1
|
Filip E, Woronko K, Stępień E, Czarniecka N. An Overview of Factors Affecting the Functional Quality of Common Wheat ( Triticum aestivum L.). Int J Mol Sci 2023; 24:7524. [PMID: 37108683 PMCID: PMC10142556 DOI: 10.3390/ijms24087524] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/03/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Wheat (Triticum aestivum L.) is one of the most important crops worldwide, and, as a resilient cereal, it grows in various climatic zones. Due to changing climatic conditions and naturally occurring environmental fluctuations, the priority problem in the cultivation of wheat is to improve the quality of the crop. Biotic and abiotic stressors are known factors leading to the deterioration of wheat grain quality and to crop yield reduction. The current state of knowledge on wheat genetics shows significant progress in the analysis of gluten, starch, and lipid genes responsible for the synthesis of the main nutrients in the endosperm of common wheat grain. By identifying these genes through transcriptomics, proteomics, and metabolomics studies, we influence the creation of high-quality wheat. In this review, previous works were assessed to investigate the significance of genes, puroindolines, starches, lipids, and the impact of environmental factors, as well as their effects on the wheat grain quality.
Collapse
Affiliation(s)
- Ewa Filip
- Institute of Biology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland
| | - Karolina Woronko
- Institute of Biology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland
| | - Edyta Stępień
- Institute of Marine and Environmental Sciences, University of Szczecin, Adama Mickiewicza 16, 70-383 Szczecin, Poland
| | - Natalia Czarniecka
- Institute of Biology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland
| |
Collapse
|
2
|
Melnikova DN, Finkina EI, Bogdanov IV, Tagaev AA, Ovchinnikova TV. Features and Possible Applications of Plant Lipid-Binding and Transfer Proteins. MEMBRANES 2022; 13:2. [PMID: 36676809 PMCID: PMC9866449 DOI: 10.3390/membranes13010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
In plants, lipid trafficking within and inside the cell is carried out by lipid-binding and transfer proteins. Ligands for these proteins are building and signaling lipid molecules, secondary metabolites with different biological activities due to which they perform diverse functions in plants. Many different classes of such lipid-binding and transfer proteins have been found, but the most common and represented in plants are lipid transfer proteins (LTPs), pathogenesis-related class 10 (PR-10) proteins, acyl-CoA-binding proteins (ACBPs), and puroindolines (PINs). A low degree of amino acid sequence homology but similar spatial structures containing an internal hydrophobic cavity are common features of these classes of proteins. In this review, we summarize the latest known data on the features of these protein classes with particular focus on their ability to bind and transfer lipid ligands. We analyzed the structural features of these proteins, the diversity of their possible ligands, the key amino acids participating in ligand binding, the currently known mechanisms of ligand binding and transferring, as well as prospects for possible application.
Collapse
Affiliation(s)
- Daria N. Melnikova
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
| | - Ekaterina I. Finkina
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
| | - Ivan V. Bogdanov
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
| | - Andrey A. Tagaev
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
| | - Tatiana V. Ovchinnikova
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
| |
Collapse
|
3
|
Jiang Y, Li J, Liu B, Cao D, Zong Y, Chang Y, Li Y. Novel Hina alleles created by genome editing increase grain hardness and reduce grain width in barley. Transgenic Res 2022; 31:637-645. [PMID: 35982368 DOI: 10.1007/s11248-022-00324-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/09/2022] [Indexed: 01/20/2023]
Abstract
The hordoindolina genes (Hina and Hinb) are believed to play critical roles in barley (Hordeum vulgare L.) grain texture. In this study, we created novel alleles of the Hina gene using CRISPR/Cas9 (Clustered regularly inter spaced short palindromic repeat-associated protein, CRISPR-Cas) genome editing. Mutagenesis of single bases in these novel alleles led to loss of Hina protein function in edited lines. The grain hardness index of hina mutants was 95.5 on average, while that of the wild type was only 53.7, indicating successful conversion of soft barley into hard barley. Observation of cross-sectional grain structure using scanning electron microscopy revealed different adhesion levels between starch granules and protein matrix. Starch granules were loose and separated from the protein matrix in the wild type, but deeply trapped and tightly integrated with the protein matrix in hina02 mutants. In addition, the grain width and thousand-grain weight of the hina02 mutant were significantly lower than those of the wild type.
Collapse
Affiliation(s)
- Yanyan Jiang
- Qinghai Normal University, Xining, 810008, China
| | - Jianmin Li
- Qinghai Normal University, Xining, 810008, China
| | - Baolong Liu
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Dong Cao
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Yuan Zong
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Yanzi Chang
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Yun Li
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China. .,Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.
| |
Collapse
|
4
|
Lafiandra D, Sestili F, Sissons M, Kiszonas A, Morris CF. Increasing the Versatility of Durum Wheat through Modifications of Protein and Starch Composition and Grain Hardness. Foods 2022; 11:foods11111532. [PMID: 35681282 PMCID: PMC9180912 DOI: 10.3390/foods11111532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Although durum wheat (Triticum durum L. ssp. durum Desf.) has traditionally been used to make a range of food products, its use has been restricted due to the absence of the D-genome glutenin proteins, the relatively low variability in starch composition, and its very hard grain texture. This review focuses on the manipulation of the starch and protein composition and modification of the hardness of durum wheat in order to improve its technological and nutritional value and expand its utilization for application to a wider number of end products. Starch is composed of amylopectin and amylose in a 3:1 ratio, and their manipulation has been explored for achieving starch with modified composition. In particular, silencing of the genes involved in amylose and amylopectin synthesis has made it possible to isolate durum wheat lines with amylose content varying from 2–3% up to 75%. This has created opportunities for new products with different properties and enhanced nutritional value. Durum-made bread has generally inferior quality to bread made from common wheat. Attempts to introduce the Glu-D1 subunits 1Dx5 + 1Dy10 and 1Dx2 + 1Dy12 produced stronger dough, but the former produced excessively strong, inelastic doughs, and loaf volume was either inferior or not affected. In contrast, the 1Dx2 + 1Dy12 sometimes improved bread loaf volume (LV) depending on the glutenin subunit background of the genotype receiving these genes. Further breeding and selection are needed to improve the dough extensibility to allow higher LV and better texture. The versatility of durum wheat has been greatly expanded with the creation of soft-textured durum via non-GMO introgression means. This soft durum mills like soft hexaploid wheat and has similar baking properties. The pasta quality is also not diminished by the soft-textured kernels. The Glu-D1 locus containing the subunits 1Dx2 + 1Dy12 has also been introgressed to create higher quality soft durum bread.
Collapse
Affiliation(s)
- Domenico Lafiandra
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy;
- Correspondence: (D.L.); (M.S.)
| | - Francesco Sestili
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy;
| | - Mike Sissons
- NSW Department of Primary Industries, Tamworth 2340, Australia
- Correspondence: (D.L.); (M.S.)
| | - Alecia Kiszonas
- United States Department of Agriculture, Agriculture Research Service, Western Wheat Quality Lab, Pullman, WA 99164, USA; (A.K.); (C.F.M.)
| | - Craig F. Morris
- United States Department of Agriculture, Agriculture Research Service, Western Wheat Quality Lab, Pullman, WA 99164, USA; (A.K.); (C.F.M.)
| |
Collapse
|
5
|
Ibba MI, Kumar N, Morris CF. Identification and genetic characterization of extra soft kernel texture in soft kernel durum wheat (
Triticum turgidum
ssp.
durum
). Cereal Chem 2021. [DOI: 10.1002/cche.10471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Maria Itria Ibba
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT) Texcoco Mexico
- USDA‐ARS Western Wheat & Pulse Quality Laboratory Washington State University Pullman WA USA
| | - Neeraj Kumar
- USDA‐ARS Western Wheat & Pulse Quality Laboratory Washington State University Pullman WA USA
- Advanced Plant Technology Department of Plant and Environmental Sciences Clemson University Clemson SC USA
| | - Craig F. Morris
- USDA‐ARS Western Wheat & Pulse Quality Laboratory Washington State University Pullman WA USA
| |
Collapse
|
6
|
Talukdar PK, Turner KL, Crockett TM, Lu X, Morris CF, Konkel ME. Inhibitory Effect of Puroindoline Peptides on Campylobacter jejuni Growth and Biofilm Formation. Front Microbiol 2021; 12:702762. [PMID: 34276635 PMCID: PMC8283790 DOI: 10.3389/fmicb.2021.702762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/02/2021] [Indexed: 11/13/2022] Open
Abstract
Puroindolines are small, amphipathic, wheat proteins that determine the hardness of the wheat kernel and protect crops from different pathogens. Puroindoline A (PinA) and puroindoline B (PinB) are two major isoforms of puroindolines. These proteins have antibacterial and antifungal properties mainly attributed to their characteristic tryptophan-rich domains (TRDs). In this in vitro study, we investigated the antimicrobial effect of PinA and PinB synthetic peptides against the growth and biofilm formation of Campylobacter jejuni. C. jejuni is an important microaerobic, foodborne pathogen that causes gastrointestinal and neurological diseases in humans. Our results showed that: (1) PinA, but not PinB, has strong antimicrobial activity against C. jejuni clinical strains 81-176 and F38011, Escherichia coli O157:H7, methicillin-resistant Staphylococcus aureus, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes; (2) The substitution of two tryptophan residues to glycine (W→G) in the TRD of PinA abolishes its antimicrobial activity against these microorganisms; (3) PinA functions additively with two common antibiotics (ciprofloxacin and erythromycin) to inhibit or inactivate C. jejuni strains; (4) PinA damages the C. jejuni cellular membrane, (5) PinA is cytotoxic to human INT 407 cells at high concentrations; and (6) PinA inhibits C. jejuni biofilm formation. In summary, this study demonstrates the antimicrobial activity of PinA against C. jejuni growth and biofilm formation and further confirms the potential use of PinA as a therapeutic agent in health care or as preservatives in the agri-food industry.
Collapse
Affiliation(s)
- Prabhat K Talukdar
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Kyrah L Turner
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Torin M Crockett
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Xiaonan Lu
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Montréal, QC, Canada
| | - Craig F Morris
- Western Wheat Quality Lab, U.S. Department of Agriculture-Agricultural Research Service, Pullman, WA, United States
| | - Michael E Konkel
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| |
Collapse
|
7
|
Kiszonas AM, Ibba MI, Boehm JD, Morris CF. Effects of
Glu‐D1
gene introgressions on soft white spring durum wheat (
Triticum turgidum
ssp.
durum
) quality. Cereal Chem 2021. [DOI: 10.1002/cche.10459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alecia M. Kiszonas
- Department of Crop and Soil Sciences Washington State University Pullman WA USA
- USDA‐ARS Western Wheat & Pulse Quality Laboratory Washington State University Pullman WA USA
| | - Maria Itria Ibba
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT) Texcoco Mexico
| | | | - Craig F. Morris
- USDA‐ARS Western Wheat & Pulse Quality Laboratory Washington State University Pullman WA USA
| |
Collapse
|
8
|
Tu M, Li Y. Toward the Genetic Basis and Multiple QTLs of Kernel Hardness in Wheat. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1631. [PMID: 33255282 PMCID: PMC7760206 DOI: 10.3390/plants9121631] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/03/2022]
Abstract
Kernel hardness is one of the most important single traits of wheat seed. It classifies wheat cultivars, determines milling quality and affects many end-use qualities. Starch granule surfaces, polar lipids, storage protein matrices and Puroindolines potentially form a four-way interaction that controls wheat kernel hardness. As a genetic factor, Puroindoline polymorphism explains over 60% of the variation in kernel hardness. However, genetic factors other than Puroindolines remain to be exploited. Over the past two decades, efforts using population genetics have been increasing, and numerous kernel hardness-associated quantitative trait loci (QTLs) have been identified on almost every chromosome in wheat. Here, we summarize the state of the art for mapping kernel hardness. We emphasize that these steps in progress have benefitted from (1) the standardized methods for measuring kernel hardness, (2) the use of the appropriate germplasm and mapping population, and (3) the improvements in genotyping methods. Recently, abundant genomic resources have become available in wheat and related Triticeae species, including the high-quality reference genomes and advanced genotyping technologies. Finally, we provide perspectives on future research directions that will enhance our understanding of kernel hardness through the identification of multiple QTLs and will address challenges involved in fine-tuning kernel hardness and, consequently, food properties.
Collapse
Affiliation(s)
| | - Yin Li
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ 08854, USA;
| |
Collapse
|
9
|
Shagaghi N, Clayton AHA, Aguilar MI, Lee TH, Palombo EA, Bhave M. Effects of Rationally Designed Physico-Chemical Variants of the Peptide PuroA on Biocidal Activity towards Bacterial and Mammalian Cells. Int J Mol Sci 2020; 21:ijms21228624. [PMID: 33207639 PMCID: PMC7696940 DOI: 10.3390/ijms21228624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/20/2020] [Accepted: 11/11/2020] [Indexed: 01/07/2023] Open
Abstract
Antimicrobial peptides (AMPs) often exhibit wide-spectrum activities and are considered ideal candidates for effectively controlling persistent and multidrug-resistant wound infections. PuroA, a synthetic peptide based on the tryptophan (Trp)-rich domain of the wheat protein puroindoline A, displays strong antimicrobial activities. In this work, a number of peptides were designed based on PuroA, varying in physico-chemical parameters of length, number of Trp residues, net charge, hydrophobicity or amphipathicity, D-versus L-isomers of amino acids, cyclization or dimerization, and were tested for antimicrobial potency and salt and protease tolerance. Selected peptides were assessed for effects on biofilms of methicillin-resistant Staphylococcus aureus (MRSA) and selected mammalian cells. Peptide P1, with the highest amphipathicity, six Trp and a net charge of +7, showed strong antimicrobial activity and salt stability. Peptides W7, W8 and WW (seven to eight residues) were generally more active than PuroA and all diastereomers were protease-resistant. PuroA and certain variants significantly inhibited initial biomass attachment and eradicated preformed biofilms of MRSA. Further, P1 and dimeric PuroA were cytotoxic to HeLa cells. The work has led to peptides with biocidal effects on common human pathogens and/or anticancer potential, also offering great insights into the relationship between physico-chemical parameters and bioactivities, accelerating progress towards rational design of AMPs for therapeutics.
Collapse
Affiliation(s)
- Nadin Shagaghi
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122, Australia; (N.S.); (E.A.P.)
| | - Andrew H. A. Clayton
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122, Australia;
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; (M.-I.A.); (T.-H.L.)
| | - Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; (M.-I.A.); (T.-H.L.)
| | - Enzo A. Palombo
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122, Australia; (N.S.); (E.A.P.)
| | - Mrinal Bhave
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122, Australia; (N.S.); (E.A.P.)
- Correspondence: ; Tel.: +61-3-9214-5759
| |
Collapse
|
10
|
Kiseleva AA, Leonova IN, Pshenichnikova TA, Salina EA. Dissection of novel candidate genes for grain texture in Russian wheat varieties. PLANT MOLECULAR BIOLOGY 2020; 104:219-233. [PMID: 32617826 DOI: 10.1007/s11103-020-01025-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Antonina A Kiseleva
- The Federal State Budgetary Institution of Science Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Prospekt Lavrentyeva 10, Novosibirsk, Russia, 630090.
- Kurchatov Genomics Center, Institute of Cytology and Genetics SB RAS, Prospekt Lavrentyeva 10, Novosibirsk, Russia, 630090.
| | - Irina N Leonova
- The Federal State Budgetary Institution of Science Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Prospekt Lavrentyeva 10, Novosibirsk, Russia, 630090
| | - Tatyana A Pshenichnikova
- The Federal State Budgetary Institution of Science Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Prospekt Lavrentyeva 10, Novosibirsk, Russia, 630090
| | - Elena A Salina
- Kurchatov Genomics Center, Institute of Cytology and Genetics SB RAS, Prospekt Lavrentyeva 10, Novosibirsk, Russia, 630090
| |
Collapse
|
11
|
Lullien-Pellerin V. Both genetic and environmental conditions affect wheat grain texture: Consequences for grain fractionation and flour properties. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.102917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Li X, Li Y, Yu X, Sun F, Yang G, He G. Genomics-Enabled Analysis of Puroindoline b2 Genes Identifies New Alleles in Wheat and Related Triticeae Species. Int J Mol Sci 2020; 21:E1304. [PMID: 32075191 PMCID: PMC7072932 DOI: 10.3390/ijms21041304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 01/12/2023] Open
Abstract
Kernel hardness is a key trait of wheat seeds, largely controlled by two tightly linked genes Puroindoline a and b (Pina and Pinb). Genes homologous to Pinb, namely Pinb2, have been studied. Whether these genes contribute to kernel hardness and other important seed traits remains inconclusive. Using the high-quality bread wheat reference genome, we show that PINB2 are encoded by three homoeologous loci Pinb2 not syntenic to the Hardness locus, with Pinb2-7A locus containing three tandem copies. PINB2 proteins have several features conserved for the Pin/Pinb2 phylogenetic cluster but lack a structural basis of significant impact on kernel hardness. Pinb2 are seed-specifically expressed with varied expression levels between the homoeologous copies and among wheat varieties. Using the high-quality genome information, we developed new Pinb2 allele specific markers and demonstrated their usefulness by 1) identifying new Pinb2 alleles in Triticeae species; and 2) performing an association analysis of Pinb2 with kernel hardness. The association result suggests that Pinb2 genes may have no substantial contribution to kernel hardness. Our results provide new insights into Pinb2 evolution and expression and the new allele-specific markers are useful to further explore Pinb2's contribution to seed traits in wheat.
Collapse
Affiliation(s)
- Xiaoyan Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (X.L.); (X.Y.); (F.S.)
| | - Yin Li
- Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ 08854, USA;
| | - Xiaofen Yu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (X.L.); (X.Y.); (F.S.)
| | - Fusheng Sun
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (X.L.); (X.Y.); (F.S.)
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (X.L.); (X.Y.); (F.S.)
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (X.L.); (X.Y.); (F.S.)
| |
Collapse
|
13
|
Li Q, Pan Z, Gao Y, Li T, Liang J, Zhang Z, Zhang H, Deng G, Long H, Yu M. Quantitative Trait Locus (QTLs) Mapping for Quality Traits of Wheat Based on High Density Genetic Map Combined With Bulked Segregant Analysis RNA-seq (BSR-Seq) Indicates That the Basic 7S Globulin Gene Is Related to Falling Number. FRONTIERS IN PLANT SCIENCE 2020; 11:600788. [PMID: 33424899 PMCID: PMC7793810 DOI: 10.3389/fpls.2020.600788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/11/2020] [Indexed: 05/14/2023]
Abstract
Numerous quantitative trait loci (QTLs) have been identified for wheat quality; however, most are confined to low-density genetic maps. In this study, based on specific-locus amplified fragment sequencing (SLAF-seq), a high-density genetic map was constructed with 193 recombinant inbred lines derived from Chuanmai 42 and Chuanmai 39. In total, 30 QTLs with phenotypic variance explained (PVE) up to 47.99% were identified for falling number (FN), grain protein content (GPC), grain hardness (GH), and starch pasting properties across three environments. Five NAM genes closely adjacent to QGPC.cib-4A probably have effects on GPC. QGH.cib-5D was the only one detected for GH with high PVE of 33.31-47.99% across the three environments and was assumed to be related to the nearest pina-D1 and pinb-D1genes. Three QTLs were identified for FN in at least two environments, of which QFN.cib-3D had relatively higher PVE of 16.58-25.74%. The positive effect of QFN.cib-3D for high FN was verified in a double-haploid population derived from Chuanmai 42 × Kechengmai 4. The combination of these QTLs has a considerable effect on increasing FN. The transcript levels of Basic 7S globulin and Basic 7S globulin 2 in QFN.cib-3D were significantly different between low FN and high FN bulks, as observed through bulk segregant RNA-seq (BSR). These QTLs and candidate genes based on the high-density genetic map would be beneficial for further understanding of the genetic mechanism of quality traits and molecular breeding of wheat.
Collapse
Affiliation(s)
- Qiao Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zhifen Pan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- *Correspondence: Zhifen Pan, ; orcid.org/0000-0002-1692-5425
| | - Yuan Gao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junjun Liang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zijin Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Haili Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Guangbing Deng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Hai Long
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Maoqun Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
14
|
Ma X, Xue H, Sun J, Sajjad M, Wang J, Yang W, Li X, Zhang A, Liu D. Transformation of Pinb-D1x to soft wheat produces hard wheat kernel texture. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2019.102889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Lv A, Li C, Tian P, Yuan W, Zhang S, Lv Y, Hu Y. Expression and purification of recombinant puroindoline A protein in Escherichia coli and its antifungal effect against Aspergillus flavus. Appl Microbiol Biotechnol 2019; 103:9515-9527. [PMID: 31720772 DOI: 10.1007/s00253-019-10168-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 12/21/2022]
Abstract
Aspergillus flavus is the main cause of postharvest agricultural commodity loss. In this study, puroindoline A (PINA) protein was expressed in Escherichia coli, purified, and its antifungal properties against A. flavus were characterized. Sodium dodecyl sulfate polyacrylamide gel electrophoresis showed that the molecular weight of the recombinant PINA protein was approximately 44 kDa. PINA exerted a powerful antifungal effect against A. flavus at 42.42 μg/mL on potato dextrose agar culture medium. Flow cytometry and scanning electron microscopy revealed that the spore morphology was damaged by PINA exposure; spores were depressed and broken, suggesting that the cell wall was impaired. Transmission electron microscopy and propidium iodide staining illustrated significant changes in intracellular spore structure, indicating cell membrane damage. 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolocarbocyanine iodide staining indicated decreased mitochondrial membrane potential. Large nuclear condensation and DNA fragmentation were detected by 4',6-diamidino-2-phenylindole staining. The expression of genes related to the cell wall, cell membrane, and spore germination significantly changed in PINA-treated cells; this illustrated the probable mode of PINA action on A. flavus through cell wall destruction and triggered cell membrane, mitochondrial, and DNA damage leading to cell death. The antifungal mechanism of wheat PINA protein on A. flavus has been demonstrated in this study, and has potential application in preventing postharvest loss in the agricultural industry.
Collapse
Affiliation(s)
- Ang Lv
- College of Biological Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
| | - Cuixiang Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
| | - Pingping Tian
- College of Biological Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
| | - Wenjing Yuan
- College of Biological Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
| | - Shuaibing Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
| | - Yangyong Lv
- College of Biological Engineering, Henan University of Technology, Zhengzhou, People's Republic of China.
| | - Yuansen Hu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, People's Republic of China.
| |
Collapse
|
16
|
The antimicrobial properties of the puroindolines, a review. World J Microbiol Biotechnol 2019; 35:86. [PMID: 31134452 DOI: 10.1007/s11274-019-2655-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/10/2019] [Indexed: 10/26/2022]
Abstract
Antimicrobial proteins, and especially antimicrobial peptides (AMPs) hold great promise in the control of animal and plant diseases with low risk of pathogen resistance. The two puroindolines, a and b, from wheat control endosperm softness of the wheat caryopsis (grain), but have also been shown to inhibit the growth and kill various bacteria and fungi, while showing little toxicity to erythrocytes. Puroindolines are small (~ 13 kDa) amphipathic proteins with a characteristic tryptophan-rich domain (TRD) that is part of an 18 or 19 amino acid residue loop subtended by a disulfide bond. This review presents a brief history of the puroindolines, their physical-chemical characteristics, their interaction with lipids and membranes, and their activity as antimicrobial proteins and AMPs. In this latter context, the use of the TRDs of puroindoline a and b in puroindoline AMP function is reviewed. The activity of puroindoline a and b and their AMPs appear to act through similar but somewhat different modes, which may involve membrane binding, membrane disruption and ion channel formation, and intra-cellular nucleic acid binding and metabolic disruption. Natural and synthetic mutants have identified key elements of the puroindolines for antimicrobial activity.
Collapse
|
17
|
Wang Q, Li Y, Sun F, Li X, Wang P, Yang G, He G. Expression of Puroindoline a in Durum Wheat Affects Milling and Pasting Properties. FRONTIERS IN PLANT SCIENCE 2019; 10:482. [PMID: 31057584 PMCID: PMC6482235 DOI: 10.3389/fpls.2019.00482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
Durum wheat has limited culinary utilizations partly due to its extremely hard kernel texture. Previously, we developed transgenic durum wheat lines with expression of the wildtype Puroindoline a (Pina) and characterized PINA's effects on kernel hardness, total flour yield and dough mixing properties in durum wheat. The medium-hard kernel texture is potentially useful for exploring culinary applications of durum wheat. In the present study, we examined the milling parameters and flour attributes of the transgenic lines, including particle size distribution, damaged starch and water binding capacity. PINA expression results in increased break and reduction flour yield but decreased shorts. PINA expression also leads to finer flour particles and decreased starch damage. Interestingly, PINA transgenic lines showed increased peak viscosity and breakdown viscosity but leave other flour pasting parameters generally unaltered. PINA transgenic lines were associated with increased small monomeric proteins, appearing to affect gluten aggregation. Our data together with several previous results highlight distinct effects of PINs on pasting properties depending on species and variety. The medium-hard kernel texture together with improved pasting parameters may be valuable for producing a broader range of end-products from durum wheat.
Collapse
Affiliation(s)
- Qiong Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Fusheng Sun
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Xiaoyan Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Pandi Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| |
Collapse
|
18
|
Wang Q, Li Y, Sun F, Li X, Wang P, Chang J, Wang Y, Yang G, He G. Co-expression of high-molecular-weight glutenin subunit 1Ax1 and Puroindoline a (Pina) genes in transgenic durum wheat (Triticum turgidum ssp. durum) improves milling and pasting quality. BMC PLANT BIOLOGY 2019; 19:126. [PMID: 30947699 PMCID: PMC6449967 DOI: 10.1186/s12870-019-1734-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Durum wheat is considered not suitable for making many food products that bread wheat can. This limitation is largely due to: (i) lack of grain-hardness controlling genes (Puroindoline a and b) and consequently extremely-hard kernel; (ii) lack of high- and low-molecular-weight glutenin subunit loci (Glu-D1 and Glu-D3) that contribute to gluten strength. To improve food processing quality of durum wheat, we stacked transgenic Pina and HMW-glutenin subunit 1Ax1 in durum wheat and developed lines with medium-hard kernel texture. RESULTS Here, we demonstrated that co-expression of Pina + 1Ax1 in durum wheat did not affect the milling performance that was enhanced by Pina expression. While stacking of Pina + 1Ax1 led to increased flour yield, finer flour particles and decreased starch damage compared to the control lines. Interestingly, Pina and 1Ax1 co-expression showed synergistic effects on the pasting attribute peak viscosity. Moreover, Pina and 1Ax1 co-expression suggests that PINA impacts gluten aggregation via interaction with gluten protein matrix. CONCLUSIONS The results herein may fill the gap of grain hardness between extremely-hard durum wheat and the soft kernel durum wheat, the latter of which has been developed recently. Our results may also serve as a proof of concept that stacking Puroindolines and other genes contributing to wheat end-use quality from the A and/or D genomes could improve the above-mentioned bottleneck traits of durum wheat and help to expand its culinary uses.
Collapse
Affiliation(s)
- Qiong Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, 430065 China
| | - Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, 190 Frelinghuysen Rd, Piscataway, NJ 08854 USA
| | - Fusheng Sun
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
| | - Xiaoyan Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
| | - Pandi Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
| | - Yuesheng Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
| |
Collapse
|
19
|
Genetic analysis of a unique ‘super soft’ kernel texture phenotype in soft white spring wheat. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2018.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Sequence Diversity and Identification of Novel Puroindoline and Grain Softness Protein Alleles in Elymus, Agropyron and Related Species. DIVERSITY 2018. [DOI: 10.3390/d10040114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The puroindoline proteins, PINA and PINB, which are encoded by the Pina and Pinb genes located at the Ha locus on chromosome 5D of bread wheat, are considered to be the most important determinants of grain hardness. However, the recent identification of Pinb-2 genes on group 7 chromosomes has stressed the importance of considering the effects of related genes and proteins. Several species related to wheat (two diploid Agropyron spp., four tetraploid Elymus spp. and five hexaploid Elymus and Agropyron spp.) were therefore analyzed to identify novel variation in Pina, Pinb and Pinb-2 genes which could be exploited for the improvement of cultivated wheat. A novel sequence for the Pina gene was detected in Elymus burchan-buddae, Elymus dahuricus subsp. excelsus and Elymus nutans and novel PINB sequences in Elymus burchan-buddae, Elymus dahuricus subsp. excelsus, and Elymus nutans. A novel PINB-2 variant was also detected in Agropyron repens and Elymus repens. The encoded proteins detected all showed changes in the tryptophan-rich domain as well as changes in and/or deletions of basic and hydrophobic residues. In addition, two new AGP sequences were identified in Elymus nutans and Elymus wawawaiensis. The data presented therefore highlight the sequence diversity in this important gene family and the potential to exploit this diversity to modify grain texture and end-use quality in wheat.
Collapse
|
21
|
Murray JC, Kiszonas AM, Morris CF. Influence of Soft Kernel Texture on Fresh Durum Pasta. J Food Sci 2018; 83:2812-2818. [PMID: 30320404 DOI: 10.1111/1750-3841.14363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/08/2018] [Accepted: 08/31/2018] [Indexed: 11/27/2022]
Abstract
This study examined the quality of fresh pasta made from 3 varieties of a new type of durum wheat possessing soft kernel texture, as compared to fresh pasta made from commercial samples of durum semolina, durum flour, and bread flour, each at 3 levels of hydration (28%, 30%, and 32%, respectively). Soft durum possesses a small part of chromosome 5D that carries the Hardness locus and puroindoline genes. The soft durum lines were derived from the durum varieties Svevo, Alzada, and Havasu. The soft durum pasta exhibited low cooking weight increase (water uptake) (115% to 122%), the lowest cooking loss (∼3% to 4%), high firmness (269.3, 265.8, and 297.9 g, Soft Svevo, Soft Havasu, and Soft Alzada, respectively, versus 239.7 and 273.6 g, durum flour and semolina, respectively), low stickiness (4.17 to 4.96 g·s for the soft durums compared with 5.04 for the semolina), and raw and cooked pasta color comparable to or superior to those exhibited by the durum semolina (high L* and b* ). The soft durum samples also exhibited pasta quality superior to both the durum flour and bread flour samples. These results challenge the long-standing view that high-quality pasta must be made from durum semolina. PRACTICAL APPLICATION: This study illustrates the quality and potential applications of soft durum wheat in pasta manufacturing. As a new type of wheat, understanding these properties is crucial for manufacturers and others who may be interested in utilizing soft durum.
Collapse
Affiliation(s)
- Jessica C Murray
- the School of Hospitality Business Management, Carson College of Business, Washington State Univ., Todd Hall 342, Pullman, WA 99164
| | - Alecia M Kiszonas
- the USDA-ARS Western Wheat Quality Laboratory, E-202 Food Quality Bldg., Washington State Univ., P.O. Box 646394, Pullman, WA 99164
| | - Craig F Morris
- the USDA-ARS Western Wheat Quality Laboratory, E-202 Food Quality Bldg., Washington State Univ., P.O. Box 646394, Pullman, WA 99164
| |
Collapse
|
22
|
Okada M, Ikeda TM, Yoshida K, Takumi S. Effect of the U genome on grain hardness in nascent synthetic hexaploids derived from interspecific hybrids between durum wheat and Aegilops umbellulata. J Cereal Sci 2018. [DOI: 10.1016/j.jcs.2018.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Shabrangy A, Roustan V, Reipert S, Weidinger M, Roustan PJ, Stoger E, Weckwerth W, Ibl V. Using RT-qPCR, Proteomics, and Microscopy to Unravel the Spatio-Temporal Expression and Subcellular Localization of Hordoindolines Across Development in Barley Endosperm. FRONTIERS IN PLANT SCIENCE 2018; 9:775. [PMID: 29951075 PMCID: PMC6008550 DOI: 10.3389/fpls.2018.00775] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 05/22/2018] [Indexed: 05/20/2023]
Abstract
Hordeum vulgare (barley) hordoindolines (HINs), HINa, HINb1, and HINb2, are orthologous proteins of wheat puroindolines (PINs) that are small, basic, cysteine-rich seed-specific proteins and responsible for grain hardness. Grain hardness is, next to its protein content, a major quality trait. In barley, HINb is most highly expressed in the mid-stage developed endosperm and is associated with both major endosperm texture and grain hardness. However, data required to understand the spatio-temporal dynamics of HIN transcripts and HIN protein regulation during grain filling processes are missing. Using reverse transcription quantitative PCR (RT-qPCR) and proteomics, we analyzed HIN transcript and HIN protein abundance from whole seeds (WSs) at four [6 days after pollination (dap), 10, 12, and ≥20 dap] as well as from aleurone, subaleurone, and starchy endosperm at two (12 and ≥20 dap) developmental stages. At the WS level, results from RT-qPCR, proteomics, and western blot showed a continuous increase of HIN transcript and HIN protein abundance across these four developmental stages. Miroscopic studies revealed HIN localization mainly at the vacuolar membrane in the aleurone, at protein bodies (PBs) in subaleurone and at the periphery of starch granules in the starchy endosperm. Laser microdissetion (LMD) proteomic analyses identified HINb2 as the most prominent HIN protein in starchy endosperm at ≥20 dap. Additionally, our quantification data revealed a poor correlation between transcript and protein levels of HINs in subaleurone during development. Here, we correlated data achieved by RT-qPCR, proteomics, and microscopy that reveal different expression and localization pattern of HINs in each layer during barley endosperm development. This indicates a contribution of each tissue to the regulation of HINs during grain filling. The effect of the high protein abundance of HINs in the starchy endosperm and their localization at the periphery of starch granules at late development stages at the cereal-based end-product quality is discussed. Understanding the spatio-temporal regulated HINs is essential to improve barley quality traits for high end-product quality, as hard texture of the barley grain is regulated by the ratio between HINb/HINa.
Collapse
Affiliation(s)
- Azita Shabrangy
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Valentin Roustan
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Siegfried Reipert
- Core Facility Cell Imaging and Ultrastructure Research, University of Vienna, Vienna, Austria
| | - Marieluise Weidinger
- Core Facility Cell Imaging and Ultrastructure Research, University of Vienna, Vienna, Austria
| | - Pierre-Jean Roustan
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Eva Stoger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center, University of Vienna, Vienna, Austria
| | - Verena Ibl
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
24
|
Boehm JD, Ibba MI, Kiszonas AM, See DR, Skinner DZ, Morris CF. Genetic analysis of kernel texture (grain hardness) in a hard red spring wheat (Triticum aestivum L.) bi-parental population. J Cereal Sci 2018. [DOI: 10.1016/j.jcs.2017.09.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Jernigan KL, Godoy JV, Huang M, Zhou Y, Morris CF, Garland-Campbell KA, Zhang Z, Carter AH. Genetic Dissection of End-Use Quality Traits in Adapted Soft White Winter Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:271. [PMID: 29593752 PMCID: PMC5861628 DOI: 10.3389/fpls.2018.00271] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/16/2018] [Indexed: 05/19/2023]
Abstract
Soft white wheat is used in domestic and foreign markets for various end products requiring specific quality profiles. Phenotyping for end-use quality traits can be costly, time-consuming and destructive in nature, so it is advantageous to use molecular markers to select experimental lines with superior traits. An association mapping panel of 469 soft white winter wheat cultivars and advanced generation breeding lines was developed from regional breeding programs in the U.S. Pacific Northwest. This panel was genotyped on a wheat-specific 90 K iSelect single nucleotide polymorphism (SNP) chip. A total of 15,229 high quality SNPs were selected and combined with best linear unbiased predictions (BLUPs) from historical phenotypic data of the genotypes in the panel. Genome-wide association mapping was conducted using the Fixed and random model Circulating Probability Unification (FarmCPU). A total of 105 significant marker-trait associations were detected across 19 chromosomes. Potentially new loci for total flour yield, lactic acid solvent retention capacity, flour sodium dodecyl sulfate sedimentation and flour swelling volume were also detected. Better understanding of the genetic factors impacting end-use quality enable breeders to more effectively discard poor quality germplasm and increase frequencies of favorable end-use quality alleles in their breeding populations.
Collapse
Affiliation(s)
- Kendra L. Jernigan
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Jayfred V. Godoy
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Meng Huang
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Yao Zhou
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Craig F. Morris
- Western Wheat Quality Laboratory, Agricultural Research Service, United States Department of Agriculture, Pullman, WA, United States
- Wheat Health, Genetics, and Quality Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, WA, United States
| | - Kimberly A. Garland-Campbell
- Wheat Health, Genetics, and Quality Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, WA, United States
| | - Zhiwu Zhang
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Arron H. Carter
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
- *Correspondence: Arron H. Carter
| |
Collapse
|
26
|
Ma X, Sajjad M, Wang J, Yang W, Sun J, Li X, Zhang A, Liu D. Diversity, distribution of Puroindoline genes and their effect on kernel hardness in a diverse panel of Chinese wheat germplasm. BMC PLANT BIOLOGY 2017; 17:158. [PMID: 28931378 PMCID: PMC5607584 DOI: 10.1186/s12870-017-1101-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 09/06/2017] [Indexed: 12/01/2022]
Abstract
BACKGROUND Kernel hardness, which has great influence on the end-use properties of common wheat, is mainly controlled by Puroindoline genes, Pina and Pinb. Using EcoTILLING platform, we herein investigated the allelic variations of Pina and Pinb genes and their association with the Single Kernel Characterization System (SKCS) hardness index in a diverse panel of wheat germplasm. RESULTS The kernel hardness varied from 1.4 to 102.7, displaying a wide range of hardness index. In total, six Pina and nine Pinb alleles resulting in 15 genotypes were detected in 1787 accessions. The most common alleles are the wild type Pina-D1a (90.4%) and Pina-D1b (7.4%) for Pina, and Pinb-D1b (43.6%), Pinb-D1a (41.1%) and Pinb-D1p (12.8%) for Pinb. All the genotypes have hard type kernel hardness of SKCS index (>60.0), except the wild types of Pina and Pinb combination (Pina-D1a/Pinb-D1a). The most frequent genotypes in Chinese and foreign cultivars was Pina-D1a/Pinb-D1b (46.3 and 39.0%, respectively) and in Chinese landraces was Pina-D1a/Pinb-D1a (54.2%). The frequencies of hard type accessions are increasing from 35.5% in the region IV, to 40.6 and 61.4% in the regions III and II, and then to 77.0% in the region I, while those of soft type are accordingly decreasing along with the increase of latitude. Varieties released after 2000 in Beijing, Hebei, Shandong and Henan have higher average kernel hardness index than that released before 2000. CONCLUSION The kernel hardness in a diverse panel of Chinese wheat germplasm revealed an increasing of kernel hardness generally along with the latitude across China. The wild type Pina-D1a and Pinb-D1a, and one Pinb mutant (Pinb-D1b) are the most common alleles of six Pina and nine Pinb alleles, and a new double null genotype (Pina-D1x/Pinb-D1ah) possessed relatively high SKCS hardness index. More hard type varieties were released in recent years with different prevalence of Pin-D1 combinations in different regions. This work would benefit the understanding of the selection and molecular processes of kernel hardness across China and different breeding stages, and provide useful information for the improvement of wheat quality in China.
Collapse
Affiliation(s)
- Xiaoling Ma
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Muhammad Sajjad
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101 China
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, 61100 Pakistan
| | - Jing Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101 China
- The Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093 China
| | - Wenlong Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101 China
| | - Jiazhu Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101 China
| | - Xin Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101 China
| | - Aimin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101 China
| | - Dongcheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101 China
| |
Collapse
|
27
|
Murray JC, Kiszonas AM, Morris CF. Influence of Soft Kernel Texture on the Flour, Water Absorption, Rheology, and Baking Quality of Durum Wheat. Cereal Chem 2017. [DOI: 10.1094/cchem-06-16-0163-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Jessica C. Murray
- School of Food Science, Washington State University, P.O. Box 646376, Pullman, WA 99164-6376, U.S.A
| | - Alecia M. Kiszonas
- USDA-ARS Western Wheat Quality Laboratory, E-202 Food Quality Bldg., Washington State University, P.O. Box 646394, Pullman, WA 99164-6394, U.S.A. Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product to the exclusion of others that may also be suitable
| | - Craig F. Morris
- USDA-ARS Western Wheat Quality Laboratory, E-202 Food Quality Bldg., Washington State University, P.O. Box 646394, Pullman, WA 99164-6394, U.S.A. Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product to the exclusion of others that may also be suitable
| |
Collapse
|
28
|
Presinszká M, Štiasna K, Vyhnánek T, Trojan V, Mrkvicová E, Hřivna L, Havel L. Identification of Alleles of Puroindoline Genes and Their Effect on Wheat ( Triticum aestivum L.) Grain Texture. Food Technol Biotechnol 2016; 54:103-107. [PMID: 27904399 DOI: 10.17113/ftb.54.01.16.4119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Grain hardness is one of the most important quality characteristics of wheat (Triticum aestivum L.). It is a significant property of wheat grains and relates to milling quality and end product quality. Grain hardness is caused by the presence of puroindoline genes (Pina and Pinb). A collection of 25 genotypes of wheat with unusual grain colour (blue aleurone, purple and white pericarp, yellow endosperm) was studied by polymerase chain reaction (PCR) for the diversity within Pina and Pinb (alleles: Pina-D1a, Pina-D1b, Pinb-D1a, Pinb- -D1b, Pinb-D1c and Pinb-D1d). The endosperm structure was determined by a non-destructive method using light transflectance meter and grain hardness by a texture analyser. Genotype Novosibirskaya 67 and isogenic ANK lines revealed hitherto unknown alleles at the locus for the annealing of primers of Pinb-D1. Allele Pinb-D1c was found to be absent from each genotype. The mealy endosperm ranged from 0 to 100% and grain hardness from 15.10 to 26.87 N per sample.
Collapse
Affiliation(s)
- Mária Presinszká
- Department of Plant Biology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1,
CZ-61300 Brno, Czech Republic
| | - Klára Štiasna
- Department of Plant Biology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1,
CZ-61300 Brno, Czech Republic
| | - Tomáš Vyhnánek
- Department of Plant Biology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1,
CZ-61300 Brno, Czech Republic
| | - Václav Trojan
- Department of Plant Biology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1,
CZ-61300 Brno, Czech Republic
| | - Eva Mrkvicová
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, CZ-61300 Brno, Czech Republic
| | - Luděk Hřivna
- Department of Food Technology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, CZ-61300 Brno, Czech Republic
| | - Ladislav Havel
- Department of Plant Biology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1,
CZ-61300 Brno, Czech Republic
| |
Collapse
|
29
|
Effect of allelic variation at glutenin and puroindoline loci on bread-making quality: favorable combinations occur in less toxic varieties of wheat for celiac patients. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2788-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Niknejad A, Webster D, Bhave M. Production of bioactive wheat puroindoline proteins in Nicotiana benthamiana using a virus-based transient expression system. Protein Expr Purif 2016; 125:43-52. [PMID: 26363114 DOI: 10.1016/j.pep.2015.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/20/2015] [Accepted: 09/08/2015] [Indexed: 12/17/2022]
Abstract
The emergence of antibiotic resistant pathogenic strains of bacteria has necessitated the development of novel antimicrobial agents. The puroindoline A and B (PINA and PINB) proteins of wheat, well-known for their roles in determining the important phenotype of grain texture, are also antimicrobial, making them attractive as natural bio-control agents. However, the biochemical basis of PIN functionality remains unclear due to limitations in expressing them at the required yield and purity and lack of accurate tertiary structure. This study focussed on rapid transient expression of PINs targeted to different subcellular compartments (chloroplast, apoplast, endoplasmic reticulum and cytosol) of Nicotiana benthamiana leaf cells using the deconstructed tobacco mosaic virus-based 'magnICON®' system. The expressed recombinant PINs were characterised by Western blot using the Durotest anti-friabilin antibody, enzyme-linked immunosorbent assays (ELISA) and antimicrobial activity tests. Maximum yield of the His-tagged PINs occurred when targeted to the chloroplast. Both PINs exhibited oligomeric and monomeric forms on gels, but Western blots with the widely used Durotest anti-friabilin antibody identified only oligomeric forms. Only the PINs purified by a hydrophobic interaction method exhibited monomeric forms with the anti-His tag antibody, indicating correct folding. Interestingly, the Durotest antibody did not bind to monomers, suggesting their epitope may be obscured. PINs purified by His-tag affinity purification under native conditions or by the hydrophobic method exhibited antimicrobial activities. The successful in planta expression and optimisation of purification will enable future studies to examine the detailed structure of the PINs and explore novel bio-control applications in health, food and/or agriculture.
Collapse
Affiliation(s)
- Azadeh Niknejad
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Diane Webster
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Mrinal Bhave
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Victoria, Australia.
| |
Collapse
|
31
|
Heinze K, Kiszonas A, Murray J, Morris C, Lullien-Pellerin V. Puroindoline genes introduced into durum wheat reduce milling energy and change milling behavior similar to soft common wheats. J Cereal Sci 2016. [DOI: 10.1016/j.jcs.2016.08.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Murray JC, Kiszonas AM, Wilson J, Morris CF. Effect of Soft Kernel Texture on the Milling Properties of Soft Durum Wheat. Cereal Chem 2016. [DOI: 10.1094/cchem-06-15-0136-r] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Jessica C. Murray
- School of Food Science, Washington State University, P.O. Box 646376, Washington State University, Pullman, WA 99164-6376, U.S.A
| | - Alecia M. Kiszonas
- USDA-ARS Western Wheat Quality Laboratory, E-202 Food Quality Bldg., Washington State University, P.O. Box 646394, Pullman, WA 99164-6394, U.S.A. Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product to the exclusion of others that may also be suitable
| | - Jeff Wilson
- USDA-ARS Grain Quality and Structure Research Unit, CGAHR, 1515 College Ave., Manhattan, KS 66502, U.S.A
| | - Craig F. Morris
- USDA-ARS Western Wheat Quality Laboratory, E-202 Food Quality Bldg., Washington State University, P.O. Box 646394, Pullman, WA 99164-6394, U.S.A. Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product to the exclusion of others that may also be suitable
| |
Collapse
|
33
|
Shagaghi N, Alfred RL, Clayton AHA, Palombo EA, Bhave M. Anti-biofilm and sporicidal activity of peptides based on wheat puroindoline and barley hordoindoline proteins. J Pept Sci 2016; 22:492-500. [PMID: 27238815 DOI: 10.1002/psc.2895] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/10/2016] [Accepted: 04/14/2016] [Indexed: 11/11/2022]
Abstract
The broad-spectrum activity of antimicrobial peptides (AMPs) and low probability of development of host resistance make them excellent candidates as novel bio-control agents. A number of AMPs are found to be cationic, and a small proportion of these are tryptophan-rich. The puroindolines (PIN) are small, basic proteins found in wheat grains with proposed roles in biotic defence of seeds and seedlings. Synthetic peptides based on their unique tryptophan-rich domain (TRD) display antimicrobial properties. Bacterial endospores and biofilms are highly resistant cells, with significant implications in both medical and food industries. In this study, the cationic PIN TRD-based peptides PuroA (FPVTWRWWKWWKG-NH2 ) and Pina-M (FSVTWRWWKWWKG-NH2 ) and the related barley hordoindoline (HIN) based Hina (FPVTWRWWTWWKG-NH2 ) were tested for effects on planktonic cells and biofilms of the common human pathogens including Pseudomonas aeruginosa, Listeria monocytogenes and the non-pathogenic Listeria innocua. All peptides showed significant bactericidal activity. Further, PuroA and Pina-M at 2 × MIC prevented initial biomass attachment by 85-90% and inhibited >90% of 6-h preformed biofilms of all three organisms. However Hina, with a substitution of Lys-9 with uncharged Thr, particularly inhibited Listeria biofilms. The PIN based peptides were also tested against vegetative cells and endospores of Bacillus subtilis. The results provided evidence that these tryptophan-rich peptides could kill B. subtilis even in sporulated state, reducing the number of viable spores by 4 log units. The treated spores appeared withered under scanning electron microscopy. The results establish the potential of these tryptophan-rich peptides in controlling persistent pathogens of relevance to food industries and human health. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Nadin Shagaghi
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, John Street, Hawthorn, VIC, 3122, Australia
| | - Rebecca L Alfred
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, John Street, Hawthorn, VIC, 3122, Australia
| | - Andrew H A Clayton
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, John Street, Hawthorn, VIC, 3122, Australia
| | - Enzo A Palombo
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, John Street, Hawthorn, VIC, 3122, Australia
| | - Mrinal Bhave
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, John Street, Hawthorn, VIC, 3122, Australia
| |
Collapse
|
34
|
Li G, Gao D, La S, Wang H, Li J, He W, Yang E, Yang Z. Characterization of wheat-Secale africanum chromosome 5R(a) derivatives carrying Secale specific genes for grain hardness. PLANTA 2016; 243:1203-1212. [PMID: 26883668 DOI: 10.1007/s00425-016-2472-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/21/2016] [Indexed: 06/05/2023]
Abstract
New wheat- Secale africanum chromosome 5R (a) substitution and translocation lines were developed and identified by fluorescence in situ hybridization and molecular markers, and chromosome 5R (a) specific genes responsible for grain hardness were isolated. The wild species, Secale africanum Stapf. (genome R(a)R(a)), serves as a valuable germplasm resource for increasing the diversity of cultivated rye (S. cereale L., genome RR) and providing novel genes for wheat improvement. In the current study, fluorescence in situ hybridization (FISH) and molecular markers were applied to characterize new wheat-S. africanum chromosome 5R(a) derivatives. Labeled rye genomic DNA (GISH) and the Oligo-probes pSc119.2 and pTa535 (FISH) were used to study a wheat-S. africanum amphiploid and a disomic 5R(a) (5D) substitution, and to identify a T5DL.5R(a)S translocation line and 5R(a)S and 5R(a)L isotelosome lines. Twenty-one molecular markers were mapped to chromosome 5R(a) arms which will facilitate future rapid identification of 5R(a) introgressions in wheat backgrounds. Comparative analysis of the molecular markers mapped on 5R(a) with homoeologous regions in wheat confirmed a deletion on the chromosome T5DL.5R(a)S, which suggests that the wheat-S. africanum Robertsonian translocation involving homologous group 5 may not be fully compensating. Complete coding sequences at the paralogous puroindoline-a (Pina) and grain softness protein gene (Gsp-1) loci from S. africanum were cloned and localized onto the short arm of chromosome 5R(a). The S. africanum chromosome 5R(a) substitution and translocation lines showed a reduction in the hardness index, which may be associated with the S. africanum- specific Pina and Gsp-1 gene sequences. The present study reports the production of novel wheat-S. africanum chromosome 5R(a) stripe rust resistant derivatives and new rye-specific molecular markers, which may find application in future use of wild Secale genome resources for grain quality studies and disease resistance breeding.
Collapse
Affiliation(s)
- Guangrong Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Dan Gao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Shixiao La
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Hongjin Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jianbo Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Weilin He
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ennian Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Zujun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
35
|
Bowerman AF, Newberry M, Dielen AS, Whan A, Larroque O, Pritchard J, Gubler F, Howitt CA, Pogson BJ, Morell MK, Ral JP. Suppression of glucan, water dikinase in the endosperm alters wheat grain properties, germination and coleoptile growth. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:398-408. [PMID: 25989474 DOI: 10.1111/pbi.12394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/25/2015] [Accepted: 04/06/2015] [Indexed: 05/13/2023]
Abstract
Starch phosphate ester content is known to alter the physicochemical properties of starch, including its susceptibility to degradation. Previous work producing wheat (Triticum aestivum) with down-regulated glucan, water dikinase, the primary gene responsible for addition of phosphate groups to starch, in a grain-specific manner found unexpected phenotypic alteration in grain and growth. Here, we report on further characterization of these lines focussing on mature grain and early growth. We find that coleoptile length has been increased in these transgenic lines independently of grain size increases. No changes in starch degradation rates during germination could be identified, or any major alteration in soluble sugar levels that may explain the coleoptile growth modification. We identify some alteration in hormones in the tissues in question. Mature grain size is examined, as is Hardness Index and starch conformation. We find no evidence that the increased growth of coleoptiles in these lines is connected to starch conformation or degradation or soluble sugar content and suggest these findings provide a novel means of increasing coleoptile growth and early seedling establishment in cereal crop species.
Collapse
Affiliation(s)
- Andrew F Bowerman
- Agriculture Flagship, Commonwealth Science and Industrial Research Organisation, Canberra, ACT, Australia
- ARC Centre of Excellence in Plant Energy Biology, The Australian National University, Canberra, ACT, Australia
| | - Marcus Newberry
- Agriculture Flagship, Commonwealth Science and Industrial Research Organisation, Canberra, ACT, Australia
| | - Anne-Sophie Dielen
- Agriculture Flagship, Commonwealth Science and Industrial Research Organisation, Canberra, ACT, Australia
| | - Alex Whan
- Agriculture Flagship, Commonwealth Science and Industrial Research Organisation, Canberra, ACT, Australia
| | - Oscar Larroque
- Agriculture Flagship, Commonwealth Science and Industrial Research Organisation, Canberra, ACT, Australia
| | - Jenifer Pritchard
- Agriculture Flagship, Commonwealth Science and Industrial Research Organisation, Canberra, ACT, Australia
| | - Frank Gubler
- Agriculture Flagship, Commonwealth Science and Industrial Research Organisation, Canberra, ACT, Australia
| | - Crispin A Howitt
- Agriculture Flagship, Commonwealth Science and Industrial Research Organisation, Canberra, ACT, Australia
| | - Barry J Pogson
- ARC Centre of Excellence in Plant Energy Biology, The Australian National University, Canberra, ACT, Australia
| | - Matthew K Morell
- Agriculture Flagship, Commonwealth Science and Industrial Research Organisation, Canberra, ACT, Australia
| | - Jean-Philippe Ral
- Agriculture Flagship, Commonwealth Science and Industrial Research Organisation, Canberra, ACT, Australia
| |
Collapse
|
36
|
Chichti E, George M, Delenne JY, Lullien-Pellerin V. Changes in the starch-protein interface depending on common wheat grain hardness revealed using atomic force microscopy. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 239:1-8. [PMID: 26398785 DOI: 10.1016/j.plantsci.2015.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 06/05/2023]
Abstract
The atomic force microscope tip was used to progressively abrade the surface of non-cut starch granules embedded in the endosperm protein matrix in grain sections from wheat near-isogenic lines differing in the puroindoline b gene and thus, hardness. In the hard near-isogenic wheat lines, starch granules exhibited two distinct profiles corresponding either to abrasion in the surrounding protein layer or the starch granule. An additional profile, only identified in soft lines, revealed a marked stop in the abrasion at the protein-starch transition similar to a lipid interface playing a lubricant role. It was related to the presence of both wild-type puroindolines, already suggested to act at the starch-protein interface through their association with polar lipids. This study revealed, for the first time, in situ differences in the nano-mechanical properties at the starch-protein interface in the endosperm of wheat grains depending on the puroindoline allelic status.
Collapse
Affiliation(s)
- Emna Chichti
- INRA, UMR 1208, Ingénierie des Agropolymères et Technologies Emergentes, 2 Place Viala, 34060 Montpellier Cedex 02, France.
| | - Matthieu George
- Institut Charles Coulomb, UMR 5221, CNRS-UM2, Place Eugène Bataillon, 34095 Montpellier Cedex, France.
| | - Jean-Yves Delenne
- INRA, UMR 1208, Ingénierie des Agropolymères et Technologies Emergentes, 2 Place Viala, 34060 Montpellier Cedex 02, France.
| | - Valérie Lullien-Pellerin
- INRA, UMR 1208, Ingénierie des Agropolymères et Technologies Emergentes, 2 Place Viala, 34060 Montpellier Cedex 02, France.
| |
Collapse
|
37
|
Ali I, Sardar Z, Rasheed A, Mahmood T. Molecular characterization of the puroindoline-a and b alleles in synthetic hexaploid wheats and in silico functional and structural insights into Pina-D1. J Theor Biol 2015; 376:1-7. [PMID: 25865523 DOI: 10.1016/j.jtbi.2015.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 03/22/2015] [Accepted: 04/01/2015] [Indexed: 12/20/2022]
Abstract
Kernel hardness determined by two tightly linked Puroindoline genes, Pina-D1 and Pinb-D1, located on chromosome 5DS define commercially important characteristics, uses, major grades and export markets of wheat. This study was conducted to characterize Pina-D1 and Pinb-D1 alleles, in fifteen synthetic hexaploid wheats (SHWs) and its relation with grain hardness. Additionally, in silico functional analyses of puroindoline-a protein was conducted for better understanding of their putative importance in grain quality. Six different Pina-D1 alleles were identified in the SHWs, of which three i.e. Pina-D1a, Pina-D1c and Pina-D1d were already known whereas the other three had new sequence polymorphisms and were designated as Pina-D1w, Pina-D1x and Pina-D1y. Three different Pinb-D1 alleles were identified which have been reported earlier and no novel sequence polymorphism was detected. It was concluded that despite some primary, secondary and 3D structure variations, ligand binding sites and disulfide bonds discrepancies, the main features of PINA, i.e. the tryptophan-rich domain, the cysteine backbone, the signal peptide and basic identity of the proteins were all conserved. In silico analysis showed that puroindolines having binding capacity with small parts of prolamins causing celiac disease of human, however their potential role is not obvious. Conclusively, the new Pina-D1 alleles with modest effect on grain hardness, and insight into their functional and structural characteristics are important findings and their putative role in celiac disease require further studies to validate.
Collapse
Affiliation(s)
- Iftikhar Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Zainab Sardar
- Department of Botany, Government Jahanzeb Postgraduate College Saidu Sharif, Swat, Pakistan
| | - Awais Rasheed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Tariq Mahmood
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
38
|
Geneix N, Dalgalarrondo M, Bakan B, Rolland-Sabaté A, Elmorjani K, Marion D. A single amino acid substitution in puroindoline b impacts its self-assembly and the formation of heteromeric assemblies with puroindoline a. J Cereal Sci 2015. [DOI: 10.1016/j.jcs.2015.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Yan J, Yuan SS, Jiang LL, Ye XJ, Ng TB, Wu ZJ. Plant antifungal proteins and their applications in agriculture. Appl Microbiol Biotechnol 2015; 99:4961-81. [PMID: 25971197 DOI: 10.1007/s00253-015-6654-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 04/26/2015] [Accepted: 04/27/2015] [Indexed: 11/24/2022]
Abstract
Fungi are far more complex organisms than viruses or bacteria and can develop numerous diseases in plants that cause loss of a substantial portion of the crop every year. Plants have developed various mechanisms to defend themselves against these fungi which include the production of low-molecular-weight secondary metabolites and proteins and peptides with antifungal activity. In this review, families of plant antifungal proteins (AFPs) including defensins, lectins, and several others will be summarized. Moreover, the application of AFPs in agriculture will also be analyzed.
Collapse
Affiliation(s)
- Juan Yan
- Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China,
| | | | | | | | | | | |
Collapse
|
40
|
Characterization and sequence diversity of the Gsp-1 gene in diploid species of the Aegilops genus. J Cereal Sci 2015. [DOI: 10.1016/j.jcs.2015.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
41
|
Ishikawa G, Nakamura K, Ito H, Saito M, Sato M, Jinno H, Yoshimura Y, Nishimura T, Maejima H, Uehara Y, Kobayashi F, Nakamura T. Association mapping and validation of QTLs for flour yield in the soft winter wheat variety Kitahonami. PLoS One 2014; 9:e111337. [PMID: 25360619 PMCID: PMC4215981 DOI: 10.1371/journal.pone.0111337] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/23/2014] [Indexed: 11/19/2022] Open
Abstract
The winter wheat variety Kitahonami shows a superior flour yield in comparison to other Japanese soft wheat varieties. To map the quantitative trait loci (QTL) associated with this trait, association mapping was performed using a panel of lines from Kitahonami's pedigree, along with leading Japanese varieties and advanced breeding lines. Using a mixed linear model corrected for kernel types and familial relatedness, 62 marker-trait associations for flour yield were identified and classified into 21 QTLs. In eighteen of these, Kitahonami alleles showed positive effects. Pedigree analysis demonstrated that a continuous pyramiding of QTLs had occurred throughout the breeding history of Kitahonami. Linkage analyses using three sets of doubled haploid populations from crosses in which Kitahonami was used as a parent were performed, leading to the validation of five of the eight QTLs tested. Among these, QTLs on chromosomes 3B and 7A showed highly significant and consistent effects across the three populations. This study shows that pedigree-based association mapping using breeding materials can be a useful method for QTL identification at the early stages of breeding programs.
Collapse
Affiliation(s)
- Goro Ishikawa
- NARO Tohoku Agricultural Research Center, Morioka, Iwate, Japan
- * E-mail: (GI); (T. Nakamura)
| | - Kazuhiro Nakamura
- NARO Tohoku Agricultural Research Center, Morioka, Iwate, Japan
- NARO Kyusyu Okinawa Agricultural Research Center, Chikugo, Fukuoka, Japan
| | - Hiroyuki Ito
- NARO Tohoku Agricultural Research Center, Morioka, Iwate, Japan
| | - Mika Saito
- NARO Tohoku Agricultural Research Center, Morioka, Iwate, Japan
| | - Mikako Sato
- Kitami Agricultural Experiment Station, Hokkaido Research Organization, Tokoro-gun, Hokkaido, Japan
- Central Agricultural Experiment Station, Hokkaido Research Organization, Yubari-gun, Hokkaido, Japan
| | - Hironobu Jinno
- Kitami Agricultural Experiment Station, Hokkaido Research Organization, Tokoro-gun, Hokkaido, Japan
| | - Yasuhiro Yoshimura
- Kitami Agricultural Experiment Station, Hokkaido Research Organization, Tokoro-gun, Hokkaido, Japan
| | - Tsutomu Nishimura
- Kitami Agricultural Experiment Station, Hokkaido Research Organization, Tokoro-gun, Hokkaido, Japan
- Kamikawa Agricultural Experiment Station, Hokkaido Research Organization, Kamikawa-gun, Hokkaido, Japan
| | | | - Yasushi Uehara
- Nagano Agricultural Experiment Station, Suzaka, Nagano, Japan
| | - Fuminori Kobayashi
- National Institute of Agrobiological Sciences, Kannondai, Tsukuba, Japan
| | - Toshiki Nakamura
- NARO Tohoku Agricultural Research Center, Morioka, Iwate, Japan
- * E-mail: (GI); (T. Nakamura)
| |
Collapse
|
42
|
Alfred RL, Palombo EA, Panozzo JF, Bhave M. The co-operative interaction of puroindolines in wheat grain texture may involve the hydrophobic domain. J Cereal Sci 2014. [DOI: 10.1016/j.jcs.2014.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Gazza L, Taddei F, Conti S, Gazzelloni G, Muccilli V, Janni M, D'Ovidio R, Alfieri M, Redaelli R, Pogna NE. Biochemical and molecular characterization of Avena indolines and their role in kernel texture. Mol Genet Genomics 2014; 290:39-54. [PMID: 25120168 DOI: 10.1007/s00438-014-0894-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 07/31/2014] [Indexed: 10/24/2022]
Abstract
Among cereals, Avena sativa is characterized by an extremely soft endosperm texture, which leads to some negative agronomic and technological traits. On the basis of the well-known softening effect of puroindolines in wheat kernel texture, in this study, indolines and their encoding genes are investigated in Avena species at different ploidy levels. Three novel 14 kDa proteins, showing a central hydrophobic domain with four tryptophan residues and here named vromindoline (VIN)-1,2 and 3, were identified. Each VIN protein in diploid oat species was found to be synthesized by a single Vin gene whereas, in hexaploid A. sativa, three Vin-1, three Vin-2 and two Vin-3 genes coding for VIN-1, VIN-2 and VIN-3, respectively, were described and assigned to the A, C or D genomes based on similarity to their counterparts in diploid species. Expression of oat vromindoline transgenes in the extra-hard durum wheat led to accumulation of vromindolines in the endosperm and caused an approximate 50 % reduction of grain hardness, suggesting a central role for vromindolines in causing the extra-soft texture of oat grain. Further, hexaploid oats showed three orthologous genes coding for avenoindolines A and B, with five or three tryptophan residues, respectively, but very low amounts of avenoindolines were found in mature kernels. The present results identify a novel protein family affecting cereal kernel texture and would further elucidate the phylogenetic evolution of Avena genus.
Collapse
Affiliation(s)
- Laura Gazza
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura (CRA-QCE), Via Cassia, 176, 00191, Rome, Italy,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Morris CF, Geng H, Beecher BS, Ma D. A review of the occurrence of Grain softness protein-1 genes in wheat (Triticum aestivum L.). PLANT MOLECULAR BIOLOGY 2013; 83:507-21. [PMID: 23904183 DOI: 10.1007/s11103-013-0110-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 07/15/2013] [Indexed: 05/02/2023]
Abstract
Grain softness protein-1 (Gsp-1) is a small, 495-bp intronless gene found throughout the Triticeae tribe at the distal end of group 5 chromosomes. With the Puroindolines, it constitutes a key component of the Hardness locus. Gsp-1 likely plays little role in grain hardness, but has direct interest due to its utility in phylogeny and its role in arabinogalactan peptides. Further role(s) remain to be identified. In the polyploid wheats, Triticum aestivum and T. turgidum, the gene is present in a homoeologous series. Since its discovery, there have been conflicting reports and data as to the number of Gsp-1 genes and the level of sequence polymorphism. Little is known about allelic variation within a species. In the simplest model, a single Gsp-1 gene is present in each wheat and Aegilops tauschii genome. The present review critically re-examines the published and some unpublished data (sequence available in the NCBI nucleotide and MIPS Wheat Genome Databases). A number of testable hypotheses are identified, and include the level of polymorphism that may represent (and define) different Gsp-1 alleles, the existence of a fourth Gsp-1 gene, and the apparent, at times, high level of naturally-occurring or artifactual gene chimeras. In summary, the present data provide firm evidence for at most, three Gsp-1 genes in wheat, although there are numerous data that suggest a more complex model.
Collapse
Affiliation(s)
- Craig F Morris
- USDA-ARS Western Wheat Quality Laboratory, E-202 Food Quality Bldg., Washington State University, P.O. Box 646394, Pullman, WA, 99164-6394, USA,
| | | | | | | |
Collapse
|
45
|
Gasparis S, Orczyk W, Nadolska-Orczyk A. Sina and Sinb genes in triticale do not determine grain hardness contrary to their orthologs Pina and Pinb in wheat. BMC PLANT BIOLOGY 2013; 13:190. [PMID: 24279512 PMCID: PMC4222565 DOI: 10.1186/1471-2229-13-190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 11/20/2013] [Indexed: 05/24/2023]
Abstract
BACKGROUND Secaloindoline a (Sina) and secaloindoline b (Sinb) genes of hexaploid triticale (x Triticosecale Wittmack) are orthologs of puroindoline a (Pina) and puroindoline b (Pinb) in hexaploid wheat (Triticum aestivum L.). It has already been proven that RNA interference (RNAi)-based silencing of Pina and Pinb genes significantly decreased the puroindoline a and puroindoline b proteins in wheat and essentially increased grain hardness (J Exp Bot 62:4025-4036, 2011). The function of Sina and Sinb in triticale was tested by means of RNAi silencing and compared to wheat. RESULTS Novel Sina and Sinb alleles in wild-type plants of cv. Wanad were identified and their expression profiles characterized. Alignment with wheat Pina-D1a and Pinb-D1a alleles showed 95% and 93.3% homology with Sina and Sinb coding sequences. Twenty transgenic lines transformed with two hpRNA silencing cassettes directed to silence Sina or Sinb were obtained by the Agrobacterium-mediated method. A significant decrease of expression of both Sin genes in segregating progeny of tested T1 lines was observed independent of the silencing cassette used. The silencing was transmitted to the T4 kernel generation. The relative transcript level was reduced by up to 99% in T3 progeny with the mean for the sublines being around 90%. Silencing of the Sin genes resulted in a substantial decrease of secaloindoline a and secaloindoline b content. The identity of SIN peptides was confirmed by mass spectrometry. The hardness index, measured by the SKCS (Single Kernel Characterization System) method, ranged from 22 to 56 in silent lines and from 37 to 49 in the control, and the mean values were insignificantly lower in the silent ones, proving increased softness. Additionally, the mean total seed protein content of silenced lines was about 6% lower compared with control lines. Correlation coefficients between hardness and transcript level were weakly positive. CONCLUSIONS We documented that RNAi-based silencing of Sin genes resulted in significant decrease of their transcripts and the level of both secaloindoline proteins, however did not affect grain hardness. The unexpected, functional differences of Sin genes from triticale compared with their orthologs, Pin of wheat, are discussed.
Collapse
MESH Headings
- Agrobacterium/metabolism
- Alleles
- Crosses, Genetic
- Edible Grain/genetics
- Electrophoresis, Polyacrylamide Gel
- Gene Expression Profiling
- Gene Expression Regulation, Plant
- Gene Silencing
- Genes, Plant/genetics
- Hardness
- Indoles/metabolism
- Plant Proteins/chemistry
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified
- Quantitative Trait, Heritable
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Seeds/chemistry
- Seeds/genetics
- Sequence Alignment
- Sequence Homology, Nucleic Acid
- Transformation, Genetic
- Triticum/genetics
Collapse
Affiliation(s)
- Sebastian Gasparis
- Department of Functional Genetics, Plant Breeding and Acclimatization Institute – National Research Institute, Radzikow, 05-870 Blonie, Poland
| | - Waclaw Orczyk
- Department of Genetic Engineering, Plant Breeding and Acclimatization Institute – National Research Institute, Radzikow, 05-870 Blonie, Poland
| | - Anna Nadolska-Orczyk
- Department of Functional Genetics, Plant Breeding and Acclimatization Institute – National Research Institute, Radzikow, 05-870 Blonie, Poland
| |
Collapse
|
46
|
Morris CF, Fuerst EP, Beecher BS, McLean DJ, James CP, Geng HW. Did the house mouse (Mus musculus L.) shape the evolutionary trajectory of wheat (Triticum aestivum L.)? Ecol Evol 2013; 3:3447-54. [PMID: 24223281 PMCID: PMC3797490 DOI: 10.1002/ece3.724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 07/09/2013] [Accepted: 07/10/2013] [Indexed: 11/09/2022] Open
Abstract
Wheat (Triticum aestivum L.) is one of the most successful domesticated plant species in the world. The majority of wheat carries mutations in the Puroindoline genes that result in a hard kernel phenotype. An evolutionary explanation, or selective advantage, for the spread and persistence of these hard kernel mutations has yet to be established. Here, we demonstrate that the house mouse (Mus musculus L.) exerts a pronounced feeding preference for soft over hard kernels. When allele frequencies ranged from 0.5 to 0.009, mouse predation increased the hard allele frequency as much as 10-fold. Studies involving a single hard kernel mixed with ∼1000 soft kernels failed to recover the mutant kernel. Nevertheless, the study clearly demonstrates that the house mouse could have played a role in the evolution of wheat, and therefore the cultural trajectory of humankind.
Collapse
Affiliation(s)
- C F Morris
- USDA-ARS Western Wheat Quality Laboratory Pullman, Washington
| | | | | | | | | | | |
Collapse
|
47
|
Nawrot R, Barylski J, Nowicki G, Broniarczyk J, Buchwald W, Goździcka-Józefiak A. Plant antimicrobial peptides. Folia Microbiol (Praha) 2013; 59:181-96. [PMID: 24092498 PMCID: PMC3971460 DOI: 10.1007/s12223-013-0280-4] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 09/17/2013] [Indexed: 12/27/2022]
Abstract
Plant antimicrobial peptides (AMPs) are a component of barrier defense system of plants. They have been isolated from roots, seeds, flowers, stems, and leaves of a wide variety of species and have activities towards phytopathogens, as well as against bacteria pathogenic to humans. Thus, plant AMPs are considered as promising antibiotic compounds with important biotechnological applications. Plant AMPs are grouped into several families and share general features such as positive charge, the presence of disulfide bonds (which stabilize the structure), and the mechanism of action targeting outer membrane structures.
Collapse
Affiliation(s)
- Robert Nawrot
- Department of Molecular Virology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614, Poznan, Poland,
| | | | | | | | | | | |
Collapse
|
48
|
Alfred RL, Palombo EA, Panozzo JF, Bhave M. The antimicrobial domains of wheat puroindolines are cell-penetrating peptides with possible intracellular mechanisms of action. PLoS One 2013; 8:e75488. [PMID: 24098387 PMCID: PMC3788796 DOI: 10.1371/journal.pone.0075488] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 08/14/2013] [Indexed: 11/19/2022] Open
Abstract
The puroindoline proteins (PINA and PINB) of wheat display lipid-binding properties which affect the grain texture, a critical parameter for wheat quality. Interestingly, the same proteins also display antibacterial and antifungal properties, attributed mainly to their Tryptophan-rich domain (TRD). Synthetic peptides based on this domain also display selectivity towards bacterial and fungal cells and do not cause haemolysis of mammalian cells. However, the mechanisms of these activities are unclear, thus limiting our understanding of the in vivo roles of PINs and development of novel applications. This study investigated the mechanisms of antimicrobial activities of synthetic peptides based on the TRD of the PINA and PINB proteins. Calcein dye leakage tests and transmission electron microscopy showed that the peptides PuroA, Pina-M and Pina-W→F selectively permeabilised the large unilamellar vesicles (LUVs) made with negatively charged phospholipids mimicking bacterial membranes, but were ineffective against LUVs made with zwitterionic phospholipids mimicking eukaryotic membranes. Propidium iodide fluorescence tests of yeast (Saccharomyces cerevisiae) cells showed the peptides were able to cause loss of membrane integrity, PuroA and Pina-M being more efficient. Scanning electron micrographs of PINA-based peptide treated yeast cells showed the formation of pits or pores in cell membranes and release of cellular contents. Gel retardation assays indicated the peptides were able to bind to DNA in vitro, and the induction of filamental growth of E. coli cells indicated in vivo inhibition of DNA synthesis. Together, the results strongly suggest that the PIN-based peptides exert their antimicrobial effects by pore formation in the cell membrane, likely by a carpet-like mechanism, followed by intracellular mechanisms of activity.
Collapse
Affiliation(s)
- Rebecca L. Alfred
- Environment and Biotechnology Centre, Faculty of Life and Social Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Enzo A. Palombo
- Environment and Biotechnology Centre, Faculty of Life and Social Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Joseph F. Panozzo
- Department of Environment and Primary Industries, Horsham, Victoria, Australia
| | - Mrinal Bhave
- Environment and Biotechnology Centre, Faculty of Life and Social Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
| |
Collapse
|
49
|
Fuerst EP, Morris CF, Dasgupta N, McLean DJ. Optimizing experimental design using the house mouse (Mus musculus L.) as a model for determining grain feeding preferences. J Food Sci 2013; 78:S1614-S1620. [PMID: 24024951 DOI: 10.1111/1750-3841.12245] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/22/2013] [Indexed: 11/29/2022]
Abstract
There is little research evaluating flavor preferences among wheat varieties. We previously demonstrated that mice exert very strong preferences when given binary mixtures of wheat varieties. We plan to utilize mice to identify wheat genes associated with flavor, and then relate this back to human preferences. Here we explore the effects of experimental design including the number of days (from 1 to 4) and number of mice (from 2 to 15) in order to identify designs that provide significant statistical inferences while minimizing requirements for labor and animals. When mice expressed a significant preference between 2 wheat varieties, increasing the number of days (for a given number of mice) increased the significance level (decreased P-values) for their preference, as expected, but with diminishing benefit as more days were added. However, increasing the number of mice (for a given number of days) provided a more dramatic log-linear decrease in P-values and thus increased statistical power. In conclusion, when evaluating mouse feeding preferences in binary mixtures of grain, an efficient experimental design would emphasize fewer days rather than fewer animals thus shortening the experiment duration and reducing the overall requirement for labor and animals.
Collapse
Affiliation(s)
- E Patrick Fuerst
- Dept. of Crop and Soil Sciences, Western Wheat Quality Laboratory, Washington State Univ., Pullman, WA 99164, U.S.A
| | - Craig F Morris
- USDA-ARS, Western Wheat Quality Laboratory, Washington State Univ., Pullman, WA 99164, U.S.A
| | | | - Derek J McLean
- Center for Reproductive Biology and Dept. of Animal Science, Washington State Univ., Pullman, WA 99164, U.S.A
| |
Collapse
|
50
|
Chen F, Li H, Cui D. Discovery, distribution and diversity of Puroindoline-D1 genes in bread wheat from five countries (Triticum aestivum L.). BMC PLANT BIOLOGY 2013; 13:125. [PMID: 24011219 PMCID: PMC3844508 DOI: 10.1186/1471-2229-13-125] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 09/04/2013] [Indexed: 05/27/2023]
Abstract
BACKGROUND Grain texture is one of the most important characteristics in bread wheat (Triticum aestivum L.). Puroindoline-D1 genes play the main role in controlling grain texture and are intimately associated with the milling and processing qualities in bread wheat. RESULTS A series of diagnostic molecular markers and dCAPS markers were used to characterize Pina-D1 and Pinb-D1 in 493 wheat cultivars from diverse geographic locations. A primer walking strategy was used to characterize PINA-null alleles at the DNA level. Results indicated that Chinese landraces encompassing 12 different Puroindoline-D1 allelic combinations showed the highest diversity, while CIMMYT wheat cultivars containing 3 different Puroindoline-D1 allelic combinations showed the lowest diversity amongst wheat cultivars from the five countries surveyed. Two novel Pina-D1 alleles, designated Pina-D1s with a 4,422-bp deletion and Pina-D1u with a 6,460-bp deletion in the Ha (Hardness) locus, were characterized at the DNA level by a primer walking strategy, and corresponding molecular markers Pina-N3 and Pina-N4 were developed for straightforward identification of the Pina-D1s and Pina-D1u alleles. Analysis of the association of Puroindoline-D1 alleles with grain texture indicated that wheat cultivars with Pina-null/Pinb-null allele, possessing an approximate 33-kb deletion in the Ha locus, have the highest SKCS hardness index amongst the different genotypes used in this study. Moreover, wheat cultivars with the PINA-null allele have significantly higher SKCS hardness index than those of Pinb-D1b and Pinb-D1p alleles. CONCLUSIONS Molecular characterization of the Puroindoline-D1 allele was investigated in bread wheat cultivars from five geographic regions, resulting in the discovery of two new alleles - Pina-D1s and Pina-D1u. Molecular markers were developed for both alleles. Analysis of the association of the Puroindoline-D1 alleles with grain texture showed that cultivars with PINA-null allele possessed relatively high SKCS hardness index. This study can provide useful information for the improvement of wheat quality, as well as give a deeper understanding of the molecular and genetic processes controlling grain texture in bread wheat.
Collapse
Affiliation(s)
- Feng Chen
- Agronomy College, Henan Agricultural University, Zhengzhou 450002, China
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Zhengzhou 450002, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou 450002, China
| | - Huanhuan Li
- Agronomy College, Henan Agricultural University, Zhengzhou 450002, China
| | - Dangqun Cui
- Agronomy College, Henan Agricultural University, Zhengzhou 450002, China
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Zhengzhou 450002, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou 450002, China
| |
Collapse
|