins encoded by genes having moderate or high level of transcripts were identified by proteomics. CONCLUSION Analysis of the genes predicted to encode cell wall proteins revealed that about 345 genes had moderate or high levels of transcripts. Among them, we identified many new genes possibly involved in cell wall biogenesis. The discrepancies observed between results of this transcriptomic study and a previous proteomic study on the same material revealed post-transcriptional mechanisms of regulation of expression of genes encoding cell wall proteins.
Collapse
Affiliation(s)
- Zoran Minic
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
- Laboratoire de Biologie Cellulaire, Institut National de la Recherche Agronomique (INRA), Route de St-Cyr, 78026 Versailles Cedex, France
| | - Elisabeth Jamet
- Surfaces Cellulaires et Signalisation chez les Végétaux, UMR 5546 CNRS-UPS, Université de Toulouse, 24 Chemin de Borde Rouge, BP42617, 31326-Castanet-Tolosan, France
| | - Hélène San-Clemente
- Surfaces Cellulaires et Signalisation chez les Végétaux, UMR 5546 CNRS-UPS, Université de Toulouse, 24 Chemin de Borde Rouge, BP42617, 31326-Castanet-Tolosan, France
| | - Sandra Pelletier
- Unité de Recherche en Génomique Végétale, UMR INRA 1165-CNRS 8114, UEVE, 91057 Evry cedex, France
| | - Jean-Pierre Renou
- Unité de Recherche en Génomique Végétale, UMR INRA 1165-CNRS 8114, UEVE, 91057 Evry cedex, France
| | - Christophe Rihouey
- Faculté des Sciences, FRE CNRS 3090, IFRMP23, Université de Rouen, F-76821 Mont Saint Aignan Cedex, France
| | - Denis PO Okinyo
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Caroline Proux
- Unité de Recherche en Génomique Végétale, UMR INRA 1165-CNRS 8114, UEVE, 91057 Evry cedex, France
| | - Patrice Lerouge
- Faculté des Sciences, FRE CNRS 3090, IFRMP23, Université de Rouen, F-76821 Mont Saint Aignan Cedex, France
| | - Lise Jouanin
- Laboratoire de Biologie Cellulaire, Institut National de la Recherche Agronomique (INRA), Route de St-Cyr, 78026 Versailles Cedex, France
| |
Collapse
|
39
|
Tanaka M, Kato N, Nakayama H, Nakatani M, Takahata Y. Expression of class I knotted1-like homeobox genes in the storage roots of sweetpotato (Ipomoea batatas). JOURNAL OF PLANT PHYSIOLOGY 2008; 165:1726-35. [PMID: 18242774 DOI: 10.1016/j.jplph.2007.11.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 11/28/2007] [Accepted: 11/29/2007] [Indexed: 05/04/2023]
Abstract
As a first step in clarifying the involvement of class I knotted1-like homeobox (KNOXI) genes in the storage root development of sweetpotato (Ipomoea batatas), we isolated three KNOXI genes, named Ibkn1, Ibkn2 and Ibkn3, expressed in the storage roots. Phylogenetic analysis showed that Ibkn1 was homologous to the SHOOT MERISTEMLESS (STM) gene of Arabidopsis, while Ibkn2 and Ibkn3 were homologous to the BREVIPEDICELLUS (BP) gene. Of these, expression of Ibkn1 and Ibkn2 were upregulated in developing and mature storage roots compared with fibrous roots. Ibkn1 and Ibkn2 showed different expression patterns in the storage roots. Ibkn1 was preferentially expressed at the proximal end and around the primary vascular cambium, while Ibkn2 expression was highest in the thickest part and lower in both the proximal and distal ends. In contrast to Ibkn1 and Ibkn2, expression of Ibkn3 in roots was not consistent among sweetpotato cultivars. The distribution of endogenous trans-zeatin riboside (t-ZR) in sweetpotato roots showed a similarity to the expression pattern of KNOXI genes, supporting the idea that KNOXI genes control cytokinin levels in the storage roots. The physiological functions of these KNOXI genes in storage root development are discussed.
Collapse
Affiliation(s)
- Masaru Tanaka
- Crop Functionality and Utilization Research Team, National Agricultural Research Center for Kyushu Okinawa Region, Miyakonojo, Miyazaki, Japan.
| | | | | | | | | |
Collapse
|
40
|
Sibout R, Plantegenet S, Hardtke CS. Flowering as a condition for xylem expansion in Arabidopsis hypocotyl and root. Curr Biol 2008; 18:458-63. [PMID: 18356049 DOI: 10.1016/j.cub.2008.02.070] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 02/07/2008] [Accepted: 02/20/2008] [Indexed: 12/26/2022]
Abstract
In dicotyledons, biomass predominantly represents cell-wall material of xylem, which is formed during the genetically poorly characterized secondary growth of the vasculature. In Arabidopsis hypocotyls, initially proportional secondary growth of all tissues is followed by a phase of xylem expansion and fiber differentiation. The factors that control this transition are unknown. We observed natural variation in Arabidopsis hypocotyl secondary growth and its coordination with root secondary growth. Quantitative trait loci (QTL) analyses of a recombinant inbred line (RIL) population demonstrated separate genetic control of developmentally synchronized secondary-growth parameters. However, major QTL for xylem expansion and fiber differentiation correlated tightly and coincided with major flowering time QTL. Correlation between xylem expansion and flowering was confirmed in another RIL population and also found across Arabidopsis accessions. Gene-expression analyses suggest that xylem expansion is initiated after flowering induction but before inflorescence emergence. Consistent with this idea, transient activation of an inducer of flowering at the rosette stage promoted xylem expansion. Although the shoot was needed to trigger xylem expansion and can control it in a graft-transmissible fashion, the inflorescence stem was not required to sustain it. Collectively, our results suggest that flowering induction is the condition for xylem expansion in hypocotyl and root secondary growth.
Collapse
Affiliation(s)
- Richard Sibout
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
41
|
Casteel CL, O'Neill BF, Zavala JA, Bilgin DD, Berenbaum MR, Delucia EH. Transcriptional profiling reveals elevated CO2 and elevated O3 alter resistance of soybean (Glycine max) to Japanese beetles (Popillia japonica). PLANT, CELL & ENVIRONMENT 2008; 31:419-34. [PMID: 18194424 DOI: 10.1111/j.1365-3040.2008.01782.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The accumulation of CO2 and O3 in the troposphere alters phytochemistry which in turn influences the interactions between plants and insects. Using microarray analysis of field-grown soybean (Glycine max), we found that the number of transcripts in the leaves affected by herbivory by Japanese beetles (Popillia japonica) was greater when plants were grown under elevated CO2, elevated O3 and the combination of elevated CO2 plus elevated O3 than when grown in ambient atmosphere. The effect of herbivory on transcription diminished strongly with time (<1% of genes were affected by herbivory after 3 weeks), and elevated CO2 interacted more strongly with herbivory than elevated O3. The majority of transcripts affected by elevated O3 were related to antioxidant metabolism. Constitutive levels and the induction by herbivory of key transcripts associated with defence and hormone signalling were down-regulated under elevated CO2; 1-aminocyclopropane-1-carboxylate (ACC) synthase, lipoxygenase (LOX), allene oxide synthase (AOS), allene oxide cyclase (AOC), chalcone synthase (CHS), polyphenol oxidase (PPO) and cysteine protease inhibitor (CystPI) were lower in abundance compared with levels under ambient conditions. By suppressing the ability to mount an effective defence, elevated CO2 may decrease resistance of soybean to herbivory.
Collapse
Affiliation(s)
- Clare L Casteel
- Department of Plant Biology, and Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
42
|
Wang G, Gao Y, Yang L, Shi J. Identification and analysis of differentially expressed genes in differentiating xylem of Chinese fir (Cunninghamia lanceolata) by suppression subtractive hybridization. Genome 2008; 50:1141-55. [PMID: 18059541 DOI: 10.1139/g07-091] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Wood is an important raw material for global industries with rapidly increasing demand. To isolate the genes differentially expressed during xylogenesis of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.), we used a novel system. Forward and reverse subtracted cDNA libraries were constructed using the suppression subtractive hybridization method; for the forward library we used cDNA from the mutant Dugansha as the tester and cDNA from the wild-type clone Jurong 0 as the driver, and for the reverse library we used Jurong 0 cDNA as the tester and Dugansha cDNA as the driver. Transcriptional profiling was performed using a macroarray with 4 digoxigenin-labeled probes. We obtained 618 and 409 clones from the forward and the reverse subtracted library, respectively. A total of 405 unique expressed sequence tags (ESTs) were obtained. Forty percent of the ESTs exhibited homologies with proteins of known function and fell into 4 major classes: metabolism, cell wall biogenesis and remodeling, signal transduction, and stress. Real-time PCR was performed to confirm the results. The expression levels of 11 selected ESTs were consistent with both macroarray and real-time PCR results. The systematic analysis of genes involved in wood formation in Chinese fir provides valuable insights into the molecular mechanisms involved in xylem differentiation and is an important resource for forest research that can be directed toward understanding the genetic control of wood formation and future endeavors to modify wood and fiber properties for industrial use.
Collapse
Affiliation(s)
- Guifeng Wang
- National Forestry Bureau, Key Laboratory of Forest Genetics and Gene Engineering, and College of Forest Resources and Environment, Nanjing Forestry University, Longpan Road No. 159, Nanjing, Jiangsu Province, 210037, People's Republic of China
| | | | | | | |
Collapse
|
43
|
Ivanov R, Tiedemann J, Czihal A, Schallau A, Diep LH, Mock HP, Claus B, Tewes A, Bäumlein H. EFFECTOR OF TRANSCRIPTION2 is involved in xylem differentiation and includes a functional DNA single strand cutting domain. Dev Biol 2007; 313:93-106. [PMID: 17991462 DOI: 10.1016/j.ydbio.2007.09.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 09/26/2007] [Accepted: 09/26/2007] [Indexed: 12/30/2022]
Abstract
EFFECTORS OF TRANSCRIPTION2 (ET) are plant-specific regulatory proteins characterized by the presence of two to five C-terminal DNA- and Zn-binding repeats, and a highly conserved cysteine pattern. We describe the structural characterization of the three member Arabidopsis thaliana ET gene family and reveal some allelic sequence polymorphisms. A mutation analysis showed that AtET2 affects the expression of various KNAT genes involved in the maintenance of the undifferentiated state of cambial meristem cells. It also plays a role in the regulation of GA5 (gibberellin 3-beta-dioxygenase) and the cell-cycle-related GASA4. A correlation was established between AtET2 expression and the cellular differentiation state. AtET-GFP fusion proteins shuttle between the cytoplasm and nucleus, with the AtET2 product prevented from entering the nucleus in non-differentiating cells. Within the nucleus, AtET2 probably acts via a single strand cutting domain. A more general regulatory role for ET factors is proposed, governing cell differentiation in cambial meristems, a crucial process for the development of plant vascular tissues.
Collapse
Affiliation(s)
- Rumen Ivanov
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, D-06466 Gatersleben, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Do CT, Pollet B, Thévenin J, Sibout R, Denoue D, Barrière Y, Lapierre C, Jouanin L. Both caffeoyl Coenzyme A 3-O-methyltransferase 1 and caffeic acid O-methyltransferase 1 are involved in redundant functions for lignin, flavonoids and sinapoyl malate biosynthesis in Arabidopsis. PLANTA 2007; 226:1117-29. [PMID: 17594112 DOI: 10.1007/s00425-007-0558-3] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Accepted: 05/16/2007] [Indexed: 05/16/2023]
Abstract
Two methylation steps are necessary for the biosynthesis of monolignols, the lignin precursors. Caffeic acid O-methyltransferase (COMT) O-methylates at the C5 position of the phenolic ring. COMT is responsible for the biosynthesis of sinapyl alcohol, the precursor of syringyl lignin units. The O-methylation at the C3 position of the phenolic ring involves the Caffeoyl CoA 3-O-methyltransferase (CCoAOMT). The CCoAOMT 1 gene (At4g34050) is believed to encode the enzyme responsible for the first O-methylation in Arabidopsis thaliana. A CCoAOMT1 promoter-GUS fusion and immunolocalization experiments revealed that this gene is strongly and exclusively expressed in the vascular tissues of stems and roots. An Arabidopsis T-DNA null mutant named ccomt 1 was identified and characterised. The mutant stems are slightly smaller than wild-type stems in short-day growth conditions and has collapsed xylem elements. The lignin content of the stem is low and the S/G ratio is high mainly due to fewer G units. These results suggest that this O-methyltransferase is involved in G-unit biosynthesis but does not act alone to perform this step in monolignol biosynthesis. To determine which O-methyltransferase assists CCoAOMT 1, a comt 1 ccomt1 double mutant was generated and studied. The development of comt 1 ccomt1 is arrested at the plantlet stage in our growth conditions. Lignins of these plantlets are mainly composed of p-hydroxyphenyl units. Moreover, the double mutant does not synthesize sinapoyl malate, a soluble phenolic. These results suggest that CCoAOMT 1 and COMT 1 act together to methylate the C3 position of the phenolic ring of monolignols in Arabidopsis. In addition, they are both involved in the formation of sinapoyl malate and isorhamnetin.
Collapse
Affiliation(s)
- Cao-Trung Do
- Biologie Cellulaire, INRA, 78026, Versailles cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Pyo H, Demura T, Fukuda H. TERE; a novel cis-element responsible for a coordinated expression of genes related to programmed cell death and secondary wall formation during differentiation of tracheary elements. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 51:955-65. [PMID: 17683474 DOI: 10.1111/j.1365-313x.2007.03180.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The differentiation of water-conducting tracheary elements (TEs) is the result of the orchestrated construction of secondary wall structure, including lignification, and programmed cell death (PCD), including cellular autolysis. To understand the orchestrated regulation of differentiation of TEs, we investigated the regulatory mechanism of gene expression directing TE differentiation. Detailed loss-of-function and gain-of-function analyses of the ZCP4 (Zinniacysteine protease 4) promoter, which confers TE-specific expression, demonstrated that a novel 11-bp cis-element is necessary and sufficient for the immature TE-specific promoter activity. The 11-bp cis-element-like sequences were found in promoters of many Arabidopsis TE differentiation-related genes. A gain-of-function analysis with similar putative cis-elements from secondary wall formation or modification-related genes as well as PCD-related genes indicated that the cis-elements are also sufficient for TE-specific expression of genes. These results demonstrate that a common sequence, designated as the tracheary-element-regulating cis-element, confers TE-specific expression to both genes related to secondary wall formation or modification and PCD.
Collapse
Affiliation(s)
- Hyunjin Pyo
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
46
|
Ko JH, Yang SH, Park AH, Lerouxel O, Han KH. ANAC012, a member of the plant-specific NAC transcription factor family, negatively regulates xylary fiber development in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:1035-48. [PMID: 17565617 DOI: 10.1111/j.1365-313x.2007.03109.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Vascular plants evolved to have xylem that provides physical support for their growing body and serves as a conduit for water and nutrient transport. In a previous study, we used comparative-transcriptome analyses to select a group of genes that were upregulated in xylem of Arabidopsis plants undergoing secondary growth. Subsequent analyses identified a plant-specific NAC-domain transcription factor gene (ANAC012) as a candidate for genetic regulation of xylem formation. Promoter-GUS analyses showed that ANAC012 expression was preferentially localized in the (pro)cambium region of inflorescence stem and root. Using yeast transactivation analyses, we confirmed the function of ANAC012 as a transcriptional activator, and identified an activation domain in the C terminus. Ectopic overexpression of ANAC012 in Arabidopsis (35S::ANAC012 plants) dramatically suppressed secondary wall deposition in the xylary fiber and slightly increased cell-wall thickness in the xylem vessels. Cellulose compositions of the cell wall were decreased in the inflorescent stems and roots of 35S::ANAC012 plants, probably resulting from defects in xylary fiber formation. Our data suggest that ANAC012 may act as a negative regulator of secondary wall thickening in xylary fibers.
Collapse
Affiliation(s)
- Jae-Heung Ko
- Department of Forestry, 126 Natural Resources, Michigan State University, East Lansing, MI 48824-1222, USA
| | | | | | | | | |
Collapse
|
47
|
Demura T, Fukuda H. Transcriptional regulation in wood formation. TRENDS IN PLANT SCIENCE 2007; 12:64-70. [PMID: 17224301 DOI: 10.1016/j.tplants.2006.12.006] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 11/06/2006] [Accepted: 12/20/2006] [Indexed: 05/13/2023]
Abstract
Wood (i.e. xylem tissue) in trees is mainly composed of two types of cells, fibres and tracheary elements. Recent molecular studies of various trees, as well as the non-tree species Arabidopsis thaliana and Zinnia elegans, have revealed coordinated gene expression during differentiation of these cells in wood and the presence of several transcription factors that might govern the complex networks of transcriptional regulation. This article reviews recent findings concerning the regulation of genes by transcription factors involved in wood formation such as AUXIN RESPONSE FACTOR (ARF), CLASS III HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIPIII), KANADI (KAN), MYB and NAM/ATAF/CUC (NAC).
Collapse
Affiliation(s)
- Taku Demura
- RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan.
| | | |
Collapse
|
48
|
Abstract
Tracheary elements (TEs) are cells in the xylem that are highly specialized for transporting water and solutes up the plant. TEs undergo a very well-defined process of differentiation that involves specification, enlargement, patterned cell wall deposition, programmed cell death and cell wall removal. This process is coordinated such that adjacent TEs are joined together to form a continuous network. Expression studies on model systems as diverse as trees and cell cultures have contributed to providing a flood of candidate genes with potential roles in TE differentiation. Analysis of some of these genes has yielded important information on processes such as patterned secondary cell wall deposition. The current challenge is to continue this functional analysis and to use these data and build an integrated model of TE development.
Collapse
Affiliation(s)
- Simon Turner
- University of Manchester, Faculty of Life Sciences, Manchester, United Kingdom.
| | | | | |
Collapse
|
49
|
Baghdady A, Blervacq AS, Jouanin L, Grima-Pettenati J, Sivadon P, Hawkins S. Eucalyptus gunnii CCR and CAD2 promoters are active in lignifying cells during primary and secondary xylem formation in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2006; 44:674-83. [PMID: 17107813 DOI: 10.1016/j.plaphy.2006.10.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 10/10/2006] [Indexed: 05/02/2023]
Abstract
Cell-specific expression patterns of the Eucalyptus gunnii cinnamoyl coenzymeA reductase (EgCCR) and cinnamyl alcohol dehydrogenase (EgCAD2) promoters were analyzed by promoter-GUS histochemistry in the primary and secondary xylem tissues from floral stems and roots of Arabidopsis thaliana. Expression patterns indicated that the EgCCR and EgCAD2 genes were expressed in a coordinated manner in primary and secondary xylem tissues of the Arabidopsis floral stem and root. Both genes were expressed in all lignifying cells (vessel elements, xylem fibers and paratracheal parenchyma cells) of xylem tissues. The capacity for long-term monolignol production appeared to be related to the cell-specific developmental processes and biological roles of different cell types. Our results suggested that lignification of short-lived vessel elements was achieved by a two-step process involving (i) monolignol production by vessel elements prior to vessel programmed cell death and (ii) subsequent monolignol production by vessel-associated living paratracheal parenchyma cells following vessel element cell death. EgCCR and EgCAD2 gene expression patterns suggested that the process of xylem cell lignification was similar in both primary and secondary xylem tissues in Arabidopsis floral stems and roots.
Collapse
Affiliation(s)
- A Baghdady
- Stress abiotiques et différenciation des végétaux cultivés, UMR USTL-INRA 1281, université des sciences et technologies de Lille, bâtiment SN2, cité scientifique, 59655 Villeneuve-d'Ascq cedex, France
| | | | | | | | | | | |
Collapse
|
50
|
Ko JH, Beers EP, Han KH. Global comparative transcriptome analysis identifies gene network regulating secondary xylem development in Arabidopsis thaliana. Mol Genet Genomics 2006; 276:517-31. [PMID: 16969662 DOI: 10.1007/s00438-006-0157-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 08/03/2006] [Indexed: 12/20/2022]
Abstract
Our knowledge of the genetic control of wood formation (i.e., secondary growth) is limited. Here, we present a novel approach to unraveling the gene network regulating secondary xylem development in Arabidopsis, which incorporates complementary platforms of comparative-transcriptome analyses such as "digital northern" and "digital in situ" analysis. This approach effectively eliminated any genes that are expressed in either non-stem tissues/organs ("digital northern") or phloem and non-vascular regions ("digital in situ"), thereby identifying 52 genes that are upregulated only in the xylem cells of secondary growth tissues as "core xylem gene set". The proteins encoded by this gene set participate in signal transduction, transcriptional regulation, cell wall metabolism, and unknown functions. Five of the seven signal transduction-related genes represented in the core xylem gene set encode the essential components of ROP (Rho-related GTPase from plants) signaling cascade. Furthermore, the analysis of promoter sequences of the core xylem gene set identified a novel cis-regulatory element, ACAAAGAA. The functional significances of this gene set were verified by several independent experimental and bioinformatics methods.
Collapse
Affiliation(s)
- Jae-Heung Ko
- Department of Forestry, Michigan State University, East Lansing, MI 48824-1222, USA
| | | | | |
Collapse
|