1
|
Bonnet DMV, Tirot L, Grob S, Jullien PE. Methylome Response to Proteasome Inhibition by Pseudomonas syringae Virulence Factor Syringolin A. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:693-704. [PMID: 37414416 DOI: 10.1094/mpmi-06-23-0080-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
DNA methylation is an important epigenetic mark required for proper gene expression and silencing of transposable elements. DNA methylation patterns can be modified by environmental factors such as pathogen infection, in which modification of DNA methylation can be associated with plant resistance. To counter the plant defense pathways, pathogens produce effector molecules, several of which act as proteasome inhibitors. Here, we investigated the effect of proteasome inhibition by the bacterial virulence factor syringolin A (SylA) on genome-wide DNA methylation. We show that SylA treatment results in an increase of DNA methylation at centromeric and pericentromeric regions of Arabidopsis chromosomes. We identify several CHH differentially methylated regions (DMRs) that are enriched in the proximity of transcriptional start sites. SylA treatment does not result in significant changes in small RNA composition. However, significant changes in genome transcriptional activity can be observed, including a strong upregulation of resistance genes that are located on chromosomal arms. We hypothesize that DNA methylation changes could be linked to the upregulation of some atypical members of the de novo DNA methylation pathway, namely AGO3, AGO9, and DRM1. Our data suggests that modification of genome-wide DNA methylation resulting from an inhibition of the proteasome by bacterial effectors could be part of an epi-genomic arms race against pathogens. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
| | - Louis Tirot
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Stefan Grob
- Department of Plant and Microbial Biology, University of Zurich and Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
2
|
Sun D, Zhang X, Zhang Q, Ji X, Jia Y, Wang H, Niu L, Zhang Y. Comparative transcriptome profiling uncovers a Lilium regale NAC transcription factor, LrNAC35, contributing to defence response against cucumber mosaic virus and tobacco mosaic virus. MOLECULAR PLANT PATHOLOGY 2019; 20:1662-1681. [PMID: 31560826 PMCID: PMC6859495 DOI: 10.1111/mpp.12868] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cucumber mosaic virus (CMV) is a highly prevalent viral pathogen causing substantial damage to the bulb and cut-flower production of Lilium spp. Here, we performed an Illumina RNA sequencing (RNA-Seq) study on the leaf tissues of a virus-resistant species Lilium regale inoculated with mock control and CMV. A total of 1346 differentially expressed genes (DEGs) were identified in the leaves of L. regale upon CMV inoculation, which contained 34 up-regulated and 40 down-regulated DEGs that encode putative transcription factors (TFs). One up-regulated TF, LrNAC35, belonging to the NAM/ATAF/CUC (NAC) superfamily, was selected for further functional characterization. Aside from CMV, lily mottle virus and lily symptomless virus infections provoked a striking increase in LrNAC35 transcripts in both resistant and susceptible Lilium species. The treatments with low temperature and several stress-related hormones activated LrNAC35 expression, contrary to its reduced expression under salt stress. Ectopic overexpression of LrNAC35 in petunia (Petunia hybrida) resulted in reduced susceptibility to CMV and Tobacco mosaic virus infections, and enhanced accumulation of lignin in the cell walls. Four lignin biosynthetic genes, including PhC4H, Ph4CL, PhHCT and PhCCR, were found to be up-regulated in CMV-infected petunia lines overexpressing LrNAC35. In vivo promoter-binding tests showed that LrNAC35 specifically regulated the expression of Ph4CL. Taken together, our results suggest a positive role of transcriptome-derived LrNAC35 in transcriptional modulation of host defence against viral attack.
Collapse
Affiliation(s)
- Daoyang Sun
- College of Landscape Architecture and ArtsNorthwest A&F UniversityYangling712100China
| | - Xinguo Zhang
- College of Landscape Architecture and ArtsNorthwest A&F UniversityYangling712100China
| | - Qingyu Zhang
- College of Landscape Architecture and ArtsNorthwest A&F UniversityYangling712100China
| | - Xiaotong Ji
- College of Landscape Architecture and ArtsNorthwest A&F UniversityYangling712100China
| | - Yong Jia
- State Agricultural Biotechnology Centre, School of Veterinary and Life SciencesMurdoch UniversityPerth6150Australia
| | - Hong Wang
- Institute of Pomology/Jiangsu Key Laboratory for Horticultural Crop Genetic ImprovementJiangsu Academy of Agricultural SciencesNanjing210014China
| | - Lixin Niu
- College of Landscape Architecture and ArtsNorthwest A&F UniversityYangling712100China
| | - Yanlong Zhang
- College of Landscape Architecture and ArtsNorthwest A&F UniversityYangling712100China
| |
Collapse
|
3
|
Grosse‐Holz F, Madeira L, Zahid MA, Songer M, Kourelis J, Fesenko M, Ninck S, Kaschani F, Kaiser M, van der Hoorn RA. Three unrelated protease inhibitors enhance accumulation of pharmaceutical recombinant proteins in Nicotiana benthamiana. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1797-1810. [PMID: 29509983 PMCID: PMC6131417 DOI: 10.1111/pbi.12916] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/25/2018] [Accepted: 02/28/2018] [Indexed: 05/21/2023]
Abstract
Agroinfiltrated Nicotiana benthamiana is a flexible and scalable platform for recombinant protein (RP) production, but its great potential is hampered by plant proteases that degrade RPs. Here, we tested 29 candidate protease inhibitors (PIs) in agroinfiltrated N. benthamiana leaves for enhancing accumulation of three unrelated RPs: glycoenzyme α-Galactosidase; glycohormone erythropoietin (EPO); and IgG antibody VRC01. Of the previously described PIs enhancing RP accumulation, we found only cystatin SlCYS8 to be effective. We identified three additional new, unrelated PIs that enhance RP accumulation: N. benthamiana NbPR4, NbPot1 and human HsTIMP, which have been reported to inhibit cysteine, serine and metalloproteases, respectively. Remarkably, accumulation of all three RPs is enhanced by each PI similarly, suggesting that the mechanism of degradation of unrelated RPs follows a common pathway. Inhibitory functions HsTIMP and SlCYS8 are required to enhance RP accumulation, suggesting that their target proteases may degrade RPs. Different PIs additively enhance RP accumulation, but the effect of each PI is dose-dependent. Activity-based protein profiling (ABPP) revealed that the activities of papain-like Cys proteases (PLCPs), Ser hydrolases (SHs) or vacuolar processing enzymes (VPEs) in leaves are unaffected upon expression of the new PIs, whereas SlCYS8 expression specifically suppresses PLCP activity only. Quantitative proteomics indicates that the three new PIs affect agroinfiltrated tissues similarly and that they all increase immune responses. NbPR4, NbPot1 and HsTIMP can be used to study plant proteases and improve RP accumulation in molecular farming.
Collapse
Affiliation(s)
| | - Luisa Madeira
- Plant Chemetics LaboratoryDepartment of Plant SciencesUniversity of OxfordOxfordUK
| | - Muhammad Awais Zahid
- Plant Chemetics LaboratoryDepartment of Plant SciencesUniversity of OxfordOxfordUK
| | - Molly Songer
- Plant Chemetics LaboratoryDepartment of Plant SciencesUniversity of OxfordOxfordUK
| | - Jiorgos Kourelis
- Plant Chemetics LaboratoryDepartment of Plant SciencesUniversity of OxfordOxfordUK
| | - Mary Fesenko
- Plant Chemetics LaboratoryDepartment of Plant SciencesUniversity of OxfordOxfordUK
| | - Sabrina Ninck
- Chemische BiologieZentrum für Medizinische BiotechnologieFakultät für BiologieUniversität Duisburg‐EssenUniversitätsstrEssenGermany
| | - Farnusch Kaschani
- Chemische BiologieZentrum für Medizinische BiotechnologieFakultät für BiologieUniversität Duisburg‐EssenUniversitätsstrEssenGermany
| | - Markus Kaiser
- Chemische BiologieZentrum für Medizinische BiotechnologieFakultät für BiologieUniversität Duisburg‐EssenUniversitätsstrEssenGermany
| | | |
Collapse
|
4
|
Eroglu S, Aksoy E. Genome-wide analysis of gene expression profiling revealed that COP9 signalosome is essential for correct expression of Fe homeostasis genes in Arabidopsis. Biometals 2017; 30:685-698. [PMID: 28744713 DOI: 10.1007/s10534-017-0036-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/15/2017] [Indexed: 10/19/2022]
Abstract
In plant cells, either excess or insufficient iron (Fe) concentration triggers stress responses, therefore it is strictly controlled. Proteasome-mediated degradation through ubiquitination of Fe homeostasis proteins has just become the focus of research in recent years. Deactivating ubiquitin ligases, COP9 signalosome has a central importance in the translational control of various stress responses. The aim of the study was to investigate COP9 signalosome in Fe deficiency response of Strategy I plants. In silico analysis of a set of Fe-deficiency-responsive genes was conducted against the transcriptome of Arabidopsis csn mutant lines using Genevestigator software. Induced and suppressed genes were clustered in a hierarchical way and gene ontology enrichment categories were identified. In wild-type Arabidopsis, CSN genes did not respond to iron deficiency. In csn mutant lines, under Fe-sufficient conditions, hundreds of Fe-deficiency-responsive genes were misregulated. Among the ones previously characterized for their physiological roles under Fe deficiency IRT1, NAS4, BTS, NRAMP1 were down-regulated while AHA2, MTP8, FRD3 were up-regulated. Unexpectedly, from those which were regulated in opposite ways, some had been repeatedly shown to be tightly co-regulated by the same transcription factor, FIT. Two proteins from DELLA family, which were reported to interact with FIT to repress its downstream, were found to be strikingly repressed in csn mutants. Overall, the study underlined that the absence of a functional CSN greatly impacted the regulation of Fe homeostasis-related genes, in a manner which cannot be explained simply by the induction of the master transcription factor, FIT. Correct expression of Fe deficiency-responsive genes requires an intact COP9 signalosome in Arabidopsis.
Collapse
Affiliation(s)
- Seckin Eroglu
- Department of Genetics and Bioengineering, Faculty of Engineering, İzmir University of Economics, Sakarya Cad., No: 156, Balcova, 35330, İzmir, Turkey
| | - Emre Aksoy
- Department of Agricultural Genetic Engineering, Ayhan Sahenk Faculty of Agricultural Sciences and Technologies, Ömer Halisdemir University, Merkez, 51240, Nigde, Turkey.
| |
Collapse
|
5
|
Proteomic Analysis of the Defense Response of Wheat to the Powdery Mildew Fungus, Blumeria graminis f. sp. tritici. Protein J 2014; 33:513-24. [DOI: 10.1007/s10930-014-9583-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Svozil J, Hirsch-Hoffmann M, Dudler R, Gruissem W, Baerenfaller K. Protein abundance changes and ubiquitylation targets identified after inhibition of the proteasome with syringolin A. Mol Cell Proteomics 2014; 13:1523-36. [PMID: 24732913 DOI: 10.1074/mcp.m113.036269] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
As proteins are the main effectors inside cells, their levels need to be tightly regulated. This is partly achieved by specific protein degradation via the Ubiquitin-26S proteasome system (UPS). In plants, an exceptionally high number of proteins are involved in Ubiquitin-26S proteasome system-mediated protein degradation and it is known to regulate most, if not all, important cellular processes. Here, we investigated the response to the inhibition of the proteasome at the protein level treating leaves with the specific inhibitor Syringolin A (SylA) in a daytime specific manner and found 109 accumulated and 140 decreased proteins. The patterns of protein level changes indicate that the accumulating proteins cause proteotoxic stress that triggers various responses. Comparing protein level changes in SylA treated with those in a transgenic line over-expressing a mutated ubiquitin unable to form polyubiquitylated proteins produced little overlap pointing to different response pathways. To distinguish between direct and indirect targets of the UPS we also enriched and identified ubiquitylated proteins after inhibition of the proteasome, revealing a total of 1791 ubiquitylated proteins in leaves and roots and 1209 that were uniquely identified in our study. The comparison of the ubiquitylated proteins with those changing in abundance after SylA-mediated inhibition of the proteasome confirmed the complexity of the response and revealed that some proteins are regulated both at transcriptional and post-transcriptional level. For the ubiquitylated proteins that accumulate in the cytoplasm but are targeted to the plastid or the mitochondrion, we often found peptides in their target sequences, demonstrating that the UPS is involved in controlling organellar protein levels. Attempts to identify the sites of ubiquitylation revealed that the specific properties of this post-translational modification can lead to incorrect peptide spectrum assignments in complex peptide mixtures in which only a small fraction of peptides is expected to carry the ubiquitin footprint. This was confirmed with measurements of synthetically produced peptides and calculating the similarities between the different spectra.
Collapse
Affiliation(s)
- Julia Svozil
- From the ‡Department of Biology, Universitaetstrasse 2, ETH Zurich, CH-8092 Zurich, Switzerland
| | | | - Robert Dudler
- §Institute of Plant Biology, Zollikerstrasse 107, University of Zurich, CH-8008 Zurich, Switzerland
| | - Wilhelm Gruissem
- From the ‡Department of Biology, Universitaetstrasse 2, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Katja Baerenfaller
- From the ‡Department of Biology, Universitaetstrasse 2, ETH Zurich, CH-8092 Zurich, Switzerland;
| |
Collapse
|
7
|
Dudler R. The role of bacterial phytotoxins in inhibiting the eukaryotic proteasome. Trends Microbiol 2013; 22:28-35. [PMID: 24284310 DOI: 10.1016/j.tim.2013.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 10/25/2013] [Accepted: 10/30/2013] [Indexed: 11/19/2022]
Abstract
The ubiquitin-26S proteasome degradation system (UPS) plays a pivotal role in almost all aspects of plant life, including defending against pathogens. Although the proteasome is important for plant immunity, it has been found to be also exploited by pathogens using effectors to increase their virulence. Recent work on the XopJ effector and syringolin A/syrbactins has highlighted host proteasome inhibition as a virulence strategy of pathogens. This review will focus on these recent developments.
Collapse
Affiliation(s)
- Robert Dudler
- Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland.
| |
Collapse
|
8
|
Hofstetter SS, Dudnik A, Widmer H, Dudler R. Arabidopsis YELLOW STRIPE-LIKE7 (YSL7) and YSL8 transporters mediate uptake of Pseudomonas virulence factor syringolin A into plant cells. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1302-1311. [PMID: 23945001 DOI: 10.1094/mpmi-06-13-0163-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Syringolin A (SylA), a virulence factor secreted by certain strains of the plant pathogen Pseudomonas syringae pv. syringae, is an irreversible proteasome inhibitor imported by plant cells by an unknown transport process. Here, we report that functional expression in yeast of all 17 members of the Arabidopsis oligopeptide transporter family revealed that OLIGOPEPTIDE TRANSPORTER1 (OPT1), OPT2, YELLOW STRIPE-LIKE3 (YSL3), YSL7, and YSL8 rendered yeast cells sensitive to growth inhibition by SylA to different degrees, strongly indicating that these proteins mediated SylA uptake into yeast cells. The greatest SylA sensitivity was conferred by YSL7 and YSL8 expression. An Arabidopsis ysl7 mutant exhibited strongly reduced SylA sensitivity in a root growth inhibition assay and in leaves of ysl7 and ysl8 mutants, SylA-mediated quenching of salicylic-acid-triggered PATHOGENESIS-RELATED GENE1 transcript accumulation was greatly reduced compared with the wild type. These results suggest that YSL7 and YSL8 are major SylA uptake transporters in Arabidopsis. Expression of a YSL homolog of bean, the host of the SylA-producing P. syringae pv. syringae B728a, in yeast also conferred strong SylA sensitivity. Thus, YSL transporters, which are thought to be involved in metal homeostasis, have been hijacked by bacterial pathogens for SylA uptake into host cells.
Collapse
|
9
|
Dudler R. Manipulation of host proteasomes as a virulence mechanism of plant pathogens. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:521-42. [PMID: 23725468 DOI: 10.1146/annurev-phyto-082712-102312] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The ubiquitin-26S proteasome degradation system (UPS) in plants is involved in the signal transduction of many cellular processes, including host immune responses triggered by pathogen attack. Attacking pathogens produce effectors that are translocated into host cells, where they interfere with the host's defense signaling in very specific ways. Perhaps not surprising in view of the broad involvement of the host proteasome in plant immunity, certain bacterial effectors exploit or require the host UPS for their action, as currently best studied in Pseudomonas syringae. Intriguingly, some P. syringae strains also secrete the virulence factor syringolin A, which irreversibly inhibits the proteasome by a novel mechanism. Here, the role of the UPS in plant defense and its exploitation by effectors are summarized, and the biology, taxonomic distribution, and emerging implications for virulence strategies of syringolin A and similar compounds are discussed.
Collapse
Affiliation(s)
- Robert Dudler
- Institute of Plant Biology, University of Zurich, 8008 Zurich, Switzerland.
| |
Collapse
|
10
|
Ramel C, Baechler N, Hildbrand M, Meyer M, Schädeli D, Dudler R. Regulation of biosynthesis of syringolin A, a Pseudomonas syringae virulence factor targeting the host proteasome. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1198-1208. [PMID: 22852810 DOI: 10.1094/mpmi-03-12-0070-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Many strains of the phytopathogenic bacterium Pseudomonas syringae pv. syringae synthesize the virulence factor syringolin A, which irreversibly inactivates the eukaryotic proteasome. Syringolin A, a peptide derivative, is synthesized by a mixed nonribosomal peptide/polyketide synthetase encoded by five clustered genes, sylA to sylE. Biosynthesis of syringolin A, previously shown to be dependent on the GacS/GacA two-component system, occurs in planta and in vitro but only under still culture conditions in a defined medium. Here, we show that the sylC, sylD, and sylE genes of P. syringae pv. syringae B301D-R form an operon transcribed by promoter sequences located between the sylCDE operon and the sylB gene residing on opposite strands. Assays of overlapping sylB and sylCDE promoter deletions translationally fused to the lacZ gene defined promoter sequences required for gene activity both in vitro and in planta. Activation of both promoters depended on the sylA gene encoding a helix-turn-helix (HTH) LuxR-type transcription factor which was shown to directly bind to the promoters. Activity of the sylA gene, in turn, required a functional salA gene, which also encodes an HTH LuxR-type transcription factor. Furthermore, evidence is presented that acyl-homoserine lactone-mediated quorum-sensing regulation is not involved in syringolin A biosynthesis but that oxygen concentration appears to play a role.
Collapse
|
11
|
Brenner WG, Ramireddy E, Heyl A, Schmülling T. Gene regulation by cytokinin in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2012; 3:8. [PMID: 22639635 PMCID: PMC3355611 DOI: 10.3389/fpls.2012.00008] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 01/06/2012] [Indexed: 05/18/2023]
Abstract
The plant hormone cytokinin realizes at least part of its signaling output through the regulation of gene expression. A great part of the early transcriptional regulation is mediated by type-B response regulators, which are transcription factors of the MYB family. Other transcription factors, such as the cytokinin response factors of the AP2/ERF family, have also been shown to be involved in this process. Additional transcription factors mediate distinct parts of the cytokinin response through tissue- and cell-specific downstream transcriptional cascades. In Arabidopsis, only a single cytokinin response element, to which type-B response regulators bind, has been clearly proven so far, which has 5'-GAT(T/C)-3' as a core sequence. This motif has served to construct a synthetic cytokinin-sensitive two-component system response element, which is useful for monitoring the cellular cytokinin status. Insight into the extent of transcriptional regulation has been gained by genome-wide gene expression analyses following cytokinin treatment and from plants having an altered cytokinin content or signaling. This review presents a meta analysis of such microarray data resulting in a core list of cytokinin response genes. Genes encoding type-A response regulators displayed the most stable response to cytokinin, but a number of cytokinin metabolism genes (CKX4, CKX5, CYP735A2, UGT76C2) also belong to them, indicating homeostatic mechanisms operating at the transcriptional level. The cytokinin core response genes are also the target of other hormones as well as biotic and abiotic stresses, documenting crosstalk of the cytokinin system with other hormonal and environmental signaling pathways. The multiple links of cytokinin to diverse functions, ranging from control of meristem activity, hormonal crosstalk, nutrient acquisition, and various stress responses, are also corroborated by a compilation of genes that have been repeatedly found by independent gene expression profiling studies. Such functions are, at least in part, supported by genetic studies.
Collapse
Affiliation(s)
- Wolfram G. Brenner
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität BerlinBerlin, Germany
| | - Eswar Ramireddy
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität BerlinBerlin, Germany
| | - Alexander Heyl
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität BerlinBerlin, Germany
- *Correspondence: Alexander Heyl and Thomas Schmülling, Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany. e-mail: ;
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität BerlinBerlin, Germany
- *Correspondence: Alexander Heyl and Thomas Schmülling, Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany. e-mail: ;
| |
Collapse
|
12
|
Gräwert MA, Groll M. Exploiting nature's rich source of proteasome inhibitors as starting points in drug development. Chem Commun (Camb) 2011; 48:1364-78. [PMID: 22039589 DOI: 10.1039/c1cc15273d] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cancer is the No. 2 cause of death in the Western world and one of the most expensive diseases to treat. Thus, it is not surprising, that every major pharmaceutical and biotechnology company has a blockbuster oncology product. In 2003, Millennium Pharmaceuticals entered the race with Velcade®, a first-in-class proteasome inhibitor that has been approved by the FDA for treatment of multiple myeloma and its sales have passed the billion dollar mark. Velcade®'s extremely toxic boronic acid pharmacophore, however, contributes to a number of severe side effects. Nevertheless, the launching of this product has validated the proteasome as a target in fighting cancer and further proteasome inhibitors have entered the market as anti-cancer drugs. Additionally, proteasome inhibitors have found application as crop protection agents, anti-parasitics, immunosuppressives, as well as in new therapies for muscular dystrophies and inflammation. Many of these compounds are based on microbial metabolites. In this review, we emphasize the important role of the structural elucidation of the various unique binding mechanisms of these compounds that have been optimized throughout evolution to target the proteasome. Based on this knowledge, medicinal chemists have further optimized these natural products, resulting in potential drugs with reduced off-target activities.
Collapse
Affiliation(s)
- Melissa Ann Gräwert
- Center for Integrated Protein Science at the Department Chemie, Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany.
| | | |
Collapse
|
13
|
Li J, Ezquer I, Bahaji A, Montero M, Ovecka M, Baroja-Fernández E, Muñoz FJ, Mérida A, Almagro G, Hidalgo M, Sesma MT, Pozueta-Romero J. Microbial volatile-induced accumulation of exceptionally high levels of starch in Arabidopsis leaves is a process involving NTRC and starch synthase classes III and IV. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1165-78. [PMID: 21649509 DOI: 10.1094/mpmi-05-11-0112] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Microbial volatiles promote the accumulation of exceptionally high levels of starch in leaves. Time-course analyses of starch accumulation in Arabidopsis leaves exposed to fungal volatiles (FV) emitted by Alternaria alternata revealed that a microbial volatile-induced starch accumulation process (MIVOISAP) is due to stimulation of starch biosynthesis during illumination. The increase of starch content in illuminated leaves of FV-treated hy1/cry1, hy1/cry2, and hy1/cry1/cry2 Arabidopsis mutants was many-fold lower than that of wild-type (WT) leaves, indicating that MIVOISAP is subjected to photoreceptor-mediated control. This phenomenon was inhibited by cordycepin and accompanied by drastic changes in the Arabidopsis transcriptome. MIVOISAP was also accompanied by enhancement of the total 3-phosphoglycerate/Pi ratio, and a two- to threefold increase of the levels of the reduced form of ADP-glucose pyrophosphorylase. Using different Arabidopsis knockout mutants, we investigated the impact in MIVOISAP of downregulation of genes directly or indirectly related to starch metabolism. These analyses revealed that the magnitude of the FV-induced starch accumulation was low in mutants impaired in starch synthase (SS) classes III and IV and plastidial NADP-thioredoxin reductase C (NTRC). Thus, the overall data showed that Arabidopsis MIVOISAP involves a photocontrolled, transcriptionally and post-translationally regulated network wherein photoreceptor-, SSIII-, SSIV-, and NTRC-mediated changes in redox status of plastidial enzymes play important roles.
Collapse
Affiliation(s)
- Jun Li
- Instituto de Agrobiotecnología, Nafarroa, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Krahn D, Ottmann C, Kaiser M. The chemistry and biology of syringolins, glidobactins and cepafungins (syrbactins). Nat Prod Rep 2011; 28:1854-67. [PMID: 21904761 DOI: 10.1039/c1np00048a] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Syrbactin is a subordinate term for the syringolin, glidobactin and cepafungin natural product families. Their grouping is based on their related molecular frameworks, similar biosynthesis pathways and, most importantly, identical modes-of-action, being irreversible proteasome inhibition. With this report, we aim to review their chemical biology, describing their common, but also differential characteristics.
Collapse
Affiliation(s)
- Daniel Krahn
- Zentrum für Medizinische Biotechnologie, Universität Duisburg-Essen, Germany
| | | | | |
Collapse
|
15
|
Attallah CV, Welchen E, Martin AP, Spinelli SV, Bonnard G, Palatnik JF, Gonzalez DH. Plants contain two SCO proteins that are differentially involved in cytochrome c oxidase function and copper and redox homeostasis. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4281-94. [PMID: 21543521 DOI: 10.1093/jxb/err138] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Two Arabidopsis thaliana genes (HCC1 and HCC2), resulting from a duplication that took place before the emergence of flowering plants, encode proteins with homology to the SCO proteins involved in copper insertion during cytochrome c oxidase (COX) assembly in other organisms. Heterozygote HCC1 mutant plants produce 25% abnormal seeds with defective embryos arrested at the heart or torpedo stage. These embryos lack COX activity, suggesting that the requirement of HCC1 during the early stages of plant development is related with its COX assembly function. Homozygote HCC2 mutant plants develop normally and do not show changes in COX2 levels. These plants display increased sensitivity of root growth to increased copper and a higher expression of miR398 and other genes that respond to copper limitation, in spite of the fact that they have a higher copper content than the wild type. HCC2 mutant plants also show increased expression of stress-responsive genes. The results suggest that HCC1 is the protein involved in COX biogenesis and that HCC2, that lacks the cysteines and histidine putatively involved in copper binding, functions in copper sensing and redox homeostasis. In addition, plants that overexpress HCC1 have an altered response of root elongation to changes in copper in the growth medium and increased expression of two low-copper-responsive genes, suggesting that HCC1 may also have a role in copper homeostasis.
Collapse
Affiliation(s)
- Carolina V Attallah
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CC 242 Paraje El Pozo, 3000 Santa Fe, Argentina
| | | | | | | | | | | | | |
Collapse
|
16
|
Ezquer I, Li J, Ovecka M, Baroja-Fernández E, Muñoz FJ, Montero M, Díaz de Cerio J, Hidalgo M, Sesma MT, Bahaji A, Etxeberria E, Pozueta-Romero J. Microbial volatile emissions promote accumulation of exceptionally high levels of starch in leaves in mono- and dicotyledonous plants. PLANT & CELL PHYSIOLOGY 2010; 51:1674-93. [PMID: 20739303 DOI: 10.1093/pcp/pcq126] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Microbes emit volatile compounds that affect plant growth and development. However, little or nothing is known about how microbial emissions may affect primary carbohydrate metabolism in plants. In this work we explored the effect on leaf starch metabolism of volatiles released from different microbial species ranging from Gram-negative and Gram-positive bacteria to fungi. Surprisingly, we found that all microbial species tested (including plant pathogens and species not normally interacting with plants) emitted volatiles that strongly promoted starch accumulation in leaves of both mono- and dicotyledonous plants. Starch content in leaves of plants treated for 2 d with microbial volatiles was comparable with or even higher than that of reserve organs such as potato tubers. Transcriptome and enzyme activity analyses of potato leaves exposed to volatiles emitted by Alternaria alternata revealed that starch overaccumulation was accompanied by up-regulation of sucrose synthase, invertase inhibitors, starch synthase class III and IV, starch branching enzyme and glucose-6-phosphate transporter. This phenomenon, designated as MIVOISAP (microbial volatiles-induced starch accumulation process), was also accompanied by down-regulation of acid invertase, plastidial thioredoxins, starch breakdown enzymes, proteins involved in internal amino acid provision and less well defined mechanisms involving a bacterial- type stringent response. Treatment of potato leaves with fungal volatiles also resulted in enhanced levels of sucrose, ADPglucose, UDPglucose and 3-phosphoglycerate. MIVOISAP is independent of the presence of sucrose in the culture medium and is strongly repressed by cysteine supplementation. The discovery that microbial volatiles trigger starch accumulation enhancement in leaves constitutes an unreported mechanism for the elicidation of plant carbohydrate metabolism by microbes.
Collapse
Affiliation(s)
- Ignacio Ezquer
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Mutiloako etorbidea z/g, 31192 Mutiloabeti, Nafarroa, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Total syntheses of two recently discovered proteasome inhibitors, syringolin A and B, are reported. The key to our approach was creation of the alpha,beta-unsaturated 12-membered lactam via intramolecular Horner-Wadsworth-Emmons reaction. Such reactions have been broadly used to prepared macrolactones, but this work presents a rarer example of its application to macrolactams. The final steps involved attachment of the bis(valinyl)urea side chain using peptide coupling procedures, including a method based on the unprotected valine N-carboxy anhydride. The additional alkene of syringolin A was created through cross-metathesis.
Collapse
Affiliation(s)
- Michael C Pirrung
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| | | | | |
Collapse
|
18
|
Indole-3-acetamide-dependent auxin biosynthesis: a widely distributed way of indole-3-acetic acid production? Eur J Cell Biol 2010; 89:895-905. [PMID: 20701997 DOI: 10.1016/j.ejcb.2010.06.021] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
During the course of evolution plants have evolved a complex phytohormone-based network to regulate their growth and development. Herein auxins have a pivotal function, as they are involved in controlling virtually every aspect related to plant growth. Indole-3-acetic acid (IAA) is the major endogenous auxin of higher plants that is already known for more than 80 years. In spite of the long-standing interest in this topic, IAA biosynthesis is still only partially uncovered. Several pathways for the formation of IAA have been proposed over the past years, but none of these pathways are yet completely defined. The aim of this review is to summarize the current knowledge on the indole-3-acetamide (IAM)-dependent pathway of IAA production in plants and to discuss the properties of the involved proteins and genes, respectively. Their evolutionary relationship to known bacterial IAM hydrolases and other amidases from bacteria, algae, moss, and higher plants is discussed on the basis of phylogenetic analyses. Moreover, we report on the transcriptional regulation of the Arabidopsis AMI1 gene.
Collapse
|
19
|
The Arabidopsis wall associated kinase-like 10 gene encodes a functional guanylyl cyclase and is co-expressed with pathogen defense related genes. PLoS One 2010; 5:e8904. [PMID: 20126659 PMCID: PMC2811198 DOI: 10.1371/journal.pone.0008904] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Accepted: 01/05/2010] [Indexed: 12/23/2022] Open
Abstract
Background Second messengers have a key role in linking environmental stimuli to physiological responses. One such messenger, guanosine 3′,5′-cyclic monophosphate (cGMP), has long been known to be an essential signaling molecule in many different physiological processes in higher plants, including biotic stress responses. To date, however, the guanylyl cyclase (GC) enzymes that catalyze the formation of cGMP from GTP have largely remained elusive in higher plants. Principal Findings We have identified an Arabidopsis receptor type wall associated kinase–like molecule (AtWAKL10) as a candidate GC and provide experimental evidence to show that the intracellular domain of AtWAKL10431–700 can generate cGMP in vitro. Further, we also demonstrate that the molecule has kinase activity indicating that AtWAKL10 is a twin-domain catalytic protein. A co-expression and stimulus-specific expression analysis revealed that AtWAKL10 is consistently co-expressed with well characterized pathogen defense related genes and along with these genes is induced early and sharply in response to a range of pathogens and their elicitors. Conclusions We demonstrate that AtWAKL10 is a twin-domain, kinase-GC signaling molecule that may function in biotic stress responses that are critically dependent on the second messenger cGMP.
Collapse
|
20
|
Ramel C, Tobler M, Meyer M, Bigler L, Ebert MO, Schellenberg B, Dudler R. Biosynthesis of the proteasome inhibitor syringolin A: the ureido group joining two amino acids originates from bicarbonate. BMC BIOCHEMISTRY 2009; 10:26. [PMID: 19863801 PMCID: PMC2773804 DOI: 10.1186/1471-2091-10-26] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 10/28/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND Syringolin A, an important virulence factor in the interaction of the phytopathogenic bacterium Pseudomonas syringae pv. syringae B728a with its host plant Phaseolus vulgaris (bean), was recently shown to irreversibly inhibit eukaryotic proteasomes by a novel mechanism. Syringolin A is synthesized by a mixed non-ribosomal peptide synthetase/polyketide synthetase and consists of a tripeptide part including a twelve-membered ring with an N-terminal valine that is joined to a second valine via a very unusual ureido group. Analysis of sequence and architecture of the syringolin A synthetase gene cluster with the five open reading frames sylA-sylE allowed to formulate a biosynthesis model that explained all structural features of the tripeptide part of syringolin A but left the biosynthesis of the unusual ureido group unaccounted for. RESULTS We have cloned a 22 kb genomic fragment containing the sylA-sylE gene cluster but no other complete gene into the broad host range cosmid pLAFR3. Transfer of the recombinant cosmid into Pseudomonas putida and P. syringae pv. syringae SM was sufficient to direct the biosynthesis of bona fide syringolin A in these heterologous organisms whose genomes do not contain homologous genes. NMR analysis of syringolin A isolated from cultures grown in the presence of NaH(13)CO(3) revealed preferential (13)C-labeling at the ureido carbonyl position. CONCLUSION The results show that no additional syringolin A-specific genes were needed for the biosynthesis of the enigmatic ureido group joining two amino acids. They reveal the source of the ureido carbonyl group to be bicarbonate/carbon dioxide, which we hypothesize is incorporated by carbamylation of valine mediated by the sylC gene product(s). A similar mechanism may also play a role in the biosynthesis of other ureido-group-containing NRPS products known largely from cyanobacteria.
Collapse
Affiliation(s)
- Christina Ramel
- Institute of Plant Biology and Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
21
|
Bar M, Avni A. EHD2 inhibits ligand-induced endocytosis and signaling of the leucine-rich repeat receptor-like protein LeEix2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:600-11. [PMID: 19392695 DOI: 10.1111/j.1365-313x.2009.03897.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants are constantly being challenged by aspiring pathogens. In order to protect themselves, plants have developed numerous defense mechanisms that are either specific or non-specific to the pathogen. Pattern recognition receptors can trigger plant defense responses in response to specific ligands or patterns. EIX (ethylene-inducing xylanase) triggers a defense response via the LeEix2 receptor, while bacterial flagellin triggers plant innate immunity via the FLS2 receptor. Endocytosis has been suggested to be crucial for the process in both cases. Here we show that the EIX elicitor triggers internalization of the LeEix2 receptor. Treatment with endocytosis, actin or microtubule inhibitors greatly reduced the internalization of LeEix2. Additionally, we demonstrate that plant EHD2 binds to LeEix2 and is an important factor in its internalization and in regulation of the induction of defense responses such as the hypersensitive response, ethylene biosynthesis and induction of pathogenesis-related protein expression in the case of EIX/LeEix2 (an LRR receptor lacking a kinase domain), but does not appear to be involved in the FLS2 system (an LRR receptor possessing a kinase domain). Our results suggest that various endocytosis pathways are involved in the induction of plant defense responses.
Collapse
Affiliation(s)
- Maya Bar
- Department of Plant Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | |
Collapse
|
22
|
Bolton MD, Kolmer JA, Xu WW, Garvin DF. Lr34-mediated leaf rust resistance in wheat: transcript profiling reveals a high energetic demand supported by transient recruitment of multiple metabolic pathways. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1515-27. [PMID: 18986248 DOI: 10.1094/mpmi-21-12-1515] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The wheat gene Lr34 confers partial resistance to all races of Puccinia triticina, the causal agent of wheat leaf rust. However, the biological basis for the exceptional durability of Lr34 is unclear. We used the Affymetrix GeneChip Wheat Genome Array to compare transcriptional changes of near-isogenic lines of Thatcher wheat in a compatible interaction, an incompatible interaction conferred by the resistance gene Lr1, and the race-nonspecific response conditioned by Lr34 3 and 7 days postinoculation (dpi) with P. triticina. No differentially expressed genes were detected in Lr1 plants at either timepoint whereas, in the compatible Thatcher interaction, differentially expressed genes were detected only at 7 dpi. In contrast, differentially expressed genes were identified at both timepoints in P. triticina-inoculated Lr34 plants. At 3 dpi, upregulated genes associated with Lr34-mediated resistance encoded various defense and stress-related proteins, secondary metabolism enzymes, and transcriptional regulation and cellular-signaling proteins. Further, coordinated upregulation of key genes in several metabolic pathways that can contribute to increased carbon flux through the tricarboxylic cycle was detected. This indicates that Lr34-mediated resistance imposes a high energetic demand that leads to the induction of multiple metabolic responses to support cellular energy requirements. These metabolic responses were not sustained through 7 dpi, and may explain why Lr34 fails to inhibit the pathogen fully but does increase the latent period.
Collapse
Affiliation(s)
- Melvin D Bolton
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Plant Science Research Unit, 411 Borlaug Hall, University of Minnesota, 1991 Upper Buford Circle, St. Paul 55108, USA
| | | | | | | |
Collapse
|
23
|
Groll M, Schellenberg B, Bachmann AS, Archer CR, Huber R, Powell TK, Lindow S, Kaiser M, Dudler R. A plant pathogen virulence factor inhibits the eukaryotic proteasome by a novel mechanism. Nature 2008; 452:755-8. [DOI: 10.1038/nature06782] [Citation(s) in RCA: 254] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Accepted: 01/28/2008] [Indexed: 01/07/2023]
|
24
|
Schellenberg B, Bigler L, Dudler R. Identification of genes involved in the biosynthesis of the cytotoxic compound glidobactin from a soil bacterium. Environ Microbiol 2008; 9:1640-50. [PMID: 17564599 DOI: 10.1111/j.1462-2920.2007.01278.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glidobactins (syn. cepafungins) are a family of structurally related cytotoxic compounds that were isolated from the soil bacterial strain K481-B101 (ATCC 53080; DSM 7029) originally assigned to Polyangium brachysporum and, independently, from an undefined species related to Burkholderia cepacia. Glidobactins are acylated tripeptide derivatives that contain a 12-membered ring structure consisting of the two unique non-proteinogenic amino acids erythro-4-hydroxy-l-lysine and 4(S)-amino-2(E)-pentenoic acid. Here we report the cloning and functional analysis of a gene cluster (glbA-glbH) involved in glidobactin synthesis from K481-B101, which according to its 16S rRNA sequence belongs to the Burkholderiales. The putative encoded proteins include a mixed non-ribosomal peptide/polyketide synthetase whose structure and architecture allowed to build a biosynthetic pathway model explaining the biosynthesis of the unique peptide part of glidobactins. Intriguingly, among the more than 600 bacterial strains whose genome sequence is currently available, homologous gene clusters were found in Burkholderia pseudomallei, the causing agent of melioidosis, and in the insect pathogen Photorhabdus luminescens, strongly suggesting that these organisms are capable to synthesize compounds similar to glidobactins. In addition, a glb gene cluster that was inactivated by transposon-mediated rearrangements was also present in Burkholderia mallei, a very close relative of B. pseudomallei and the causing agent of glanders in horse-like animals.
Collapse
|
25
|
Fabro G, Di Rienzo JA, Voigt CA, Savchenko T, Dehesh K, Somerville S, Alvarez ME. Genome-wide expression profiling Arabidopsis at the stage of Golovinomyces cichoracearum haustorium formation. PLANT PHYSIOLOGY 2008; 146:1421-39. [PMID: 18218973 PMCID: PMC2259087 DOI: 10.1104/pp.107.111286] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 01/08/2008] [Indexed: 05/21/2023]
Abstract
Compatibility between plants and obligate biotrophic fungi requires fungal mechanisms for efficiently obtaining nutrients and counteracting plant defenses under conditions that are expected to induce changes in the host transcriptome. A key step in the proliferation of biotrophic fungi is haustorium differentiation. Here we analyzed global gene expression patterns in Arabidopsis thaliana leaves during the formation of haustoria by Golovinomyces cichoracearum. At this time, the endogenous levels of salicylic acid (SA) and jasmonic acid (JA) were found to be enhanced. The responses of wild-type, npr1-1, and jar1-1 plants were used to categorize the sensitivity of gene expression changes to NPR1 and JAR1, which are components of the SA and JA signaling pathways, respectively. We found that the infection process was the major source of variation, with 70 genes identified as having similarly altered expression patterns regardless of plant genotype. In addition, principal component analysis (PCA) identified genes responding both to infection and to lack of functional JAR1 (17 genes) or NPR1 (18 genes), indicating that the JA and SA signaling pathways function as secondary sources of variation. Participation of these genes in the SA or JA pathways had not been described previously. We found that some of these genes may be sensitive to the balance between the SA and JA pathways, representing novel markers for the elucidation of cross-talk points between these signaling cascades. Conserved putative regulatory motifs were found in the promoter regions of each subset of genes. Collectively, our results indicate that gene expression changes in response to infection by obligate biotrophic fungi may support fungal nutrition by promoting alterations in host metabolism. In addition, these studies provide novel markers for the characterization of defense pathways and susceptibility features under this infection condition.
Collapse
Affiliation(s)
- Georgina Fabro
- CIQUIBIC-CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | | | | | | | | | |
Collapse
|
26
|
Larkindale J, Vierling E. Core genome responses involved in acclimation to high temperature. PLANT PHYSIOLOGY 2008; 146:748-61. [PMID: 18055584 PMCID: PMC2245833 DOI: 10.1104/pp.107.112060] [Citation(s) in RCA: 285] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 11/19/2007] [Indexed: 05/17/2023]
Abstract
Plants can acclimate rapidly to environmental conditions, including high temperatures. To identify molecular events important for acquired thermotolerance, we compared viability and transcript profiles of Arabidopsis thaliana treated to severe heat stress (45 degrees C) without acclimation or following two different acclimation treatments. Notably, a gradual increase to 45 degrees C (22 degrees C to 45 degrees C over 6 h) led to higher survival and to more and higher-fold transcript changes than a step-wise acclimation (90 min at 38 degrees C plus 120 min at 22 degrees C before 45 degrees C). There were significant differences in the total spectrum of transcript changes in the two treatments, but core components of heat acclimation were apparent in the overlap between treatments, emphasizing the importance of performing transcriptome analysis in the context of physiological response. In addition to documenting increases in transcripts of specific genes involved in processes predicted to be required for thermotolerance (i.e. protection of proteins and of translation, limiting oxidative stress), we also found decreases in transcripts (i.e. for programmed cell death, basic metabolism, and biotic stress responses), which are likely equally important for acclimation. Similar protective effects may also be achieved differently, such as prevention of proline accumulation, which is toxic at elevated temperatures and which was reduced by both acclimation treatments but was associated with transcript changes predicted to either reduce proline synthesis or increase degradation in the two acclimation treatments. Finally, phenotypic analysis of T-DNA insertion mutants of genes identified in this analysis defined eight new genes involved in heat acclimation, including cytosolic ascorbate peroxidase and the transcription factors HsfA7a (heat shock transcription factor A7a) and NF-X1.
Collapse
Affiliation(s)
- Jane Larkindale
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, Arizona 85721, USA
| | | |
Collapse
|
27
|
Panthee DR, Yuan JS, Wright DL, Marois JJ, Mailhot D, Stewart CN. Gene expression analysis in soybean in response to the causal agent of Asian soybean rust (Phakopsora pachyrhizi Sydow) in an early growth stage. Funct Integr Genomics 2007; 7:291-301. [PMID: 17318271 DOI: 10.1007/s10142-007-0045-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2007] [Revised: 01/13/2007] [Accepted: 01/29/2007] [Indexed: 10/23/2022]
Abstract
Asian soybean rust (ASR) caused by Phakopsora pachyrhizi Sydow is a potentially devastating disease posing a serious threat to the soybean industry. Understanding plant host response at the molecular level is certainly important for control of the disease. The main objective of this study was to perform a transcriptome profiling of P. pachyrhizi-exposed young soybean plants (V2 growth stage) using whole genome Affymetrix microarrays of soybean. Three-week-old soybean cv. 5601 T plants at the V2 growth stage were inoculated with P. pachyrhizi, and leaf samples were collected 72 h post inoculation with subsequent microarray analysis performed. A total of 112 genes were found to be differentially expressed from P. pachyrhizi exposure, of which 46 were upregulated, and 66 were downregulated. Most of the differentially expressed genes were general defense and stress-related genes, and 34 of these were unknown. Confirmational real-time reverse transcription-polymerase chain reaction was performed on a subset of 5 out of 112 differentially expressed genes. These results were congruent with the microarray analysis. Our results indicated that low and nonspecific innate response to the pathogen may account for the failure to develop rust resistance in the soybean variety studied. To our knowledge, this is the first microarray analysis of soybean in response to ASR.
Collapse
Affiliation(s)
- D R Panthee
- Department of Plant Sciences, University of Tennessee, Rm 252, Ellington Plant Sciences, 2431 Joe Johnson Dr., Knoxville, TN 37996, USA
| | | | | | | | | | | |
Collapse
|
28
|
Farmer EE, Davoine C. Reactive electrophile species. CURRENT OPINION IN PLANT BIOLOGY 2007; 10:380-6. [PMID: 17646124 DOI: 10.1016/j.pbi.2007.04.019] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 04/17/2007] [Accepted: 04/20/2007] [Indexed: 05/16/2023]
Abstract
The interest in reactive electrophile species (RES) stems largely from the fact that they can have powerful biological activities. RES stimulate the expression of cell survival genes as well many other genes commonly upregulated in environmental stress and pathogenesis. RES levels must be carefully controlled in healthy cells but their formation and destruction during stress is of great interest. Unlike many 'classical' signals and hormones, RES can potentially affect gene expression at all levels by chemically reacting with nucleic acids, proteins and small molecules as well as by indirectly lowering pools of cellular reductants. Recent works involving genetic approaches have begun to provide compelling evidence that, although excess RES production can lead to cell damage, lower levels of RES may modulate the expression of cell survival genes and may actually contribute to survival during severe stress.
Collapse
Affiliation(s)
- Edward E Farmer
- Gene Expression Laboratory, Department of Plant Molecular Biology, Biophore, University of Lausanne, 1015 Lausanne, Switzerland.
| | | |
Collapse
|
29
|
Yan Y, Stolz S, Chételat A, Reymond P, Pagni M, Dubugnon L, Farmer EE. A downstream mediator in the growth repression limb of the jasmonate pathway. THE PLANT CELL 2007; 19:2470-83. [PMID: 17675405 PMCID: PMC2002611 DOI: 10.1105/tpc.107.050708] [Citation(s) in RCA: 514] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Wounding plant tissues initiates large-scale changes in transcription coupled to growth arrest, allowing resource diversion for defense. These processes are mediated in large part by the potent lipid regulator jasmonic acid (JA). Genes selected from a list of wound-inducible transcripts regulated by the jasmonate pathway were overexpressed in Arabidopsis thaliana, and the transgenic plants were then assayed for sensitivity to methyl jasmonate (MeJA). When grown in the presence of MeJA, the roots of plants overexpressing a gene of unknown function were longer than those of wild-type plants. When transcript levels for this gene, which we named JASMONATE-ASSOCIATED1 (JAS1), were reduced by RNA interference, the plants showed increased sensitivity to MeJA and growth was inhibited. These gain- and loss-of-function assays suggest that this gene acts as a repressor of JA-inhibited growth. An alternative transcript from the gene encoding a second protein isoform with a longer C terminus failed to repress jasmonate sensitivity. This identified a conserved C-terminal sequence in JAS1 and related genes, all of which also contain Zim motifs and many of which are jasmonate-regulated. Both forms of JAS1 were found to localize to the nucleus in transient expression assays. Physiological tests of growth responses after wounding were consistent with the fact that JAS1 is a repressor of JA-regulated growth retardation.
Collapse
Affiliation(s)
- Yuanxin Yan
- Department of Plant Molecular Biology, University of Lausane, Biophore, CH-1015 Lausane, Switzerland
| | | | | | | | | | | | | |
Collapse
|
30
|
Mohammadi M, Kav NNV, Deyholos MK. Transcriptional profiling of hexaploid wheat (Triticum aestivum L.) roots identifies novel, dehydration-responsive genes. PLANT, CELL & ENVIRONMENT 2007; 30:630-45. [PMID: 17407540 DOI: 10.1111/j.1365-3040.2007.01645.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We used a long-oligonucleotide microarray to identify transcripts that increased or decreased in abundance in roots of dehydration-tolerant hexaploid bread wheat, in response to withholding of water. We observed that the major classes of dehydration-responsive genes (e.g. osmoprotectants, compatible solutes, proteases, glycosyltransferases/hydrolases, signal transducers components, ion transporters) were generally similar to those observed previously in other species and osmotic stresses. More specifically, we highlighted increases in transcript expression for specific genes including those putatively related to the synthesis of asparagine, trehalose, oligopeptide transporters, metal-binding proteins, the gamma-aminobutyric acid (GABA) shunt and transcription factors. Conversely, we noted a decrease in transcript abundance for diverse classes of glutathione and sulphur-related enzymes, specific amino acids, as well as MATE-efflux carrier proteins. From these data, we identified a novel, dehydration-induced putative AP2/ERF transcription factor, which we predict to function as a transcriptional repressor. We also identified a dehydration-induced 'little protein' (LitP; predicted mass: 8 kDa) that is highly conserved across spermatophytes. Using qRT-PCR, we compared the expression patterns of selected genes between two related wheat genotypes that differed in their susceptibility to dehydration, and confirmed that these novel genes were highly inducible by water limitation in both genotypes, although the magnitude of induction differed.
Collapse
Affiliation(s)
- Mohsen Mohammadi
- Department of Biological Sciences, University of Alberta, Edmonton, Canada T6E 2L3
| | | | | |
Collapse
|