1
|
Perez-Piñar T, Hartmann A, Bössow S, Gnad H, Mock HP. Metabolic changes during wheat microspore embryogenesis induction using the highly responsive cultivar Svilena. JOURNAL OF PLANT PHYSIOLOGY 2024; 294:154193. [PMID: 38422632 DOI: 10.1016/j.jplph.2024.154193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
Androgenetically-derived haploids can be obtained by inducing embryogenesis in microspores. Thus, full homozygosity is achieved in a single generation, oppositely to conventional plant breeding programs. Here, the metabolite profile of embryogenic microspores of Triticum aestivum was acquired and integrated with transcriptomic existing data from the same samples in an effort to identify the key metabolic processes occurring during the early stages of microspore embryogenesis. Primary metabolites and transcription profiles were identified at three time points: prior to and immediately following a low temperature pre-treatment given to uninuclear microspores, and after the first nuclear division. This is the first time an integrative -omics analysis is reported in microspore embryogenesis in T. aestivum. The key findings were that the energy produced during the pre-treatment was obtained from the tricarboxylic acid (TCA) cycle and from starch degradation, while starch storage resumed after the first nuclear division. Intermediates of the TCA cycle were highly demanded from a very active amino acid metabolism. The transcription profiles of genes encoding enzymes involved in amino acid synthesis differed from the metabolite profiles. The abundance of glutamine synthetase was correlated with that of glutamine. Cytosolic glutamine synthetase isoform 1 was found predominantly after the nuclear division. Overall, energy production was shown to represent a major component of the de-differentiation process induced by the pre-treatment, supporting a highly active amino acid metabolism.
Collapse
Affiliation(s)
- Teresa Perez-Piñar
- Department of Physiology and Cell Biology, Applied Biochemistry, Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Seeland/OT Gatersleben, Germany.
| | - Anja Hartmann
- Department of Physiology and Cell Biology, Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Seeland/OT Gatersleben, Germany.
| | - Sandra Bössow
- Saaten-Union Biotec GmbH, Am Schwabepan 6, 06466 Seeland/OT Gatersleben, Germany.
| | - Heike Gnad
- Saaten-Union Biotec GmbH, Am Schwabepan 6, 06466 Seeland/OT Gatersleben, Germany.
| | - Hans-Peter Mock
- Department of Physiology and Cell Biology, Applied Biochemistry, Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Seeland/OT Gatersleben, Germany.
| |
Collapse
|
2
|
Nowak K, Morończyk J, Grzyb M, Szczygieł-Sommer A, Gaj MD. miR172 Regulates WUS during Somatic Embryogenesis in Arabidopsis via AP2. Cells 2022; 11:718. [PMID: 35203367 PMCID: PMC8869827 DOI: 10.3390/cells11040718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
In plants, the embryogenic transition of somatic cells requires the reprogramming of the cell transcriptome, which is under the control of genetic and epigenetic factors. Correspondingly, the extensive modulation of genes encoding transcription factors and miRNAs has been indicated as controlling the induction of somatic embryogenesis in Arabidopsis and other plants. Among the MIRNAs that have a differential expression during somatic embryogenesis, members of the MIRNA172 gene family have been identified, which implies a role of miR172 in controlling the embryogenic transition in Arabidopsis. In the present study, we found a disturbed expression of both MIRNA172 and candidate miR172-target genes, including AP2, TOE1, TOE2, TOE3, SMZ and SNZ, that negatively affected the embryogenic response of transgenic explants. Next, we examined the role of AP2 in the miR172-mediated mechanism that controls the embryogenic response. We found some evidence that by controlling AP2, miR172 might repress the WUS that has an important function in embryogenic induction. We showed that the mechanism of the miR172-AP2-controlled repression of WUS involves histone acetylation. We observed the upregulation of the WUS transcripts in an embryogenic culture that was overexpressing AP2 and treated with trichostatin A (TSA), which is an inhibitor of HDAC histone deacetylases. The increased expression of the WUS gene in the embryogenic culture of the hdac mutants further confirmed the role of histone acetylation in WUS control during somatic embryogenesis. A chromatin-immunoprecipitation analysis provided evidence about the contribution of HDA6/19-mediated histone deacetylation to AP2-controlled WUS repression during embryogenic induction. The upstream regulatory elements of the miR172-AP2-WUS pathway might involve the miR156-controlled SPL9/SPL10, which control the level of mature miR172 in an embryogenic culture.
Collapse
Affiliation(s)
- Katarzyna Nowak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, 40-007 Katowice, Poland; (J.M.); (A.S.-S.); (M.D.G.)
| | - Joanna Morończyk
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, 40-007 Katowice, Poland; (J.M.); (A.S.-S.); (M.D.G.)
| | - Małgorzata Grzyb
- Polish Academy of Sciences Botanical Garden—Center for Biological Diversity Conservation in Powsin, Prawdziwka 2, 02-973 Warsaw, Poland;
| | - Aleksandra Szczygieł-Sommer
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, 40-007 Katowice, Poland; (J.M.); (A.S.-S.); (M.D.G.)
| | - Małgorzata D. Gaj
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, 40-007 Katowice, Poland; (J.M.); (A.S.-S.); (M.D.G.)
| |
Collapse
|
3
|
Deng Y, Fu W, Tang B, Tao L, Zhang L, Zhou X, Wang Q, Li J, Chen J. Transcriptome analysis of ovary culture-induced embryogenesis in cucumber ( Cucumis sativus L.). PeerJ 2021; 9:e12145. [PMID: 35003908 PMCID: PMC8684322 DOI: 10.7717/peerj.12145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/19/2021] [Indexed: 11/20/2022] Open
Abstract
Background.
Ovary culture is a useful technique used to generate double haploid (DH) cucumber (Cucumis sativus L.) plants. However, cucumber ovary culture have a low rate of embryo induction and plant regeneration. Moreover, the cucumber embryogenesis mechanism remains unclear. In this study, we explored the molecular basis of cucumber embryogenesis in order to establish a foundation for a more efficient ovary culture method. Using transcriptome sequencing, we also investigated the differential expression of genes during the embryogenesis process.
Methods.
Cytological and morphological observations have divided cucumber ovary culture into three stages: early embryo development (T0), embryo morphogenesis (T1, T2, T3 and T4), and shoot formation (T5). We selected six key time points for transcriptome sequencing and analysis: T0 (the ovules were cultured for 0 d), T1 (the ovules were cultured for 2 d), T2 (the embryos were cultured for 10 d), T3 (the embryos were cultured for 20 d), T4 (the embryos were cultured for 30 d), and T5 (the shoots after 60 d culture).
Results.
We used cytology and morphology to observe the characteristics of the cucumber’s developmental transformation during embryogenesis and plant regeneration. The differentially expressed genes(DEGs) at developmental transition points were analyzed using transcriptome sequencing. In the early embryogenesis stage, the cells expanded, which was the signal for gametophytes to switch to the sporophyte development pathway. RNA-seq revealed that when compared to the fresh unpollinated ovaries, there were 3,468 up-regulated genes in the embryos, including hormone signal transduction genes, hormone response genes, and stress-induced genes. The reported embryogenesis-related genes BBM, HSP90 and AGL were also actively expressed during this stage. In the embryo morphogenesis stage (from cell division to cotyledon-embryo formation), 480 genes that functioned in protein complex binding, microtubule binding, tetrapyrrole binding, tubulin binding and other microtubule activities were continuously up-regulated during the T1, T2, T3 and T4 time points. This indicated that the cytoskeleton structure was continuously being built and maintained by the action of microtubule-binding proteins and enzyme modification. In the shoot formation stage, 1,383 genes were up-regulated that were mainly enriched in phenylpropanoid biosynthesis, plant hormone signal transduction, phenylalanine metabolism, and starch and sucrose metabolism. These up-regualted genes included six transcription factors that contained a B3 domain, nine genes in the AP2/ERF family, and two genes encoding WUS homologous domain proteins.
Conclusions.
Evaluation of molecular gynogenesis events may contribute to a better understanding of the molecular mechanism of cucumber ovarian culture.
Collapse
Affiliation(s)
- Ying Deng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyan, China
| | - Wenyuan Fu
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyan, China
| | - Bing Tang
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyan, China
| | - Lian Tao
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyan, China
| | - Lu Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Xia Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Qingqing Wang
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyan, China
| | - Ji Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Liu CH, Lu RJ, Guo GM, He T, Li YB, Xu HW, Gao RH, Chen ZW, Huang JH. Transcriptome analysis reveals translational regulation in barley microspore-derived embryogenic callus under salt stress. PLANT CELL REPORTS 2016; 35:1719-1728. [PMID: 27137210 DOI: 10.1007/s00299-016-1986-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 04/20/2016] [Indexed: 06/05/2023]
Abstract
Transcriptome analysis of barley embryogenic callus from isolated microspore culture under salt stress uncovered a role of translation inhibition and selective activation of stress-specific proteins in cellular defense. Soil salinity is one of the major abiotic stresses which constrains the plant growth and reduces the productivity of field crops. In this study, it was observed that the salt stress in barley isolated microspore culture impacted not only on the quantity of embryogenic callus but also on the quality for later differentiation. The barley microspore-derived embryogenic callus, a transient intermediate form linked cells and plants, was employed for a global transcriptome analysis by RNA sequencing to provide new insights into the cellular adaptation or acclimation to stress. A total of 596 differentially expressed genes (DEGs) were identified, in which 123 DEGs were up-regulated and 473 DEGs were down-regulated in the embryogenic callus produced from microspore culture under salt stress as compared to the control conditions. KEGG pathway analysis identified 'translation' (27 DEGs; 12.56 %) as the largest group and followed by 'folding, sorting and degradation' (25 DEGs; 11.63 %) in 215 mapped metabolic pathways. The results of RNA-Seq data and quantitative real-time polymerase chain reaction validation showed that the genes related to translation regulation (such as eIF1A, RPLP0, RPLP2, VARS) were down-regulated to control general protein synthesis, and the genes related to endoplasmic reticulum stress response (such as small heat shock protein genes) were selectively up-regulated against protein denaturing during microspore embryogenesis under continuous salt stress. These transcriptional remodeling might affect the essential protein synthesis for the cell development to fulfill totipotency under salt stress.
Collapse
Affiliation(s)
- Cheng-Hong Liu
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China
| | - Rui-Ju Lu
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China
| | - Gui-Mei Guo
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China
| | - Ting He
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China
| | - Ying-Bo Li
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China
| | - Hong-Wei Xu
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China
| | - Run-Hong Gao
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China
| | - Zhi-Wei Chen
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China
| | - Jian-Hua Huang
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China.
| |
Collapse
|
5
|
Abstract
The Solanaceae is one of the most important families for global agriculture. Among the different solanaceous species, tobacco (Nicotiana tabacum), potato (Solanum tuberosum), tomato (Solanum lycopersicum), eggplant (Solanum melongena), and pepper (Capsicum annuum) are five crops of outstanding importance worldwide. In these crops, maximum yields are produced by hybrid plants created by crossing pure (homozygous) lines with the desired traits. Pure lines may be produced by conventional breeding methods, which is time consuming and costly. Alternatively, it is possible to accelerate the production of pure lines by creating doubled haploid (DH) plants derived from (haploid) male gametophytes or their precursors (androgenesis). In this way, the different steps for the production of pure lines can be reduced to only one generation, which implies important time and cost savings. This and other advantages make androgenic DHs the choice in a number of important crops where any of the different experimental in vitro techniques (anther culture or isolated microspore culture) is well set up. The Solanaceae family is an excellent example of heterogeneity in terms of response to these techniques, including highly responding species such as tobacco, considered a model system, and tomato, one of the most recalcitrant species, where no reliable and reproducible methods are yet available. Interestingly, the first evidence of androgenesis, particularly through in vitro anther culture, was demonstrated in a solanaceous species, Datura innoxia. In this chapter, we report the state of the art of the research about androgenic DHs in Solanaceae, paying special attention to datura, tobacco, potato, tomato, eggplant, and pepper.
Collapse
Affiliation(s)
- Jose M Seguí-Simarro
- COMAV - Universitat Politècnica de València. CPI, Edificio 8E - Escalera I, Camino de Vera, 46022, Valencia, Spain.
| |
Collapse
|
6
|
Li QF, Wang JH, Pulkkinen P, Kong LS. Changes in the Metabolome of Picea balfouriana Embryogenic Tissues That Were Linked to Different Levels of 6-BAP by Gas Chromatography-Mass Spectrometry Approach. PLoS One 2015; 10:e0141841. [PMID: 26517840 PMCID: PMC4627733 DOI: 10.1371/journal.pone.0141841] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/13/2015] [Indexed: 11/19/2022] Open
Abstract
Embryogenic cultures of Picea balfouriana, which is an important commercial species for reforestation in Southern China, easily lose their embryogenic ability during long-term culture. Embryogenic tissue that proliferated at lower concentrations (3.6 μM and 2.5 μM) of 6-benzylaminopurine (6-BAP) were more productive, and generated 113 ± 6 and 89 ± 3 mature embryos per 100 mg embryogenic tissue, respectively. A metabolomic approach was used to study the changes in metabolites linked to embryogenic competence related to three different 6-BAP concentrations (2.5 μM, 3.6 μM, and 5 μM). A total of 309 compounds were obtained, among which 123 metabolites mapped to Kyoto Encyclopedia of Genes and genomes (KEGG) pathways. The levels of 35 metabolites were significantly differentially regulated among the three 6-BAP treatments, and 32 metabolites differed between the 2.5 μM and 5 μM treatments. A total of 17 metabolites appeared only once among the three comparisons. The combination of a score plot and a loading plot showed that in the samples with higher embryogenic ability (3.6 μM and 2.5 μM), up-regulated metabolites were mostly amino acids and down-regulated metabolites were mostly primary carbohydrates (especially sugars). These results suggested that 6-BAP may influence embryogenic competence by nitrogen metabolism, which could cause an increase in amino acid levels and higher amounts of aspartate, isoleucine, and leucine in tissues with higher embryogenic ability. Furthermore, we speculated that 6-BAP may affect the amount of tryptophan in tissues, which would change the indole-3-acetic acid levels and influence the embryogenic ability.
Collapse
Affiliation(s)
- Q. F. Li
- State Key Laboratory of Forest Genetics and Tree Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation & Utilization, GuangXi Zhuang Autonomous Region Forestry Research Institute, Nanning, China
| | - J. H. Wang
- State Key Laboratory of Forest Genetics and Tree Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- * E-mail:
| | - P. Pulkkinen
- Finnish Forest Research Institute, Haapastensyrjä, Finland
| | - L. S. Kong
- Unit Centre for Forest Biology, Department of Biology, University of Victoria, Victoria, Canada
| |
Collapse
|
7
|
Hosp J, Ribarits A, Retzer K, Jin Y, Tashpulatov A, Resch T, Friedmann C, Ankele E, Voronin V, Palme K, Heberle-Bors E, Touraev A. A tobacco homolog of DCN1 is involved in pollen development and embryogenesis. PLANT CELL REPORTS 2014; 33:1187-202. [PMID: 24748527 DOI: 10.1007/s00299-014-1609-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/13/2014] [Accepted: 03/22/2014] [Indexed: 05/08/2023]
Abstract
KEY MESSAGE We show that DCN1 binds ubiquitin and RUB/NEDD8, associates with cullin, and is functionally conserved. DCN1 activity is required for pollen development transitions and embryogenesis, and for pollen tube growth. Plant proteomes show remarkable plasticity in reaction to environmental challenges and during developmental transitions. Some of this adaptability comes from ubiquitin-mediated protein degradation regulated by cullin-RING E3 ubiquitin ligases (CRLs). CRLs are activated through modification of the cullin subunit with the ubiquitin-like protein RUB/NEDD8 by an E3 ligase called defective in cullin neddylation 1 (DCN1). Here we show that tobacco DCN1 binds ubiquitin and RUB/NEDD8 and associates with cullin. When knocked down by RNAi, tobacco pollen formation was affected and zygotic embryogenesis was blocked around the globular stage. Additionally, we found that RNAi of DCN1 inhibited the stress-triggered reprogramming of cultured microspores from their intrinsic gametophytic mode of development to an embryogenic state. This stress-induced developmental switch is a known feature in many important crops and leads ultimately to the formation of haploid embryos and plants. Compensating the RNAi effect by re-transformation with a promoter-silencing construct restored pollen development and zygotic embryogenesis, as well as the ability for stress-induced formation of embryogenic microspores. Overexpression of DCN1 accelerated pollen tube growth and increased the potential for microspore reprogramming. These results demonstrate that the biochemical function of DCN1 is conserved in plants and that its activity is involved in transitions during pollen development and embryogenesis, and for pollen tube growth.
Collapse
Affiliation(s)
- Julia Hosp
- Max F. Perutz Laboratories, Vienna University, Dr. Bohrgasse 9, 1030, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Dubas E, Custers J, Kieft H, Wędzony M, van Lammeren AAM. Characterization of polarity development through 2- and 3-D imaging during the initial phase of microspore embryogenesis in Brassica napus L. PROTOPLASMA 2014; 251:103-13. [PMID: 23933840 PMCID: PMC3893475 DOI: 10.1007/s00709-013-0530-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/09/2013] [Indexed: 05/21/2023]
Abstract
Isolated microspores of B. napus in culture change their developmental pathway from gametophytic to sporophytic and form embryo-like structures (ELS) upon prolonged heat shock treatment (5 days at 32 °C). ELS express polarity during the initial days of endosporic development. In this study, we focussed on the analysis of polarity development of ELS without suspensor. Fluorescence microscopy and 3-D confocal laser scanning microscopy (CLSM) without tissue interfering enabled us to get a good insight in the distribution of nuclei, mitochondria and endoplasmic reticulum (ER), the architecture of microtubular (MT) cytoskeleton and the places of 5-bromo-2'-deoxy-uridine (BrdU) incorporation in successive stages of microspore embryogenesis. Scanning electron microscopy (SEM) analysis revealed, for the first time, the appearance of a fibrillar extracellular matrix-like structure (ECM-like structure) in androgenic embryos without suspensor. Two types of endosporic development were distinguished based upon the initial location of the microspore nucleus. The polarity of dividing and growing cells was recognized by the differential distributions of organelles, by the organization of the MT cytoskeleton and by the visualization of DNA synthesis in the cell cycle. The directional location of nuclei, ER, mitochondria and starch grains in relation to the MTs configurations were early polarity indicators. Both exine rupture and ECM-like structure on the outer surfaces of ELS are supposed to stabilize ELS's morphological polarity. As the role of cell polarity during early endosporic microspore embryogenesis in apical-basal cell fate determination remains unclear, microspore culture system provides a powerful in vitro tool for studying the developmental processes that take place during the earliest stages of plant embryogenesis.
Collapse
Affiliation(s)
- Ewa Dubas
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland,
| | | | | | | | | |
Collapse
|
9
|
Sánchez-Díaz RA, Castillo AM, Vallés MP. Microspore embryogenesis in wheat: new marker genes for early, middle and late stages of embryo development. PLANT REPRODUCTION 2013; 26:287-96. [PMID: 23839308 DOI: 10.1007/s00497-013-0225-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/26/2013] [Indexed: 05/21/2023]
Abstract
Microspore embryogenesis involves reprogramming of the pollen immature cell towards embryogenesis. We have identified and characterized a collection of 14 genes induced along different morphological phases of microspore-derived embryo development in wheat (Triticum aestivum L.) anther culture. SERKs and FLAs genes previously associated with somatic embryogenesis and reproductive tissues, respectively, were also included in this analysis. Genes involved in signalling mechanisms such as TaTPD1-like and TAA1b, and two glutathione S-transferase (GSTF2 and GSTA2) were induced when microspores had acquired a 'star-like' morphology or had undergone the first divisions. Genes associated with control of plant development and stress response (TaNF-YA, TaAGL14, TaFLA26, CHI3, XIP-R; Tad1 and WALI6) were activated before exine rupture. When the multicellular structures have been released from the exine, TaEXPB4, TaAGP31-like and an unknown embryo-specific gene TaME1 were induced. Comparison of gene expression, between two wheat cultivars with different response to anther culture, showed that the profile of genes activated before exine rupture was shifted to earlier stages in the low responding cultivar. This collection of genes constitutes a value resource for study mechanism of intra-embryo communication, early pattern formation, cell wall modification and embryo differentiation.
Collapse
Affiliation(s)
- Rosa Angélica Sánchez-Díaz
- Departamento de Genética y Producción Vegetal, Estación Experimental Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Av Montañana 1005, 50080, Zaragoza, Spain
| | | | | |
Collapse
|
10
|
Soriano M, Li H, Boutilier K. Microspore embryogenesis: establishment of embryo identity and pattern in culture. PLANT REPRODUCTION 2013; 26:181-196. [PMID: 23852380 DOI: 10.1007/s00497-013-0226-227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 06/25/2013] [Indexed: 05/20/2023]
Abstract
The developmental plasticity of plants is beautifully illustrated by the competence of the immature male gametophyte to change its developmental fate from pollen to embryo development when exposed to stress treatments in culture. This process, referred to as microspore embryogenesis, is widely exploited in plant breeding, but also provides a unique system to understand totipotency and early cell fate decisions. We summarize the major concepts that have arisen from decades of cell and molecular studies on microspore embryogenesis and put these in the context of recent experiments, as well as results obtained from the study of pollen and zygotic embryo development.
Collapse
Affiliation(s)
- Mercedes Soriano
- Plant Research International, P.O. Box 619, 6700 AP, Wageningen, The Netherlands
| | | | | |
Collapse
|
11
|
Soriano M, Li H, Boutilier K. Microspore embryogenesis: establishment of embryo identity and pattern in culture. PLANT REPRODUCTION 2013; 26:181-96. [PMID: 23852380 PMCID: PMC3747321 DOI: 10.1007/s00497-013-0226-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 06/25/2013] [Indexed: 05/19/2023]
Abstract
The developmental plasticity of plants is beautifully illustrated by the competence of the immature male gametophyte to change its developmental fate from pollen to embryo development when exposed to stress treatments in culture. This process, referred to as microspore embryogenesis, is widely exploited in plant breeding, but also provides a unique system to understand totipotency and early cell fate decisions. We summarize the major concepts that have arisen from decades of cell and molecular studies on microspore embryogenesis and put these in the context of recent experiments, as well as results obtained from the study of pollen and zygotic embryo development.
Collapse
Affiliation(s)
- Mercedes Soriano
- Plant Research International, P.O. Box 619, 6700 AP Wageningen, The Netherlands
| | - Hui Li
- Plant Research International, P.O. Box 619, 6700 AP Wageningen, The Netherlands
| | - Kim Boutilier
- Plant Research International, P.O. Box 619, 6700 AP Wageningen, The Netherlands
| |
Collapse
|
12
|
Businge E, Brackmann K, Moritz T, Egertsdotter U. Metabolite profiling reveals clear metabolic changes during somatic embryo development of Norway spruce (Picea abies). TREE PHYSIOLOGY 2012; 32:232-44. [PMID: 22310018 DOI: 10.1093/treephys/tpr142] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Progress on industrial-scale propagation of conifers by somatic embryogenesis has been hampered by the differences in developmental capabilities between cell lines, which are limiting the capture of genetic gains from breeding programs. In this study, we investigated the metabolic events occurring during somatic embryo development in Norway spruce to establish a better understanding of the fundamental metabolic events required for somatic embryo development. Three embryogenic cell lines of Norway spruce (Picea abies (L.) Karst) with different developmental capabilities were studied during somatic embryo development from proliferation of proembryogenic masses to mature somatic embryos. The three different cell lines displayed normal, aberrant and blocked somatic embryo development. Metabolite profiles from four development stages in each of the cell lines were obtained using combined gas chromatography-mass spectrometry. Multivariate discriminant analyses of the metabolic data revealed significant metabolites (P ≤ 0.05) for each development stage and transition. The results suggest that endogenous auxin and sugar signaling affects initial stages of somatic embryo development. Furthermore, the results highlight the importance of a timed stress response and the presence of stimulatory metabolites during late stages of embryo development.
Collapse
Affiliation(s)
- Edward Businge
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | | | | | | |
Collapse
|
13
|
Erxleben A, Gessler A, Vervliet-Scheebaum M, Reski R. Metabolite profiling of the moss Physcomitrella patens reveals evolutionary conservation of osmoprotective substances. PLANT CELL REPORTS 2012; 31:427-36. [PMID: 22038371 DOI: 10.1007/s00299-011-1177-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 09/28/2011] [Accepted: 10/12/2011] [Indexed: 05/08/2023]
Abstract
The moss Physcomitrella patens is suitable for systems biology studies, as it can be grown axenically under standardised conditions in plain mineral medium and comprises only few cell types. We report on metabolite profiling of two major P. patens tissues, filamentous protonema and leafy gametophores, from different culture conditions. A total of 96 compounds were detected, 21 of them as yet unknown in public databases. Protonema and gametophores had distinct metabolic profiles, especially with regard to saccharides, sugar derivates, amino acids, lignin precursors and nitrogen-rich storage compounds. A hydroponic culture was established for P. patens, and was used to apply drought stress under physiological conditions. This treatment led to accumulation of osmoprotectants, such as altrose, maltitol, ascorbic acid and proline. Thus, these osmoprotectants are not unique to seed plants but have evolved at an early phase of the colonization of land by plants.
Collapse
Affiliation(s)
- Anika Erxleben
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse.1, 79104, Freiburg, Germany
| | | | | | | |
Collapse
|
14
|
Islam SMS, Tuteja N. Enhancement of androgenesis by abiotic stress and other pretreatments in major crop species. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 182:134-44. [PMID: 22118624 DOI: 10.1016/j.plantsci.2011.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Revised: 10/04/2011] [Accepted: 10/05/2011] [Indexed: 05/07/2023]
Abstract
Rapid production of doubled haploids (DHs) through androgenesis is an important and promising method for genetic improvement of crop plants. Through androgenesis complete homozygous plants can be produced within a year compared to long inbreeding methods that may take several years and costly. Significant advantage of androgenesis is that it not only speeds up the process to achieve homozygosity, but also increases the selection efficiency. Though success in androgenesis has been achieved in many crop plants, yet there are certain limitations especially, low frequency of embryogenesis and regeneration in few species. In fact in many cereals, induction of embryos and regeneration of green plants is still a hurdle that one needs to overcome to improve the efficiency of androgenesis. Efficient androgenesis is usually induced by the successful application of different stress pretreatment. Since so many stress factors can trigger the reprogramming of microspores and that have been co-related to change the ultrastuctural changes of cells to embryos and finally haploid plants. It has been shown that certain pretreatment such as (i) physical stresses as cold, heat shock, starvation, drought stress, osmotic pressure, gamma irradiation, oxidative stress, reduced atmospheric pressure, and (ii) chemical treatments such as colchicine, heavy metal, ABA, CGA, AEC, Azetidine, 2-NHA, either individual or combined effect of more than one stress factors may positively influence androgenetic efficiency. This review highlights the recent and past work on uses of various abiotic stresses and pretreatments and their impact on enhancing the efficiency of androgenesis on some major crop species for the development of doubled haploid plants.
Collapse
Affiliation(s)
- S M Shahinul Islam
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India. shahin
| | | |
Collapse
|
15
|
Park SY, Lee WY, Kim YW, Moon HK. Characterization of metabolic differences between embryogenic and non-embryogenic cells in forest trees. BMC Proc 2011. [PMCID: PMC3239993 DOI: 10.1186/1753-6561-5-s7-p146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
16
|
Seguí-Simarro JM, Corral-Martínez P, Corredor E, Raska I, Testillano PS, Risueño MC. A change of developmental program induces the remodeling of the interchromatin domain during microspore embryogenesis in Brassica napus L. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:746-757. [PMID: 21216028 DOI: 10.1016/j.jplph.2010.10.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 10/20/2010] [Accepted: 10/21/2010] [Indexed: 05/30/2023]
Abstract
After a stress treatment, in vitro-cultured pollen changes its normal gametophytic developmental pathway towards embryogenesis producing multicellular embryos from which, finally, haploid and double haploid plants develop. The architecture of the well-organized nuclear functional domains changes in response to DNA replication, RNA transcription, processing and transport dynamics. A number of subnuclear structures present in the interchromatin region (IR, the nuclear domain between chromosome territories) have been shown as involved, either directly or indirectly, in transcriptional regulation. These structures include the interchromatin granule clusters (IGCs), perichromatin fibrils (PFs), Cajal bodies (CBs) and perichromatin granules (PGs). In this work, we present a cytochemical, immunocytochemical, quantitative and morphometric analysis at the light, confocal and electron microscopy levels to characterize the changes in the functional architecture of the nuclear interchromatin domain during two developmental programs followed by the microspore: differentiation to mature pollen grains (transcriptionally inactive), and microspore embryogenesis involving proliferation in the first stages (highly engaged in transcription). Our results revealed characteristic changes in size, shape and distribution of the different interchromatin structures as a consequence of the reprogramming of the microspore, allowing us to relate the remodeling of the interchromatin domain to the variations in transcriptional activities during proliferation and differentiation events, and suggesting that RNA-associated structures could be a regulatory mechanism in the process. In addition, we document the presence of two structurally different types of CBs, and of IGC and CB-associated regions, similar to those present in animal cells, and not yet described in plants.
Collapse
Affiliation(s)
- J M Seguí-Simarro
- Instituto para la Conservación y Mejora de la Agrodiversidad Valenciana, Universidad Politécnica de Valencia, Ciudad Politécnica de la Innovación, Edificio 8E-Escalera I, Camino de vera, s/n, 46022 Valencia, Spain
| | | | | | | | | | | |
Collapse
|
17
|
Muñoz-Amatriaín M, Svensson JT, Castillo AM, Close TJ, Vallés MP. Microspore embryogenesis: assignment of genes to embryo formation and green vs. albino plant production. Funct Integr Genomics 2009; 9:311-23. [PMID: 19229567 PMCID: PMC2700865 DOI: 10.1007/s10142-009-0113-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 01/16/2009] [Accepted: 01/24/2009] [Indexed: 11/30/2022]
Abstract
Plant microspores can be reprogrammed from their normal pollen development to an embryogenic route in a process termed microspore embryogenesis or androgenesis. Stress treatment has a critical role in this process, inducing the dedifferentiation of microspores and conditioning the following androgenic response. In this study, we have used three barley doubled haploid lines with similar genetic background but different androgenic response. The Barley1 GeneChip was used for transcriptome comparison of these lines after mannitol stress treatment, allowing the identification of 213 differentially expressed genes. Most of these genes belong to the functional categories "cell rescue, defense, and virulence"; "metabolism"; "transcription"; and "transport". These genes were grouped into clusters according to their expression profiles among lines. A principal component analysis allowed us to associate specific gene expression clusters to phenotypic variables. Genes associated with the ability of microspores to divide and form embryos were mainly involved in changes in the structure and function of membranes, efficient use of available energy sources, and cell fate. Genes related to stress response, transcription and translation regulation, and degradation of pollen-specific proteins were associated with green plant production, while expression of genes related to plastid development was associated with albino plant regeneration.
Collapse
Affiliation(s)
- M. Muñoz-Amatriaín
- Departamento de Genética y Producción Vegetal, Estación Experimental Aula Dei, Consejo Superior de Investigaciones Científicas, Apdo 13034, 50080 Zaragoza, Spain
| | - J. T. Svensson
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521 USA
| | - A. M. Castillo
- Departamento de Genética y Producción Vegetal, Estación Experimental Aula Dei, Consejo Superior de Investigaciones Científicas, Apdo 13034, 50080 Zaragoza, Spain
| | - T. J. Close
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521 USA
| | - M. P. Vallés
- Departamento de Genética y Producción Vegetal, Estación Experimental Aula Dei, Consejo Superior de Investigaciones Científicas, Apdo 13034, 50080 Zaragoza, Spain
| |
Collapse
|
18
|
Seguí-Simarro JM, Nuez F. How microspores transform into haploid embryos: changes associated with embryogenesis induction and microspore-derived embryogenesis. PHYSIOLOGIA PLANTARUM 2008; 134:1-12. [PMID: 18507790 DOI: 10.1111/j.1399-3054.2008.01113.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Microspore embryogenesis is the most powerful androgenic pathway to produce haploid and doubled haploid plants. To deviate a microspore toward embryogenesis, a number of factors, different for each species, must concur at the same time and place. Once induced, the microspore undergoes numerous changes at different levels, from overall morphology to gene expression. Induction of microspore embryogenesis not only implies the expression of an embryogenic program, but also a stress-related cellular response and a repression of the gametophytic program to revert the microspore to a totipotent status. In this review, we compile the most recent advances in the understanding of the changes undergone by the induced microspore to readapt to the new developmental scenario. We devote special attention to the efforts made to uncover changes in the transcriptome of the induced microspore and microspore-derived embryo (MDE). Finally, we discuss the influence that an in vitro environment exerts over the MDE, as compared with its zygotic counterpart.
Collapse
Affiliation(s)
- José M Seguí-Simarro
- Instituto para la Conservación y Mejora de la Agrodiversidad Valenciana, Universidad Politécnica de Valencia, Ciudad Politécnica de la Innovación, Valencia, Spain.
| | | |
Collapse
|
19
|
Forster BP, Heberle-Bors E, Kasha KJ, Touraev A. The resurgence of haploids in higher plants. TRENDS IN PLANT SCIENCE 2007; 12:368-75. [PMID: 17629539 DOI: 10.1016/j.tplants.2007.06.007] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 06/05/2007] [Accepted: 06/29/2007] [Indexed: 05/02/2023]
Abstract
The life cycle of plants proceeds via alternating generations of sporophytes and gametophytes. The dominant and most obvious life form of higher plants is the free-living sporophyte. The sporophyte is the product of fertilization of male and female gametes and contains a set of chromosomes from each parent; its genomic constitution is 2n. Chromosome reduction at meiosis means cells of the gametophytes carry half the sporophytic complement of chromosomes (n). Plant haploid research began with the discovery that sporophytes can be produced in higher plants carrying the gametic chromosome number (n instead of 2n) and that their chromosome number can subsequently be doubled up by colchicine treatment. Recent technological innovations, greater understanding of underlying control mechanisms and an expansion of end-user applications has brought about a resurgence of interest in haploids in higher plants.
Collapse
|