1
|
Yan Y, Li C, Liu Z, Zhuang JJ, Kong JR, Yang ZK, Yu J, Shah Alam M, Ruan CC, Zhang HM, Xu JH. A new demethylase gene, OsDML4, is involved in high temperature-increased grain chalkiness in rice. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7273-7284. [PMID: 36073837 DOI: 10.1093/jxb/erac367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
High temperature (HT) can affect the accumulation of seed storage materials and cause adverse effects on the yield and quality of rice. DNA methylation plays an important role in plant growth and development. Here, we identified a new demethylase gene OsDML4 and discovered its function in cytosine demethylation to affect endosperm formation. Loss of function of OsDML4 induced chalky endosperm only under HT and dramatically reduced the transcription and accumulation of glutelins and 16 kDa prolamin. The expression of two transcription factor genes RISBZ1 and RPBF was significantly decreased in the osdml4 mutants, which caused adverse effects on the formation of protein bodies (PBs) with greatly decreased PB-II number, and incomplete and abnormally shaped PB-IIs. Whole-genome bisulfite sequencing analysis of seeds at 15 d after pollination revealed much higher global methylation levels of CG, CHG, and CHH contexts in the osdml4 mutants compared with the wild type. Moreover, the RISBZ1 promoter was hypermethylated but the RPBF promoter was almost unchanged under HT. No significant difference was detected between the wild type and osdml4 mutants under normal temperature. Our study demonstrated a novel OsDML4-mediated DNA methylation involved in the formation of chalky endosperm only under HT and provided a new perspective in regulating endosperm development and the accumulation of seed storage proteins in rice.
Collapse
Affiliation(s)
- Yan Yan
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chao Li
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Shandong 276034, China
| | - Zhen Liu
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Jun-Jie Zhuang
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Jia-Rui Kong
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Zhen-Kun Yang
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Jie Yu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Mohammad Shah Alam
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Cheng-Cheng Ruan
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Heng-Mu Zhang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jian-Hong Xu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Shandong 276034, China
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| |
Collapse
|
2
|
Wen N, Osorio CE, Brew-Appiah RAT, Mejías JH, Alam T, Kashyap S, Reinbothe S, Reinbothe C, Moehs CP, von Wettstein D, Rustgi S. Targeting Induced Local Lesions in the Wheat DEMETER and DRE2 Genes, Responsible for Transcriptional Derepression of Wheat Gluten Proteins in the Developing Endosperm. Front Nutr 2022; 9:847635. [PMID: 35308262 PMCID: PMC8928260 DOI: 10.3389/fnut.2022.847635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/28/2022] [Indexed: 01/05/2023] Open
Abstract
Wheat is a major source of energy and nutrition worldwide, but it is also a primary cause of frequent diet-induced health issues, specifically celiac disease, for which the only effective therapy so far is strict dietary abstinence from gluten-containing grains. Wheat gluten proteins are grouped into two major categories: high-molecular-weight glutenin subunits (HMWgs), vital for mixing and baking properties, and gliadins plus low-molecular-weight glutenin subunits (LMWgs) that contain the overwhelming majority of celiac-causing epitopes. We put forth a hypothesis that eliminating gliadins and LMWgs while retaining HMWgs might allow the development of reduced-immunogenicity wheat genotypes relevant to most gluten-sensitive individuals. This hypothesis stems from the knowledge that the molecular structures and regulatory mechanisms of the genes encoding the two groups of gluten proteins are quite different, and blocking one group's transcription, without affecting the other's, is possible. The genes for gliadins and LMWgs have to be de-methylated by 5-methylcytosine DNA glycosylase/lyase (DEMETER) and an iron-sulfur (Fe-S) cluster biogenesis enzyme (DRE2) early during endosperm development to permit their transcription. In this study, a TILLING (Targeting Induced Local Lesions IN Genomes) approach was undertaken to identify mutations in the homoeologous DEMETER (DME) and DRE2 genes in common and durum wheat. Lines with mutations in these genes were obtained that displayed reduced content of immunogenic gluten proteins while retaining essential baking properties. Although our data at first glance suggest new possibilities for treating celiac disease and are therefore of medical and agronomical interest, it also shows that inducing mutations in the DME and DRE2 genes analyzed here affected pollen viability and germination. Hence there is a need to develop other approaches in the future to overcome this undesired effect.
Collapse
Affiliation(s)
- Nuan Wen
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Claudia E. Osorio
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
- Instituto de Investigaciones Agropecuarias, INIA Carillanca, Temuco, Chile
| | - Rhoda A. T. Brew-Appiah
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Jaime H. Mejías
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
- Instituto de Investigaciones Agropecuarias, INIA Carillanca, Temuco, Chile
| | - Tariq Alam
- Department of Plant and Environmental Sciences, School of Health Research, Clemson University Pee Dee Research and Education Centre, Florence, SC, United States
| | - Samneet Kashyap
- Department of Plant and Environmental Sciences, School of Health Research, Clemson University Pee Dee Research and Education Centre, Florence, SC, United States
| | - Steffen Reinbothe
- Laboratoire de Génétique Moléculaire des Plantes, Université Grenoble-Alpes, BP53F, Grenoble, France
| | - Christiane Reinbothe
- Laboratoire de Génétique Moléculaire des Plantes, Université Grenoble-Alpes, BP53F, Grenoble, France
| | | | - Diter von Wettstein
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Sachin Rustgi
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
- Department of Plant and Environmental Sciences, School of Health Research, Clemson University Pee Dee Research and Education Centre, Florence, SC, United States
- *Correspondence: Sachin Rustgi
| |
Collapse
|
3
|
Bonnot T, Bancel E, Alvarez D, Davanture M, Boudet J, Pailloux M, Zivy M, Ravel C, Martre P. Grain subproteome responses to nitrogen and sulfur supply in diploid wheat Triticum monococcum ssp. monococcum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017. [PMID: 28628250 DOI: 10.1111/tpj.13615] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Wheat grain storage proteins (GSPs) make up most of the protein content of grain and determine flour end-use value. The synthesis and accumulation of GSPs depend highly on nitrogen (N) and sulfur (S) availability and it is important to understand the underlying control mechanisms. Here we studied how the einkorn (Triticum monococcum ssp. monococcum) grain proteome responds to different amounts of N and S supply during grain development. GSP composition at grain maturity was clearly impacted by nutrition treatments, due to early changes in the rate of GSP accumulation during grain filling. Large-scale analysis of the nuclear and albumin-globulin subproteomes during this key developmental phase revealed that the abundance of 203 proteins was significantly modified by the nutrition treatments. Our results showed that the grain proteome was highly affected by perturbation in the N:S balance. S supply strongly increased the rate of accumulation of S-rich α/β-gliadin and γ-gliadin, and the abundance of several other proteins involved in glutathione metabolism. Post-anthesis N supply resulted in the activation of amino acid metabolism at the expense of carbohydrate metabolism and the activation of transport processes including nucleocytoplasmic transit. Protein accumulation networks were analyzed. Several central actors in the response were identified whose variation in abundance was related to variation in the amounts of many other proteins and are thus potentially important for GSP accumulation. This detailed analysis of grain subproteomes provides information on how wheat GSP composition can possibly be controlled in low-level fertilization condition.
Collapse
Affiliation(s)
- Titouan Bonnot
- UMR GDEC, INRA, Université Clermont Auvergne, 5 chemin de Beaulieu, Clermont-Ferrand, 63039, France
| | - Emmanuelle Bancel
- UMR GDEC, INRA, Université Clermont Auvergne, 5 chemin de Beaulieu, Clermont-Ferrand, 63039, France
| | - David Alvarez
- UMR GDEC, INRA, Université Clermont Auvergne, 5 chemin de Beaulieu, Clermont-Ferrand, 63039, France
| | - Marlène Davanture
- UMR GQE, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, 91190, France
| | - Julie Boudet
- UMR GDEC, INRA, Université Clermont Auvergne, 5 chemin de Beaulieu, Clermont-Ferrand, 63039, France
| | - Marie Pailloux
- LIMOS, CNRS, Université Blaise Pascal, Aubière, 63173, France
| | - Michel Zivy
- UMR GQE, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, 91190, France
| | - Catherine Ravel
- UMR GDEC, INRA, Université Clermont Auvergne, 5 chemin de Beaulieu, Clermont-Ferrand, 63039, France
| | - Pierre Martre
- UMR GDEC, INRA, Université Clermont Auvergne, 5 chemin de Beaulieu, Clermont-Ferrand, 63039, France
| |
Collapse
|
4
|
Increase of DNA Methylation at the HvCKX2.1 Promoter by Terminal Drought Stress in Barley. EPIGENOMES 2017. [DOI: 10.3390/epigenomes1020009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
5
|
Zheng M, Meng Y, Yang C, Zhou Z, Wang Y, Chen B. Protein expression changes during cotton fiber elongation in response to drought stress and recovery. Proteomics 2015; 14:1776-95. [PMID: 24889071 DOI: 10.1002/pmic.201300123] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 04/17/2014] [Accepted: 05/20/2014] [Indexed: 11/06/2022]
Abstract
An investigation to better understand the molecular mechanism of cotton (Gossypium hirsutum L.) fiber elongation in response to drought stress and recovery was conducted using a comparative proteomics analysis. Cotton plants (cv. NuCOTN 33B) were subjected to water deprivation for 10 days followed by a recovery period (with watering) of 5 days. The temporal changes in total proteins in cotton fibers were examined using 2DE. The results revealed that 163 proteins are significantly drought responsive. MS analysis led to the identification of 132 differentially expressed proteins that include some known as well as some novel drought-responsive proteins. These drought responsive fiber proteins in NuCOTN 33B are associated with a variety of cellular functions, i.e. signal transduction, protein processing, redox homeostasis, cell wall modification, metabolisms of carbon, energy, lipid, lignin, and flavonoid. The results suggest that the enhancement of the perception of drought stress, a new balance of the metabolism of the biosynthesis of cell wall components and cytoskeleton homeostasis plays an important role in the response of cotton fibers to drought stress. Overall, the current study provides an overview of the molecular mechanism of drought response in cotton fiber cells.
Collapse
Affiliation(s)
- Mi Zheng
- College of Agriculture, Nanjing Agricultural University, Nanjing, P. R. China; State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, P. R. China
| | | | | | | | | | | |
Collapse
|
6
|
Ravel C, Fiquet S, Boudet J, Dardevet M, Vincent J, Merlino M, Michard R, Martre P. Conserved cis-regulatory modules in promoters of genes encoding wheat high-molecular-weight glutenin subunits. FRONTIERS IN PLANT SCIENCE 2014; 5:621. [PMID: 25429295 PMCID: PMC4228979 DOI: 10.3389/fpls.2014.00621] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/21/2014] [Indexed: 05/19/2023]
Abstract
The concentration and composition of the gliadin and glutenin seed storage proteins (SSPs) in wheat flour are the most important determinants of its end-use value. In cereals, the synthesis of SSPs is predominantly regulated at the transcriptional level by a complex network involving at least five cis-elements in gene promoters. The high-molecular-weight glutenin subunits (HMW-GS) are encoded by two tightly linked genes located on the long arms of group 1 chromosomes. Here, we sequenced and annotated the HMW-GS gene promoters of 22 electrophoretic wheat alleles to identify putative cis-regulatory motifs. We focused on 24 motifs known to be involved in SSP gene regulation. Most of them were identified in at least one HMW-GS gene promoter sequence. A common regulatory framework was observed in all the HMW-GS gene promoters, as they shared conserved cis-regulatory modules (CCRMs) including all the five motifs known to regulate the transcription of SSP genes. This common regulatory framework comprises a composite box made of the GATA motifs and GCN4-like Motifs (GLMs) and was shown to be functional as the GLMs are able to bind a bZIP transcriptional factor SPA (Storage Protein Activator). In addition to this regulatory framework, each HMW-GS gene promoter had additional motifs organized differently. The promoters of most highly expressed x-type HMW-GS genes contain an additional box predicted to bind R2R3-MYB transcriptional factors. However, the differences in annotation between promoter alleles could not be related to their level of expression. In summary, we identified a common modular organization of HMW-GS gene promoters but the lack of correlation between the cis-motifs of each HMW-GS gene promoter and their level of expression suggests that other cis-elements or other mechanisms regulate HMW-GS gene expression.
Collapse
Affiliation(s)
- Catherine Ravel
- Institut National de la Recherche Agronomique, UMR1095, Genetics, Diversity and Ecophysiology of Cereals Clermont-Ferrand, France ; UMR1095, Genetics, Diversity and Ecophysiology of Cereals, Department of Biology, Blaise Pascal University Aubière, France
| | - Samuel Fiquet
- Institut National de la Recherche Agronomique, UMR1095, Genetics, Diversity and Ecophysiology of Cereals Clermont-Ferrand, France ; UMR1095, Genetics, Diversity and Ecophysiology of Cereals, Department of Biology, Blaise Pascal University Aubière, France
| | - Julie Boudet
- Institut National de la Recherche Agronomique, UMR1095, Genetics, Diversity and Ecophysiology of Cereals Clermont-Ferrand, France ; UMR1095, Genetics, Diversity and Ecophysiology of Cereals, Department of Biology, Blaise Pascal University Aubière, France
| | - Mireille Dardevet
- Institut National de la Recherche Agronomique, UMR1095, Genetics, Diversity and Ecophysiology of Cereals Clermont-Ferrand, France ; UMR1095, Genetics, Diversity and Ecophysiology of Cereals, Department of Biology, Blaise Pascal University Aubière, France
| | - Jonathan Vincent
- Institut National de la Recherche Agronomique, UMR1095, Genetics, Diversity and Ecophysiology of Cereals Clermont-Ferrand, France ; UMR1095, Genetics, Diversity and Ecophysiology of Cereals, Department of Biology, Blaise Pascal University Aubière, France
| | - Marielle Merlino
- Institut National de la Recherche Agronomique, UMR1095, Genetics, Diversity and Ecophysiology of Cereals Clermont-Ferrand, France ; UMR1095, Genetics, Diversity and Ecophysiology of Cereals, Department of Biology, Blaise Pascal University Aubière, France
| | - Robin Michard
- Institut National de la Recherche Agronomique, UMR1095, Genetics, Diversity and Ecophysiology of Cereals Clermont-Ferrand, France ; UMR1095, Genetics, Diversity and Ecophysiology of Cereals, Department of Biology, Blaise Pascal University Aubière, France
| | - Pierre Martre
- Institut National de la Recherche Agronomique, UMR1095, Genetics, Diversity and Ecophysiology of Cereals Clermont-Ferrand, France ; UMR1095, Genetics, Diversity and Ecophysiology of Cereals, Department of Biology, Blaise Pascal University Aubière, France
| |
Collapse
|
7
|
Transcriptome comparative profiling of barley eibi1 mutant reveals pleiotropic effects of HvABCG31 gene on cuticle biogenesis and stress responsive pathways. Int J Mol Sci 2013; 14:20478-91. [PMID: 24129180 PMCID: PMC3821626 DOI: 10.3390/ijms141020478] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 09/26/2013] [Accepted: 09/26/2013] [Indexed: 01/03/2023] Open
Abstract
Wild barley eibi1 mutant with HvABCG31 gene mutation has low capacity to retain leaf water, a phenotype associated with reduced cutin deposition and a thin cuticle. To better understand how such a mutant plant survives, we performed a genome-wide gene expression analysis. The leaf transcriptomes between the near-isogenic lines eibi1 and the wild type were compared using the 22-k Barley1 Affymetrix microarray. We found that the pleiotropic effect of the single gene HvABCG31 mutation was linked to the co-regulation of metabolic processes and stress-related system. The cuticle development involved cytochrome P450 family members and fatty acid metabolism pathways were significantly up-regulated by the HvABCG31 mutation, which might be anticipated to reduce the levels of cutin monomers or wax and display conspicuous cuticle defects. The candidate genes for responses to stress were induced by eibi1 mutant through activating the jasmonate pathway. The down-regulation of co-expressed enzyme genes responsible for DNA methylation and histone deacetylation also suggested that HvABCG31 mutation may affect the epigenetic regulation for barley development. Comparison of transcriptomic profiling of barley under biotic and abiotic stresses revealed that the functions of HvABCG31 gene to high-water loss rate might be different from other osmotic stresses of gene mutations in barley. The transcriptional profiling of the HvABCG31 mutation provided candidate genes for further investigation of the physiological and developmental changes caused by the mutant.
Collapse
|
8
|
Joel AJ. Epigenetic responses to drought stress in rice (Oryza sativa L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2013; 19:379-87. [PMID: 24431506 PMCID: PMC3715639 DOI: 10.1007/s12298-013-0176-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cytosine methylation polymorphism plays a key role in gene regulation, mainly in expression of genes in crop plants. The differential expression of cytosine methylation over drought stress response was analyzed in rice using drought susceptible but agronomically superior lines IR 20 and CO 43, and drought tolerant genotypes PL and PMK 3 and their F1 hybrids. The parents and hybrids were subjected to two moisture regimes viz., one under drought condition and another under control condition. The cytosine methylation polymorphism in genomic DNA was quantified under both the conditions at the reproductive stage of the plant using the Methylation Sensitive Amplified Polymorphism (MSAP) technique devised by Xiong et al. (261:439-446, 1999). The results depicted that under drought condition, hyper-methylation was predominant in the drought susceptible genotypes while drought tolerant genotypes presented hypo-methylation behavior. While imposing drought, spikelet sterility per cent was positively correlated to percentage of methylation whereas, panicle length, number of seed per panicle, panicle weight, 100 seed weight, and yield/plant were negatively correlated indicating the role of epigenetic regulation in yield attributing traits in response to drought. Thus, methylation can be considered as an important epigenetic regulatory mechanism in rice plants to adapt drought situation. From this study, we speculate that the hyper- methylation may be an indicator of drought susceptibility and the hypo-methylation for drought tolerance and this methylation polymorphism can be effectively used in drought screening program.
Collapse
Affiliation(s)
- A. John Joel
- />Department of Plant Genetic Resources, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, 641 003 India
| |
Collapse
|
9
|
Pang J, Dong M, Li N, Zhao Y, Liu B. Functional characterization of a rice de novo DNA methyltransferase, OsDRM2, expressed in Escherichia coli and yeast. Biochem Biophys Res Commun 2013; 432:157-62. [PMID: 23357425 DOI: 10.1016/j.bbrc.2013.01.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 01/17/2013] [Indexed: 12/12/2022]
Abstract
DNA methylation of cytosine nucleotides is an important epigenetic modification that occurs in most eukaryotic organisms and is established and maintained by various DNA methyltransferases together with their co-factors. There are two major categories of DNA methyltransferases: de novo and maintenance. Here, we report the isolation and functional characterization of a de novo methyltransferase, named OsDRM2, from rice (Oryza sativa L.). The full-length coding region of OsDRM2 was cloned and transformed into Escherichia coli and Saccharomyces cerevisiae. Both of these organisms expressed the OsDRM2 protein, which exhibited stochastic de novo methylation activity in vitro at CG, CHG, and CHH di- and tri-nucleotide patterns. Two lines of evidence demonstrated the de novo activity of OsDRM2: (1) a 5'-CCGG-3' containing DNA fragment that had been pre-treated with OsDRM2 protein expressed in E. coli was protected from digestion by the CG-methylation-sensitive isoschizomer HpaII; (2) methylation-sensitive amplified polymorphism (MSAP) analysis of S. cerevisiae genomic DNA from transformants that had been introduced with OsDRM2 revealed CG and CHG methylation levels of 3.92-9.12%, and 2.88-6.93%, respectively, whereas the mock control S. cerevisiae DNA did not exhibit cytosine methylation. These results were further supported by bisulfite sequencing of the 18S rRNA and EAF5 genes of the transformed S. cerevisiae, which exhibited different DNA methylation patterns, which were observed in the genomic DNA. Our findings establish that OsDRM2 is an active de novo DNA methyltransferase gene with conserved activity in both prokaryotic and eukaryotic non-host species.
Collapse
Affiliation(s)
- Jinsong Pang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, PR China.
| | | | | | | | | |
Collapse
|
10
|
Li YJ, Zhang XY, Wang FX, Yang CL, Liu F, Xia GX, Sun J. A comparative proteomic analysis provides insights into pigment biosynthesis in brown color fiber. J Proteomics 2013; 78:374-88. [DOI: 10.1016/j.jprot.2012.10.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 09/20/2012] [Accepted: 10/06/2012] [Indexed: 01/13/2023]
|
11
|
Structural genes of wheat and barley 5-methylcytosine DNA glycosylases and their potential applications for human health. Proc Natl Acad Sci U S A 2012. [PMID: 23184965 DOI: 10.1073/pnas.1217927109] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Wheat supplies about 20% of the total food calories consumed worldwide and is a national staple in many countries. Besides being a key source of plant proteins, it is also a major cause of many diet-induced health issues, especially celiac disease. The only effective treatment for this disease is a total gluten-free diet. The present report describes an effort to develop a natural dietary therapy for this disorder by transcriptional suppression of wheat DEMETER (DME) homeologs using RNA interference. DME encodes a 5-methylcytosine DNA glycosylase responsible for transcriptional derepression of gliadins and low-molecular-weight glutenins (LMWgs) by active demethylation of their promoters in the wheat endosperm. Previous research has demonstrated these proteins to be the major source of immunogenic epitopes. In this research, barley and wheat DME genes were cloned and localized on the syntenous chromosomes. Nucleotide diversity among DME homeologs was studied and used for their virtual transcript profiling. Functional conservation of DME enzyme was confirmed by comparing the motif and domain structure within and across the plant kingdom. Presence and absence of CpG islands in prolamin gene sequences was studied as a hallmark of hypo- and hypermethylation, respectively. Finally the epigenetic influence of DME silencing on accumulation of LMWgs and gliadins was studied using 20 transformants expressing hairpin RNA in their endosperm. These transformants showed up to 85.6% suppression in DME transcript abundance and up to 76.4% reduction in the amount of immunogenic prolamins, demonstrating the possibility of developing wheat varieties compatible for the celiac patients.
Collapse
|
12
|
Kim DS, Lee KJ, Yim WC, Kim JB, Ha BK, Kim SH, Kang SY. Transcriptional network analysis of the tryptophan-accumulating rice mutant during grain filling. Mol Genet Genomics 2012; 287:699-709. [PMID: 22836167 DOI: 10.1007/s00438-012-0712-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 07/14/2012] [Indexed: 01/03/2023]
Abstract
In a previous study, we selected a high tryptophan (Trp)-accumulating rice (Oryza sativa L.) mutant line by in vitro mutagenesis using gamma rays. To obtain detailed information about the Trp biosynthetic pathway during the grain-filling in rice, we investigated the gene expression profiles in the wild-type (cv. Dongan) and the high-level Trp-accumulating mutant line (MRVII-33) at five different grain-filling stages using microarray analysis. The mutant line showed approximately 6.3-fold higher Trp content and 2.3-fold higher amino acids compared with the original cultivar at the final stage (stage V). The intensity of gene expression was analyzed and compared between the wild-type and mutant line at each of the five grain-filling stages using the Rice 4 × 44K oligo DNA microarray. Among the five stages, stage III showed the highest gene expression changes for both up- and down-regulated genes. Among the Trp biosynthesis-related genes, trpG showed high expression in the mutant line during stages I to IV and trpE showed higher at stage III. Gene clustering was performed based on the genes of KEGG's amino acid metabolism, and a total of 276 genes related to amino acid metabolism were placed into three clusters. The functional annotation enrichment analysis of the genes classified into the three clusters was also conducted using ClueGO. It was found that cluster 3 uniquely included biological processes related to aromatic amino acid metabolism. These results suggest that gene analysis based on microarray data is useful for elucidating the biological mechanisms of Trp accumulation in high Trp-accumulating mutants at each of the grain-filling stages.
Collapse
Affiliation(s)
- Dong Sub Kim
- Radiation Research Center for Bio-technology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong, Jeongeup, Jeonbuk 580-185, Korea.
| | | | | | | | | | | | | |
Collapse
|
13
|
Moritoh S, Eun CH, Ono A, Asao H, Okano Y, Yamaguchi K, Shimatani Z, Koizumi A, Terada R. Targeted disruption of an orthologue of DOMAINS REARRANGED METHYLASE 2, OsDRM2, impairs the growth of rice plants by abnormal DNA methylation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:85-98. [PMID: 22380881 DOI: 10.1111/j.1365-313x.2012.04974.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Recent methylome analyses of the entire Arabidopsis thaliana genome using various mutants have provided detailed information about the DNA methylation pattern and its function. However, information about DNA methylation in other plants is limited, partly because of the lack of mutants. To study DNA methylation in rice (Oryza sativa) we applied homologous recombination-mediated gene targeting to generate targeted disruptants of OsDRM2, a rice orthologue of DOMAINS REARRANGED METHYLASE 1 and 2 (DRM1/2), which encode DNA methyltransferases responsible for de novo and non-CG methylation in Arabidopsis. Whereas Arabidopsis drm1 drm2 double mutants showed no morphological alterations, targeted disruptants of rice OsDRM2 displayed pleiotropic developmental phenotypes in both vegetative and reproductive stages, including growth defects, semi-dwarfed stature, reductions in tiller number, delayed heading or no heading, abnormal panicle and spikelet morphology, and complete sterility. In these osdrm2 disruptants, a 13.9% decrease in 5-methylcytosine was observed by HPLC analysis. The CG and non-CG methylation levels were reduced in RIRE7/CRR1 retrotransposons, and in 5S rDNA repeats. Associated transcriptional activation was detected in RIRE7/CRR1. Furthermore, de novo methylation by an RNA-directed DNA methylation (RdDM) process involving transgene-derived exogenous small interfering RNA (siRNA) was deficient in osdrm2-disrupted cells. Impaired growth and abnormal DNA methylation of osdrm2 disruptants were restored by the complementation of wild-type OsDRM2 cDNA. Our results suggest that OsDRM2 is responsible for de novo, CG and non-CG methylation in rice genomic sequences, and that DNA methylation regulated by OsDRM2 is essential for proper rice development in both vegetative and reproductive stages.
Collapse
Affiliation(s)
- Satoru Moritoh
- National Institute for Basic Biology, Okazaki 444-8585, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Cui K, He CY, Zhang JG, Duan AG, Zeng YF. Temporal and Spatial Profiling of Internode Elongation-Associated Protein Expression in Rapidly Growing Culms of Bamboo. J Proteome Res 2012; 11:2492-507. [DOI: 10.1021/pr2011878] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kai Cui
- State Key
Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, People’s
Republic of China
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, 650224, People’s
Republic of China
| | - Cai-yun He
- State Key
Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, People’s
Republic of China
| | - Jian-guo Zhang
- State Key
Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, People’s
Republic of China
| | - Ai-guo Duan
- State Key
Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, People’s
Republic of China
| | - Yan-fei Zeng
- State Key
Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, People’s
Republic of China
| |
Collapse
|
15
|
Christensen U, Scheller HV. Regulation of (1,3;1,4)-β-d-glucan synthesis in developing endosperm of barley lys mutants. J Cereal Sci 2012. [DOI: 10.1016/j.jcs.2011.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Pajares MA, Markham GD. Methionine adenosyltransferase (s-adenosylmethionine synthetase). ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 78:449-521. [PMID: 22220481 DOI: 10.1002/9781118105771.ch11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- María A Pajares
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid Spain
| | | |
Collapse
|
17
|
Worch S, Rajesh K, Harshavardhan VT, Pietsch C, Korzun V, Kuntze L, Börner A, Wobus U, Röder MS, Sreenivasulu N. Haplotyping, linkage mapping and expression analysis of barley genes regulated by terminal drought stress influencing seed quality. BMC PLANT BIOLOGY 2011; 11:1. [PMID: 21205309 PMCID: PMC3025944 DOI: 10.1186/1471-2229-11-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 01/04/2011] [Indexed: 05/05/2023]
Abstract
BACKGROUND The increasingly narrow genetic background characteristic of modern crop germplasm presents a challenge for the breeding of cultivars that require adaptation to the anticipated change in climate. Thus, high priority research aims at the identification of relevant allelic variation present both in the crop itself as well as in its progenitors. This study is based on the characterization of genetic variation in barley, with a view to enhancing its response to terminal drought stress. RESULTS The expression patterns of drought regulated genes were monitored during plant ontogeny, mapped and the location of these genes was incorporated into a comprehensive barley SNP linkage map. Haplotypes within a set of 17 starch biosynthesis/degradation genes were defined, and a particularly high level of haplotype variation was uncovered in the genes encoding sucrose synthase (types I and II) and starch synthase. The ability of a panel of 50 barley accessions to maintain grain starch content under terminal drought conditions was explored. CONCLUSION The linkage/expression map is an informative resource in the context of characterizing the response of barley to drought stress. The high level of haplotype variation among starch biosynthesis/degradation genes in the progenitors of cultivated barley shows that domestication and breeding have greatly eroded their allelic diversity in current elite cultivars. Prospective association analysis based on core drought-regulated genes may simplify the process of identifying favourable alleles, and help to understand the genetic basis of the response to terminal drought.
Collapse
Affiliation(s)
- Sebastian Worch
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr.3, 06466 Gatersleben, Germany
| | - Kalladan Rajesh
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr.3, 06466 Gatersleben, Germany
| | - Vokkaliga T Harshavardhan
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr.3, 06466 Gatersleben, Germany
| | - Christof Pietsch
- KWS LOCHOW GmbH, Ferdinand-von-Lochow-Str.5, 29303 Bergen, Germany
| | - Viktor Korzun
- KWS LOCHOW GmbH, Ferdinand-von-Lochow-Str.5, 29303 Bergen, Germany
| | - Lissy Kuntze
- Nordsaat Saatzucht GmbH, Böhnshauser Straße 1, 38895 Langenstein, Germany
| | - Andreas Börner
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr.3, 06466 Gatersleben, Germany
| | - Ulrich Wobus
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr.3, 06466 Gatersleben, Germany
| | - Marion S Röder
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr.3, 06466 Gatersleben, Germany
| | - Nese Sreenivasulu
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr.3, 06466 Gatersleben, Germany
| |
Collapse
|
18
|
Zhang M, Kimatu JN, Xu K, Liu B. DNA cytosine methylation in plant development. J Genet Genomics 2010; 37:1-12. [PMID: 20171573 DOI: 10.1016/s1673-8527(09)60020-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Revised: 11/15/2009] [Accepted: 11/30/2009] [Indexed: 10/19/2022]
Abstract
Cytosine bases of the nuclear genome in higher plants are often extensively methylated. Cytosine methylation has been implicated in the silencing of both transposable elements (TEs) and endogenous genes, and loss of methylation may have severe functional consequences. The recent methylation profiling of the entire Arabidopsis genome has provided novel insights into the extent and pattern of cytosine methylation and its relationships with gene activity. In addition, the fresh studies also revealed the more dynamic nature of this epigenetic modification across plant development than previously believed. Cytosine methylation of gene promoter regions usually inhibits transcription, but methylation in coding regions (gene-body methylation) does not generally affect gene expression. Active demethylation (though probably act synergistically with passive loss of methylation) of promoters by the 5-methyl cytosine DNA glycosylase or DEMETER (DME) is required for the uni-parental expression of imprinting genes in endosperm, which is essential for seed viability. The opinion that cytosine methylation is indispensible for normal plant development has been reinforced by using single or combinations of diverse loss-of-function mutants for DNA methyltransferases, DNA glycosylases, components involved in siRNA biogenesis and chromatin remodeling factors. Patterns of cytosine methylation in plants are usually faithfully maintained across organismal generations by the concerted action of epigenetic inheritance and progressive correction of strayed patterns. However, some variant methylation patterns may escape from being corrected and hence produce novel epialleles in the affected somatic cells. This, coupled with the unique property of plants to produce germline cells late during development, may enable the newly acquired epialleles to be inherited to future generations, which if visible to selection may contribute to adaptation and evolution.
Collapse
Affiliation(s)
- Meishan Zhang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | | | | | | |
Collapse
|
19
|
Yemets AI, Bayer OA, Radchuk VV, Blume YB. Agrobacterium-mediated transformation of flax with a mutant tubulin gene responsible for resistance to dinitroaniline herbicides. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409100093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Huang Y, Chen L, Wang L, Vijayan K, Phan S, Liu Z, Wan L, Ross A, Xiang D, Datla R, Pan Y, Zou J. Probing the endosperm gene expression landscape in Brassica napus. BMC Genomics 2009; 10:256. [PMID: 19490642 PMCID: PMC2702316 DOI: 10.1186/1471-2164-10-256] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 06/02/2009] [Indexed: 12/24/2022] Open
Abstract
Background In species with exalbuminous seeds, the endosperm is eventually consumed and its space occupied by the embryo during seed development. However, the main constituent of the early developing seed is the liquid endosperm, and a significant portion of the carbon resources for the ensuing stages of seed development arrive at the embryo through the endosperm. In contrast to the extensive study of species with persistent endosperm, little is known about the global gene expression pattern in the endosperm of exalbuminous seed species such as crucifer oilseeds. Results We took a multiparallel approach that combines ESTs, protein profiling and microarray analyses to look into the gene expression landscape in the endosperm of the oilseed crop Brassica napus. An EST collection of over 30,000 entries allowed us to detect close to 10,000 unisequences expressed in the endosperm. A protein profile analysis of more than 800 proteins corroborated several signature pathways uncovered by abundant ESTs. Using microarray analyses, we identified genes that are differentially or highly expressed across all developmental stages. These complementary analyses provided insight on several prominent metabolic pathways in the endosperm. We also discovered that a transcription factor LEAFY COTYLEDON (LEC1) was highly expressed in the endosperm and that the regulatory cascade downstream of LEC1 operates in the endosperm. Conclusion The endosperm EST collection and the microarray dataset provide a basic genomic resource for dissecting metabolic and developmental events important for oilseed improvement. Our findings on the featured metabolic processes and the LEC1 regulatory cascade offer new angles for investigation on the integration of endosperm gene expression with embryo development and storage product deposition in seed development.
Collapse
Affiliation(s)
- Yi Huang
- Plant Biotechnology Institute, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Pan XL, Jiang QY, Pan QY, Wen XF, Shi YH, Wang YJ, Pan TY, Xie SG, Zhang GY, Wu SJ, Chai YF, Zhang CS, Wu ZX, Shen SH. Proteomic analysis of 'hybrid necrosis' in wheat (Triticum aestivum) leaves. FUNCTIONAL PLANT BIOLOGY : FPB 2009; 36:251-259. [PMID: 32688644 DOI: 10.1071/fp08281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 12/11/2008] [Indexed: 06/11/2023]
Abstract
Wheat hybrid necrosis has been genetically characterised for many years, but the specific gene(s) and the protein products involved in the processes remains unknown. In this study, protein expression in the base (B), mid (M) and tip (T) segments of the FL-2 leaves of a necrotic hybrid, PZF1 and its parents, Pan555 and Zheng891, was analysed and compared using a high throughput proteomic approach. Twenty-three protein spots, with significant variations in intensity across the necrotic leaf segments, were analysed by MALDI-TOF-MS, of which, 18 were matched to protein accessions in the NCBI database. Several of these proteins are enzymes involved in the methylation cycle, including AdoHcy hydrolase, AdoMet synthase 3 and methionine synthase 1; AdoHcy hydrolase was downregulated sharply in M and T, and AdoMet synthase 3 and methionine synthase 1 were upregulated gradually from M to T. This result suggests that methylation-associated processes, including epigenetic mechanisms, may play a role in the initiation and development of hybrid necrosis. Several energy cycle-associated proteins and cytoprotective proteins were also differentially expressed across the leaf segments, suggesting their direct association with or possible involvement in the necrotic processes. The significant imbalance of a heat-shock protein, a transposon protein and a RNA- and ssDNA-binding protein also makes these proteins potential molecular components in the necrotic processes.
Collapse
Affiliation(s)
- Xing Lai Pan
- Food Crop Science Department, Cotton Research Institute, Shanxi Agriculture Science Academy, Yuncheng, Shanxi 044000, PR China
| | - Qi Yan Jiang
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, PR China
| | - Qian Ying Pan
- Food Crop Science Department, Cotton Research Institute, Shanxi Agriculture Science Academy, Yuncheng, Shanxi 044000, PR China
| | - Xue Fei Wen
- Foreign Language College, Anhui University of Technology and Science, Wuhu, Anhui 241000, PR China
| | - Yin Hong Shi
- Food Crop Science Department, Cotton Research Institute, Shanxi Agriculture Science Academy, Yuncheng, Shanxi 044000, PR China
| | - Yong Jie Wang
- Food Crop Science Department, Cotton Research Institute, Shanxi Agriculture Science Academy, Yuncheng, Shanxi 044000, PR China
| | - Tian Yuan Pan
- Food Crop Science Department, Cotton Research Institute, Shanxi Agriculture Science Academy, Yuncheng, Shanxi 044000, PR China
| | - San Gang Xie
- Food Crop Science Department, Cotton Research Institute, Shanxi Agriculture Science Academy, Yuncheng, Shanxi 044000, PR China
| | - Gui Yun Zhang
- Food Crop Science Department, Cotton Research Institute, Shanxi Agriculture Science Academy, Yuncheng, Shanxi 044000, PR China
| | - Shen Jie Wu
- Food Crop Science Department, Cotton Research Institute, Shanxi Agriculture Science Academy, Yuncheng, Shanxi 044000, PR China
| | - Yong Feng Chai
- Food Crop Science Department, Cotton Research Institute, Shanxi Agriculture Science Academy, Yuncheng, Shanxi 044000, PR China
| | - Chang Sheng Zhang
- Food Crop Science Department, Cotton Research Institute, Shanxi Agriculture Science Academy, Yuncheng, Shanxi 044000, PR China
| | - Zong Xin Wu
- Food Crop Science Department, Cotton Research Institute, Shanxi Agriculture Science Academy, Yuncheng, Shanxi 044000, PR China
| | - Shi Hua Shen
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, PR China
| |
Collapse
|
22
|
Yang YW, Bian SM, Yao Y, Liu JY. Comparative Proteomic Analysis Provides New Insights into the Fiber Elongating Process in Cotton. J Proteome Res 2008; 7:4623-37. [DOI: 10.1021/pr800550q] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yi-Wei Yang
- Laboratory of Molecular Biology and MOE Laboratory of Protein Science, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, P. R. China
| | - Shao-Min Bian
- Laboratory of Molecular Biology and MOE Laboratory of Protein Science, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, P. R. China
| | - Yuan Yao
- Laboratory of Molecular Biology and MOE Laboratory of Protein Science, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, P. R. China
| | - Jin-Yuan Liu
- Laboratory of Molecular Biology and MOE Laboratory of Protein Science, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
23
|
Radchuk VV, Sreenivasulu N, Blume Y, Weschke W. Distinct tubulin genes are differentially expressed during barley grain development. PHYSIOLOGIA PLANTARUM 2007; 131:571-80. [PMID: 18251848 DOI: 10.1111/j.1399-3054.2007.00976.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Tubulins, as major components involved in the organization of microtubules, play an important role in plant development. We describe here the expression profiles of all known alpha-tubulin (TUA), beta-tubulin (TUB) and gamma-tubulin (TUG) genes of barley (Hordeum vulgare), involving eight newly identified TUB sequences, five established TUA genes and one TUG gene. Macroarray and Northern blot-based expression patterns in the pericarp, endosperm and embryo were obtained over the course of the development of the grain between anthesis and maturation. These revealed that the various tubulin genes differed in their levels of expression, and to some extent were tissue specific. Two expression peaks were detected in the developing endosperm. The first and more prominent peak, at 2 days after flowering, included expression of almost all the tubulin genes. These tubulins are thought to be involved in mitoses during the formation of the syncytial endosperm. The second, less pronounced but more extended, peak included only some of the tubulin genes (HvTUA3, HvTUB1 and HvTUG) and might be associated with the cell wall organization in aleurone and starchy endosperm. The HvTUA5 gene is expressed only in embryo of the developing grain and may be associated with shoot establishment. The expression profiles of the tubulin folding cofactors HvTFC A and HvTFC B as well as small G-protein HvArl2 genes were almost perfectly correlated with the global levels of tubulin mRNA, implying that they have a role in the control of the polymerization of alpha/beta-tubulin heterodimers.
Collapse
Affiliation(s)
- Volodymyr V Radchuk
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany.
| | | | | | | |
Collapse
|
24
|
Pavlopoulou A, Kossida S. Plant cytosine-5 DNA methyltransferases: Structure, function, and molecular evolution. Genomics 2007; 90:530-41. [PMID: 17689048 DOI: 10.1016/j.ygeno.2007.06.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 06/20/2007] [Accepted: 06/29/2007] [Indexed: 10/23/2022]
Abstract
A detailed analysis of the structure and function, along with evolutionary aspects, of the main plant cytosine-5 DNA methyltransferases (C5-MTases) is presented. The evolutionary relationships between the already known and four candidate plant C5-MTases identified in this work were investigated using the distance, maximum-parsimony, and maximum-likelihood approaches. The topologies of the trees were overall congruent: four monophyletic groups corresponding to the four plant C5-MTase families were clearly distinguished. In addition, sequence analyses of the plant C5-MTase target recognition domain sequences were performed and phylogenetic trees were reconstructed showing that there is good conservation among but not within the plant C5-MTase families. Furthermore, a conserved dipeptide that plays an important role in flipping the target base into the catalytic site of the C5-MTases was identified in all plant C5-MTases under study.
Collapse
Affiliation(s)
- Athanasia Pavlopoulou
- Biomedical Research Foundation of the Academy of Athens, Department of Biotechnology, Bioinformatics & Medical Informatics Team, Soranou Efesiou 4, 11527 Athens, Greece
| | | |
Collapse
|
25
|
Radchuk R, Radchuk V, Götz KP, Weichert H, Richter A, Emery RJN, Weschke W, Weber H. Ectopic expression of phosphoenolpyruvate carboxylase in Vicia narbonensis seeds: effects of improved nutrient status on seed maturation and transcriptional regulatory networks. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 51:819-39. [PMID: 17692079 DOI: 10.1111/j.1365-313x.2007.03196.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Seed maturation responds to endogenous and exogenous signals like nutrient status, energy and hormones. We recently showed that phosphoenolpyruvate carboxylase (PEPC) overexpression in Vicia narbonensis seeds alters seed metabolism and channels carbon into organic acids, resulting in greater seed storage capacity and increased protein content. Thus, these lines represent models with altered sink strength and improved nutrient status. Here we analyse seed developmental and metabolic parameters, and C/N partitioning in these seeds. Transgenic embryos take up more carbon and nitrogen. Changes in dry to FW ratio, seed fill duration and major seed components indicate altered seed development. Array-based gene expression analysis of embryos reveals upregulation of seed metabolism, especially during the transition phase and at late maturation, in terms of protein storage and processing, amino acid metabolism, primary metabolism and transport, energy and mitochondrial activity, transcriptional and translational activity, stress tolerance, photosynthesis, cell proliferation and elongation, signalling and hormone action and regulated protein degradation. Stimulated cell elongation is in accordance with upregulated signalling pathways related to gibberellic acid/brassinosteroids. We discuss that activated organic and amino acid production leads to a wide-range activation of nitrogen metabolism, including the machinery of storage protein synthesis, amino acid synthesis, protein processing and deposition, translational activity and the methylation cycle. We suggest that alpha-ketoglutarate (alpha-KG) and/or oxalacetate provide signals for coordinate upregulation of amino acid biosynthesis. Activation of stress tolerance genes indicates partial overlap between nutrient, stress and abscisic acid (ABA) signals, indicating a common interacting or regulatory mechanism between nutrients, stress and ABA. In conclusion, analysis of PEPC overexpressing seeds identified pathways responsive to metabolic and nutrient control on the transcriptional level and its underlying signalling mechanisms.
Collapse
Affiliation(s)
- Ruslana Radchuk
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), D-06466, Gatersleben, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Pereira LAR, Todorova M, Cai X, Makaroff CA, Emery RJN, Moffatt BA. Methyl recycling activities are co-ordinately regulated during plant development. JOURNAL OF EXPERIMENTAL BOTANY 2007; 58:1083-98. [PMID: 17272833 DOI: 10.1093/jxb/erl275] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A large number of compounds including lignin, phospholipids, pectin, DNA, mRNA, and proteins require methyl groups for their functionality. A detailed study of the expression and activities of two enzymes, adenosine kinase (ADK) and S-adenosylhomocysteine hydrolase (SAHH), which are both required for the maintenance and recycling of S-adenosylmethionine-dependent methylation in plants, was carried out. The abundance and tissue localization of ADK and SAHH transcripts and protein were monitored along with their enzyme activities in leaves, stems, buds, siliques, and roots of Arabidopsis. In all but roots and seed coats, the transcript abundance of ADK and SAHH fluctuated co-ordinately, matching changes in their protein and enzyme activities. To evaluate whether this expression pattern was associated with methyl recycling, the protein content and distribution of S-adenosylmethionine synthetase and phosphoethanolamine N-methyltransferase, a key methyltransferase involved in phospholipid synthesis, were investigated. These were found to accumulate in a pattern similar to ADK and SAHH. ADK and SAHH protein and transcript amounts were shown to fluctuate similarly in tissues accumulating lignin. Additionally, the amounts of ADK and SAHH mRNAs were also found at high levels in inflorescence meristems likely to support their higher rates of cell division. Thus, the results point to a co-ordinated and probably transcriptional regulation of these genes in most organs of Arabidopsis; SAHH abundance is distinctly higher in seeds and roots which suggests it may have a non-methyl-related role in these organs.
Collapse
Affiliation(s)
- L A R Pereira
- Department of Biology, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| | | | | | | | | | | |
Collapse
|
27
|
Washio K, Morikawa M. Common mechanisms regulating expression of rice aleurone genes that contribute to the primary response for gibberellin. ACTA ACUST UNITED AC 2006; 1759:478-90. [PMID: 17052766 DOI: 10.1016/j.bbaexp.2006.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 09/07/2006] [Accepted: 09/07/2006] [Indexed: 12/17/2022]
Abstract
During germination of cereal seeds, aleurone cells respond to gibberellins (GA) by synthesizing and secreting hydrolytic enzymes that mobilize the reserved nutrients. It has been shown that products of early GA response genes, like a transcription factor GAMyb, act as key molecules leading to this regulation. Pivotal roles of GAMyb on expression of hydrolase genes have been well documented, whereas regulation of GAMyb expression itself remains obscure. In order to understand virtual mechanisms of the GA-mediated expression of genes, it is important to know how GA control expression of early GA response genes. Using an aleurone transient expression system of rice (Oryza sativa L.), we examined GA responsive domains of early GA response genes in the aleurone, such as GAMyb and OsDof3. The upstream promoter could not confer GA response. Extensive analyses revealed the presence of enhancer-like activities in a large first intron. In Arabidopsis, intron enhancers have been identified in MADS-box homeotic genes, AGAMOUS (AG) and FLOWERING LOCUS C (FLC), in which large introns should not only confer proper gene expressions, but also associate with gene silencing by covalent modifications of both DNA and histone. These evidences prompt us to assign that chromatin-based control might be important for initial GA action. Based on this assumption, we have identified DNA methylation of the GAMyb locus in germinated rice seeds.
Collapse
Affiliation(s)
- Kenji Washio
- Group of Environmental Molecular Biology, Section of Environmental Bioscience, Faculty of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan.
| | | |
Collapse
|
28
|
Radchuk V, Borisjuk L, Radchuk R, Steinbiss HH, Rolletschek H, Broeders S, Wobus U. Jekyll encodes a novel protein involved in the sexual reproduction of barley. THE PLANT CELL 2006; 18:1652-66. [PMID: 16766690 PMCID: PMC1488922 DOI: 10.1105/tpc.106.041335] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 04/10/2006] [Accepted: 05/10/2006] [Indexed: 05/10/2023]
Abstract
Cereal seed development depends on the intimate interaction of filial and maternal tissues, ensuring nourishment of the new generation. The gene jekyll, which was identified in barley (Hordeum vulgare), is preferentially expressed in the nurse tissues. JEKYLL shares partial similarity with the scorpion Cn4 toxin and is toxic when ectopically expressed in Escherichia coli and tobacco (Nicotiana tabacum). In barley, jekyll is upregulated in cells destined for autolysis. The gene generates a gradient of expression in the nucellar projection, which mediates the maternal-filial interaction during seed filling. Downregulation of jekyll by the RNA interference technique in barley decelerates autolysis and cell differentiation within the nurse tissues. Flower development and seed filling are thereby extended, and the nucellar projection no longer functions as the main transport route for assimilates. A slowing down in the proliferation of endosperm nuclei and a severely impaired ability to accumulate starch in the endosperm leads to the formation of irregular and small-sized seeds at maturity. Overall, JEKYLL plays a decisive role in the differentiation of the nucellar projection and drives the programmed cell death necessary for its proper function. We further suggest that cell autolysis during the differentiation of the nucellar projection allows the optimal provision of basic nutrients for biosynthesis in endosperm and embryo.
Collapse
Affiliation(s)
- Volodymyr Radchuk
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| | | | | | | | | | | | | |
Collapse
|