1
|
Chen G, Gao J, Wu S, Chang Y, Chen Z, Sun J, Zhang L, Wu J, Sun X, Quick WP, Cui X, Zhang Z, Lu T. The OsMOB1A-OsSTK38 kinase complex phosphorylates CYCLIN C, controlling grain size and weight in rice. THE PLANT CELL 2024; 36:2873-2892. [PMID: 38723594 PMCID: PMC11289633 DOI: 10.1093/plcell/koae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/12/2024] [Indexed: 08/02/2024]
Abstract
Grain size and weight are crucial yield-related traits in rice (Oryza sativa). Although certain key genes associated with rice grain size and weight have been successfully cloned, the molecular mechanisms underlying grain size and weight regulation remain elusive. Here, we identified a molecular pathway regulating grain size and weight in rice involving the MPS ONE BINDER KINASE ACTIVATOR-LIKE 1A-SERINE/THREONINE-PROTEIN KINASE 38-CYCLIN C (OsMOB1A-OsSTK38-OsCycC) module. OsSTK38 is a nuclear Dbf2-related kinase that positively regulates grain size and weight by coordinating cell proliferation and expansion in the spikelet hull. OsMOB1A interacts with and enhances the autophosphorylation of OsSTK38. Specifically, the critical role of the OsSTK38 S322 site in its kinase activity is highlighted. Furthermore, OsCycC, a component of the Mediator complex, was identified as a substrate of OsSTK38, with enhancement by OsMOB1A. Notably, OsSTK38 phosphorylates the T33 site of OsCycC. The phosphorylation of OsCycC by OsSTK38 influenced its interaction with the transcription factor KNOTTED-LIKE HOMEOBOX OF ARABIDOPSIS THALIANA 7 (OsKNAT7). Genetic analysis confirmed that OsMOB1A, OsSTK38, and OsCycC function in a common pathway to regulate grain size and weight. Taken together, our findings revealed a connection between the Hippo signaling pathway and the cyclin-dependent kinase module in eukaryotes. Moreover, they provide insights into the molecular mechanisms linked to yield-related traits and propose innovative breeding strategies for high-yielding varieties.
Collapse
Affiliation(s)
- Guoxin Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Jiabei Gao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Suting Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Yuan Chang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Zhenhua Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Jing Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Liying Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Jinxia Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Xuehui Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - William Paul Quick
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
- School of Biosciences, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Xuean Cui
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Zhiguo Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Tiegang Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| |
Collapse
|
2
|
Zhou W, Shi H, Wang Z, Huang Y, Ni L, Chen X, Liu Y, Li H, Li C, Liu Y. Identification of Highly Repetitive Enhancers with Long-range Regulation Potential in Barley via STARR-seq. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae012. [PMID: 39167800 DOI: 10.1093/gpbjnl/qzae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 06/02/2023] [Accepted: 06/25/2023] [Indexed: 08/23/2024]
Abstract
Enhancers are DNA sequences that can strengthen transcription initiation. However, the global identification of plant enhancers is complicated due to uncertainty in the distance and orientation of enhancers, especially in species with large genomes. In this study, we performed self-transcribing active regulatory region sequencing (STARR-seq) for the first time to identify enhancers across the barley genome. A total of 7323 enhancers were successfully identified, and among 45 randomly selected enhancers, over 75% were effective as validated by a dual-luciferase reporter assay system in the lower epidermis of tobacco leaves. Interestingly, up to 53.5% of the barley enhancers were repetitive sequences, especially transposable elements (TEs), thus reinforcing the vital role of repetitive enhancers in gene expression. Both the common active mark H3K4me3 and repressive mark H3K27me3 were abundant among the barley STARR-seq enhancers. In addition, the functional range of barley STARR-seq enhancers seemed much broader than that of rice or maize and extended to ±100 kb of the gene body, and this finding was consistent with the high expression levels of genes in the genome. This study specifically depicts the unique features of barley enhancers and provides available barley enhancers for further utilization.
Collapse
Affiliation(s)
- Wanlin Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Haoran Shi
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu 611130, China
| | - Zhiqiang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuxin Huang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Ni
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xudong Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Haojie Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Caixia Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yaxi Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
3
|
Teng S, Liu Q, Chen G, Chang Y, Cui X, Wu J, Ai P, Sun X, Zhang Z, Lu T. OsbHLH92, in the noncanonical brassinosteroid signaling pathway, positively regulates leaf angle and grain weight in rice. THE NEW PHYTOLOGIST 2023; 240:1066-1081. [PMID: 37574840 DOI: 10.1111/nph.19204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 07/19/2023] [Indexed: 08/15/2023]
Abstract
Modifications of plant architecture can increase planting density, regulate photosynthesis, and improve crop yields. Many basic helix-loop-helix (bHLH) transcription factors participate in the brassinosteroid (BR) signaling pathway and are critical for plant architecture morphogenesis in rice. However, the number of identified bHLH genes suitable for improving production value is still limited. In this study, we cloned Lam1, encoding the typical bHLH transcription factor OsbHLH92. OsbHLH92 knockout (KO) lines exhibit erect leaves. Decreases in the number and size of parenchyma cell layers on the adaxial side of the lamina joint in KO lines were the main reason for the decreased leaf angle. Genetic experiments verify that OsBU1 and its homologs are downstream of OsbHLH92, which is involved in the noncanonical RGA1-mediated BR signaling pathway. OsbHLH91, an OsbHLH92 homolog, plays both conserved and differentiated roles relative to OsbHLH92. Notably, OsbHLH92-KO lines show erect leaves without the acquisition of adverse agronomic traits. Moreover, by driving a specific panicle promoter, OsbHLH92 can greatly increase productivity by at least 10%. This study identifies new components of the BR signaling pathway, demonstrates the importance of OsbHLH92 in improving planting density and crop productivity, and broadens our knowledge of typical and atypical bHLH family members in rice.
Collapse
Affiliation(s)
- Shouzhen Teng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiming Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guoxin Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuan Chang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xuean Cui
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinxia Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Pengfei Ai
- College of Bioscience and Bioengineering, Hebei University of Science and Technology, Hebei, 050000, China
| | - Xuehui Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiguo Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tiegang Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
4
|
Liu Q, Teng S, Deng C, Wu S, Li H, Wang Y, Wu J, Cui X, Zhang Z, Quick WP, Brutnell TP, Sun X, Lu T. SHORT ROOT and INDETERMINATE DOMAIN family members govern PIN-FORMED expression to regulate minor vein differentiation in rice. THE PLANT CELL 2023; 35:2848-2870. [PMID: 37154077 PMCID: PMC10396363 DOI: 10.1093/plcell/koad125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/08/2023] [Accepted: 04/02/2023] [Indexed: 05/10/2023]
Abstract
C3 and C4 grasses directly and indirectly provide the vast majority of calories to the human diet, yet our understanding of the molecular mechanisms driving photosynthetic productivity in grasses is largely unexplored. Ground meristem cells divide to form mesophyll or vascular initial cells early in leaf development in C3 and C4 grasses. Here we define a genetic circuit composed of SHORT ROOT (SHR), INDETERMINATE DOMAIN (IDD), and PIN-FORMED (PIN) family members that specifies vascular identify and ground cell proliferation in leaves of both C3 and C4 grasses. Ectopic expression and loss-of-function mutant studies of SHR paralogs in the C3 plant Oryza sativa (rice) and the C4 plant Setaria viridis (green millet) revealed the roles of these genes in both minor vein formation and ground cell differentiation. Genetic and in vitro studies further suggested that SHR regulates this process through its interactions with IDD12 and 13. We also revealed direct interactions of these IDD proteins with a putative regulatory element within the auxin transporter gene PIN5c. Collectively, these findings indicate that a SHR-IDD regulatory circuit mediates auxin transport by negatively regulating PIN expression to modulate minor vein patterning in the grasses.
Collapse
Affiliation(s)
- Qiming Liu
- Biotechnology Research Institute (BRI), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Joint Laboratory for Photosynthesis Enhancement and C4 Rice Development, BRI, CAAS, Beijing 100081, China
| | - Shouzhen Teng
- Biotechnology Research Institute (BRI), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Joint Laboratory for Photosynthesis Enhancement and C4 Rice Development, BRI, CAAS, Beijing 100081, China
| | - Chen Deng
- Joint Laboratory for Photosynthesis Enhancement and C4 Rice Development, BRI, CAAS, Beijing 100081, China
| | - Suting Wu
- Biotechnology Research Institute (BRI), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Joint Laboratory for Photosynthesis Enhancement and C4 Rice Development, BRI, CAAS, Beijing 100081, China
| | - Haoshu Li
- Biotechnology Research Institute (BRI), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Joint Laboratory for Photosynthesis Enhancement and C4 Rice Development, BRI, CAAS, Beijing 100081, China
| | - Yanwei Wang
- Joint Laboratory for Photosynthesis Enhancement and C4 Rice Development, BRI, CAAS, Beijing 100081, China
| | - Jinxia Wu
- Biotechnology Research Institute (BRI), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Joint Laboratory for Photosynthesis Enhancement and C4 Rice Development, BRI, CAAS, Beijing 100081, China
| | - Xuean Cui
- Biotechnology Research Institute (BRI), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Joint Laboratory for Photosynthesis Enhancement and C4 Rice Development, BRI, CAAS, Beijing 100081, China
| | - Zhiguo Zhang
- Biotechnology Research Institute (BRI), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Joint Laboratory for Photosynthesis Enhancement and C4 Rice Development, BRI, CAAS, Beijing 100081, China
| | - William Paul Quick
- Joint Laboratory for Photosynthesis Enhancement and C4 Rice Development, BRI, CAAS, Beijing 100081, China
- C4 Rice Centre, International Rice Research Institute, Los Banos, Laguna 4030, Philippines
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Thomas P Brutnell
- Joint Laboratory for Photosynthesis Enhancement and C4 Rice Development, BRI, CAAS, Beijing 100081, China
| | - Xuehui Sun
- Biotechnology Research Institute (BRI), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Joint Laboratory for Photosynthesis Enhancement and C4 Rice Development, BRI, CAAS, Beijing 100081, China
| | - Tiegang Lu
- Biotechnology Research Institute (BRI), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Joint Laboratory for Photosynthesis Enhancement and C4 Rice Development, BRI, CAAS, Beijing 100081, China
| |
Collapse
|
5
|
Li S, Xing K, Qanmber G, Chen G, Liu L, Guo M, Hou Y, Lu L, Qu L, Liu Z, Yang Z. GhBES1 mediates brassinosteroid regulation of leaf size by activating expression of GhEXO2 in cotton (Gossypium hirsutum). PLANT MOLECULAR BIOLOGY 2023; 111:89-106. [PMID: 36271986 DOI: 10.1007/s11103-022-01313-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
We proposed a working model of BR to promote leaf size through cell expansion. In the BR signaling pathway, GhBES1 affects cotton leaf size by binding to and activating the expression of the E-box element in the GhEXO2 promoter region. Brassinosteroid (BR) is an essential phytohormone that controls plant growth. However, the mechanisms of BR regulation of leaf size remain to be determined. Here, we found that the BR deficient cotton mutant pagoda1 (pag1) had a smaller leaf size than wild-type CRI24. The expression of EXORDIUM (GhEXO2) gene, was significantly downregulated in pag1. Silencing of BRI1-EMS-SUPPRESSOR 1 (GhBES1), inhibited leaf cell expansion and reduced leaf size. Overexpression of GhBES1.4 promoted leaf cell expansion and enlarged leaf size. Expression analysis showed GhEXO2 expression positively correlated with GhBES1 expression. In plants, altered expression of GhEXO2 promoted leaf cell expansion affecting leaf size. Furthermore, GhBES1.4 specifically binds to the E-box elements in the GhEXO2 promoter, inducing its expression. RNA-seq data revealed many down-regulated genes related to cell expansion in GhEXO2 silenced plants. In summary, we discovered a novel mechanism of BR regulation of leaf size through GhBES1 directly activating the expression of GhEXO2.
Collapse
Affiliation(s)
- Shengdong Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 450001, Zhengzhou, China
| | - Kun Xing
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- State Key Laboratory of Cotton Biology (Hebei Base), Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Ghulam Qanmber
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Guoquan Chen
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 450001, Zhengzhou, China
| | - Le Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 450001, Zhengzhou, China
| | - Mengzhen Guo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 450001, Zhengzhou, China
| | - Yan Hou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Lili Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Lingbo Qu
- College of Chemistry, Zhengzhou University, Henan, 450001, Zhengzhou, China
| | - Zhao Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 450001, Zhengzhou, China.
| | - Zuoren Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 450001, Zhengzhou, China.
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
6
|
Chen Z, Teng S, Liu D, Chang Y, Zhang L, Cui X, Wu J, Ai P, Sun X, Lu T, Zhang Z. RLM1, Encoding an R2R3 MYB Transcription Factor, Regulates the Development of Secondary Cell Wall in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:905111. [PMID: 35712587 PMCID: PMC9194675 DOI: 10.3389/fpls.2022.905111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Leaf morphology is an important component of rice ideal plant type. To date, many regulatory genes influencing leaf morphology in rice have been cloned, and their underlying molecular regulatory mechanism has been preliminarily clarified. However, the fine regulation relationship of leaf morphogenesis and plant type remains largely elusive. In this study, a rolling-leaf mutant, named rlm1-D, was obtained and controlled by a pair of dominant nuclear genes. Cytological observations revealed that the rlm1 was mainly caused by abnormal deposition of secondary cell walls. Molecular evidence showed ectopic expression of a MYB-type transcription factor LOC_Os05g46610 was responsible for the phenotype of rlm1-D. A series of experiments, including the transcription factor-centered technology, DNA-binding assay, and electrophoretic mobility shift assay, verified that RLM1 can bind to the promoter of OsCAD2, a key gene responsible for lignin biosynthesis in rice. An interacting partner of RLM1, OsMAPK10, was identified. Multiple biochemical assays confirmed that OsMAPK10 interacted with RLM1. OsMAPK10 positively regulated the lignin content in the leaves and stems of rice. Moreover, OsMAPK10 contributes to RLM1 activation of downstream target genes. In particular, RLM1 is exclusively expressed in the stems at the mature plant stage. The yield of RLM1 knockdown lines increased by over 11% without other adverse agricultural trait penalties, indicating great practical application value. A MAPK-MYB-OsCAD2 genetic regulatory network controlling SCW was proposed, providing a theoretical significance and practical value for shaping the ideal plant type and improving rice yield.
Collapse
Affiliation(s)
- Zhenhua Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shouzhen Teng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Di Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan Chang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liying Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuean Cui
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinxia Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pengfei Ai
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Xuehui Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tiegang Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiguo Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Chen X, Huang Z, Fu D, Fang J, Zhang X, Feng X, Xie J, Wu B, Luo Y, Zhu M, Qi Y. Identification of Genetic Loci for Sugarcane Leaf Angle at Different Developmental Stages by Genome-Wide Association Study. FRONTIERS IN PLANT SCIENCE 2022; 13:841693. [PMID: 35693186 PMCID: PMC9185841 DOI: 10.3389/fpls.2022.841693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/24/2022] [Indexed: 06/09/2023]
Abstract
Sugarcane (Saccharum spp.) is an efficient crop mainly used for sugar and bioethanol production. High yield and high sucrose of sugarcane are always the fundamental demands in sugarcane growth worldwide. Leaf angle and size of sugarcane can be attributed to planting density, which was associated with yield. In this study, we performed genome-wide association studies (GWAS) with a panel of 216 sugarcane core parents and their derived lines (natural population) to determine the genetic basis of leaf angle and key candidate genes with +2, +3, and +4 leaf at the seedling, elongation, and mature stages. A total of 288 significantly associated loci of sugarcane leaf angle at different developmental stages (eight phenotypes) were identified by GWAS with 4,027,298 high-quality SNP markers. Among them, one key locus and 11 loci were identified in all three stages and two stages, respectively. An InDel marker (SNP Ss6A_102766953) linked to narrow leaf angle was obtained. Overall, 4,089 genes were located in the confidence interval of significant loci, among which 3,892 genes were functionally annotated. Finally, 13 core parents and their derivatives tagged with SNPs were selected for marker-assisted selection (MAS). These candidate genes are mainly related to MYB transcription factors, auxin response factors, serine/threonine protein kinases, etc. They are directly or indirectly associated with leaf angle in sugarcane. This research provided a large number of novel genetic resources for the improvement of leaf angles and simultaneously to high yield and high bioethanol production.
Collapse
Affiliation(s)
- Xinglong Chen
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhenghui Huang
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Danwen Fu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, China
| | - Junteng Fang
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xiangbo Zhang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaomin Feng
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, China
| | - Jinfang Xie
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Bin Wu
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yiji Luo
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Mingfeng Zhu
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yongwen Qi
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
8
|
Wang C, Han B. Twenty years of rice genomics research: From sequencing and functional genomics to quantitative genomics. MOLECULAR PLANT 2022; 15:593-619. [PMID: 35331914 DOI: 10.1016/j.molp.2022.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/04/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Since the completion of the rice genome sequencing project in 2005, we have entered the era of rice genomics, which is still in its ascendancy. Rice genomics studies can be classified into three stages: structural genomics, functional genomics, and quantitative genomics. Structural genomics refers primarily to genome sequencing for the construction of a complete map of rice genome sequence. This is fundamental for rice genetics and molecular biology research. Functional genomics aims to decode the functions of rice genes. Quantitative genomics is large-scale sequence- and statistics-based research to define the quantitative traits and genetic features of rice populations. Rice genomics has been a transformative influence on rice biological research and contributes significantly to rice breeding, making rice a good model plant for studying crop sciences.
Collapse
Affiliation(s)
- Changsheng Wang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233, China.
| | - Bin Han
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233, China.
| |
Collapse
|
9
|
Wang Y, Sun J, Deng C, Teng S, Chen G, Chen Z, Cui X, Brutnell TP, Han X, Zhang Z, Lu T. Plasma membrane-localized SEM1 protein mediates sugar movement to sink rice tissues. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:523-540. [PMID: 34750914 DOI: 10.1111/tpj.15573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
The translocation of photosynthate carbohydrates, such as sucrose, is critical for plant growth and crop yield. Previous studies have revealed that sugar transporters, plasmodesmata and sieve plates act as important controllers in sucrose loading into and unloading from phloem in the vascular system. However, other pivotal steps for the regulation of sucrose movement remain largely elusive. In this study, characterization of two starch excesses in mesophyll (sem) mutants and dye and sucrose export assays were performed to provide insights into the regulatory networks that drive source-sink relations in rice. Map-based cloning identified two allelic mutations in a gene encoding a GLUCAN SYNTHASE-LIKE (GSL) protein, thus indicating a role for SEM1 in callose biosynthesis. Subcellular localization in rice showed that SEM1 localized to the plasma membrane. In situ expression analysis and GUS staining showed that SEM1 was mainly expressed in vascular phloem cells. Reduced sucrose transport was found in the sem1-1/1-2 mutant, which led to excessive starch accumulation in source leaves and inhibited photosynthesis. Paraffin section and transmission electron microscopy experiments revealed that less-developed vascular cells (VCs) in sem1-1/1-2 potentially disturbed sugar movement. Moreover, dye and sugar trafficking experiments revealed that aberrant VC development was the main reason for the pleiotropic phenotype of sem1-1/1-2. In total, efficient sucrose loading into the phloem benefits from an optional number of VCs with a large vacuole that could act as a buffer holding tank for sucrose passing from the vascular bundle sheath.
Collapse
Affiliation(s)
- Yanwei Wang
- Joint CAAS/IRRI Laboratory for Photosynthetic Enhancement, Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, The Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Jing Sun
- Joint CAAS/IRRI Laboratory for Photosynthetic Enhancement, Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, The Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Chen Deng
- Joint CAAS/IRRI Laboratory for Photosynthetic Enhancement, Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, The Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Shouzhen Teng
- Joint CAAS/IRRI Laboratory for Photosynthetic Enhancement, Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, The Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Guoxin Chen
- Joint CAAS/IRRI Laboratory for Photosynthetic Enhancement, Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, The Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Zhenhua Chen
- Joint CAAS/IRRI Laboratory for Photosynthetic Enhancement, Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, The Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Xuean Cui
- Joint CAAS/IRRI Laboratory for Photosynthetic Enhancement, Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, The Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Thomas P Brutnell
- Joint CAAS/IRRI Laboratory for Photosynthetic Enhancement, Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, The Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Xiao Han
- Joint CAAS/IRRI Laboratory for Photosynthetic Enhancement, Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, The Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Zhiguo Zhang
- Joint CAAS/IRRI Laboratory for Photosynthetic Enhancement, Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, The Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Tiegang Lu
- Joint CAAS/IRRI Laboratory for Photosynthetic Enhancement, Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, The Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| |
Collapse
|
10
|
Sun J, Song W, Chang Y, Wang Y, Lu T, Zhang Z. OsLMP1, Encoding a Deubiquitinase, Regulates the Immune Response in Rice. FRONTIERS IN PLANT SCIENCE 2022; 12:814465. [PMID: 35116051 PMCID: PMC8805587 DOI: 10.3389/fpls.2021.814465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Lesion mimic mutants have become an effective material for understanding plant-microbe interactions and the immune mechanism in plants. Although many mechanisms responsible for the lesion mimic phenotype have been clarified in plants, the mechanism by which lesion mimic is regulated by posttranslational modification remained largely elusive, especially in rice. In this study, a mutant with the lesion mimic phenotype was obtained and named lmp1-1. Physiological measurements and quantitative real-time PCR analysis showed that the defense response was activated in the mutants. Transcriptome analysis showed that the phenylalanine ammonia lyase (PAL) pathway was activated in the mutant, causing the accumulation of salicylic acid (SA). The results of mapping based cloning showed that OsLMP1 encodes a deubiquitinase. OsLMP1 can cleave ubiquitination precursors. Furthermore, OsLMP1 epigenetically modifies SA synthetic pathway genes by deubiquitinating H2B and regulates the immune response in rice. In summary, this study deepens our understanding of the function of OsLMP1 in the plant immune response and provides further insight into the relationship between plants and pathogenic microorganisms.
Collapse
|
11
|
Liu Y, Chen X, Xue S, Quan T, Cui D, Han L, Cong W, Li M, Yun D, Liu B, Xu Z. SET DOMAIN GROUP 721 protein functions in saline-alkaline stress tolerance in the model rice variety Kitaake. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2576-2588. [PMID: 34416090 PMCID: PMC8633509 DOI: 10.1111/pbi.13683] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 06/12/2023]
Abstract
To isolate the genetic locus responsible for saline-alkaline stress tolerance, we developed a high-throughput activation tagging-based T-DNA insertion mutagenesis method using the model rice (Oryza sativa L.) variety Kitaake. One of the activation-tagged insertion lines, activation tagging 7 (AC7), showed increased tolerance to saline-alkaline stress. This phenotype resulted from the overexpression of a gene that encodes a SET DOMAIN GROUP 721 protein with H3K4 methyltransferase activity. Transgenic plants overexpressing OsSDG721 showed saline-alkaline stress-tolerant phenotypes, along with increased leaf angle, advanced heading and ripening dates. By contrast, ossdg721 loss-of-function mutants showed increased sensitivity to saline-alkaline stress characterized by decreased survival rates and reduction in plant height, grain size, grain weight and leaf angle. RNA sequencing (RNA-seq) analysis of wild-type Kitaake and ossdg721 mutants indicated that OsSDG721 positively regulates the expression level of HIGH-AFFINITY POTASSIUM (K+ ) TRANSPORTER1;5 (OsHKT1;5), which encodes a Na+ -selective transporter that maintains K+ /Na+ homeostasis under salt stress. Furthermore, we showed that OsSDG721 binds to and deposits the H3K4me3 mark in the promoter and coding region of OsHKT1;5, thereby upregulating OsHKT1;5 expression under saline-alkaline stress. Overall, by generating Kitaake activation-tagging pools, we established that the H3K4 methyltransferase OsSDG721 enhances saline-alkaline stress tolerance in rice.
Collapse
Affiliation(s)
- Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunP. R. China
| | - Xi Chen
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunP. R. China
| | - Shangyong Xue
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunP. R. China
| | - Taiyong Quan
- School of Life ScienceShandong UniversityQingdaoP. R. China
| | - Di Cui
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingP. R. China
| | - Longzhi Han
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingP. R. China
| | - Weixuan Cong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunP. R. China
| | - Mengting Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunP. R. China
| | - Dae‐Jin Yun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunP. R. China
- Department of Biomedical Science and EngineeringKonkuk UniversitySeoulSouth Korea
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunP. R. China
| | - Zheng‐Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunP. R. China
| |
Collapse
|
12
|
Dutta M, Moin M, Saha A, Dutta D, Bakshi A, Kirti PB. Gain-of-function mutagenesis through activation tagging identifies XPB2 and SEN1 helicase genes as potential targets for drought stress tolerance in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2253-2272. [PMID: 33821294 DOI: 10.1007/s00122-021-03823-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 03/23/2021] [Indexed: 05/13/2023]
Abstract
XPB2 and SEN1 helicases were identified through activation tagging as potential candidate genes in rice for inducing high water-use efficiency (WUE) and maintaining sustainable yield under drought stress. As a follow-up on the high-water-use-efficiency screening and physiological analyses of the activation-tagged gain-of-function mutant lines that were developed in an indica rice variety, BPT-5204 (Moin et al. in Plant Cell Environ 39:2440-2459, 2016a, https://doi.org/10.1111/pce.12796 ), we have identified two gain-of-function mutant lines (XM3 and SM4), which evidenced the activation of two helicases, ATP-dependent DNA helicase (XPB2) and RNA helicase (SEN1), respectively. We performed the transcript profiling of XPB2 and SEN1 upon exposure to various stress conditions and found their significant upregulation, particularly in ABA and PEG treatments. Extensive morpho-physiological and biochemical analyses based on 24 metrics were performed under dehydration stress (PEG) and phytohormone (ABA) treatments for the wild-type and the two mutant lines. Principal component analysis (PCA) performed on the dataset captured 72.73% of the cumulative variance using the parameters influencing the first two principal components. The tagged mutants exhibited reduced leaf wilting, improved revival efficiency, constant amylose:amylopectin ratio, high chlorophyll and proline contents, profuse tillering, high quantum efficiency and yield-related traits with respect to their controls. These observations were further validated under greenhouse conditions by the periodic withdrawal of water at the pot level. Germination of the seeds of these mutant lines indicated their insensitivity to high ABA concentration. The associated upregulation of stress-specific genes further suggests that their drought tolerance might be because of the coordinated expression of several stress-responsive genes in these two mutants. Altogether, our results provided a firm basis for SEN1 and XPB2 as potential candidates for manipulation of drought tolerance and improving rice performance and yield under limited water conditions.
Collapse
Affiliation(s)
- Mouboni Dutta
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Mazahar Moin
- Biotechnology Division, Indian Institute of Rice Research, Hyderabad, 500030, India.
| | - Anusree Saha
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Dibyendu Dutta
- Department of Chemical Engineering, Indian Institute of Technology, Bombay, Mumbai, 400076, India
| | - Achala Bakshi
- Biotechnology Division, Indian Institute of Rice Research, Hyderabad, 500030, India
| | - P B Kirti
- Agri Biotech Foundation, PJTS Agricultural University Campus, Hyderabad, 500030, India.
| |
Collapse
|
13
|
Sun J, Cui X, Teng S, Kunnong Z, Wang Y, Chen Z, Sun X, Wu J, Ai P, Quick WP, Lu T, Zhang Z. HD-ZIP IV gene Roc8 regulates the size of bulliform cells and lignin content in rice. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2559-2572. [PMID: 32559019 PMCID: PMC7680540 DOI: 10.1111/pbi.13435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 05/31/2020] [Indexed: 05/27/2023]
Abstract
The morphology of bulliform cells located on the upper epidermis of leaves is one of the most important cell structures affecting leaf shape. Although many mechanisms regulating the development of bulliform cells have been reported, the fine regulatory mechanisms governing this process have rarely been described. To identify novel components regulating rice leaf morphology, a mutant showing a constitutively rolling phenotype from the seedling stage to flowering, known as crm1-D, was selected for further analysis. Anatomical analyses in crm1-D were attributable to the size reduction of bulliform cells. The crm1-D was controlled by a single dominant nuclear gene. Map-based cloning revealed that Roc8, an HD zipper class IV family member, was responsible for the crm1-D phenotype. Notably, the 50-bp sequence in the 3'-untranslated region (3'-UTR) of the Roc8 gene represses Roc8 at the translational level. Moreover, the roc8 knockdown lines notably increased the size of bulliform cells. A series of assays revealed that Roc8 negatively regulates the size of bulliform cells. Unexpectedly, Roc8 was also observed to positively mediate lignin biosynthesis without incurring a production penalty. The above results show that Roc8 may have a practical application in cultivating materials with high photosynthetic efficiency and low lignin content.
Collapse
Affiliation(s)
- Jing Sun
- Joint CAAS/IRRI Laboratory for Photosynthetic EnhancementBiotechnology Research Institute/National Key Facility for Genetic Resources and Gene ImprovementThe Chinese Academy of Agricultural SciencesBeijingChina
| | - Xuean Cui
- Joint CAAS/IRRI Laboratory for Photosynthetic EnhancementBiotechnology Research Institute/National Key Facility for Genetic Resources and Gene ImprovementThe Chinese Academy of Agricultural SciencesBeijingChina
| | - Shouzhen Teng
- Joint CAAS/IRRI Laboratory for Photosynthetic EnhancementBiotechnology Research Institute/National Key Facility for Genetic Resources and Gene ImprovementThe Chinese Academy of Agricultural SciencesBeijingChina
| | - Zhao Kunnong
- Joint CAAS/IRRI Laboratory for Photosynthetic EnhancementBiotechnology Research Institute/National Key Facility for Genetic Resources and Gene ImprovementThe Chinese Academy of Agricultural SciencesBeijingChina
| | - Yanwei Wang
- Joint CAAS/IRRI Laboratory for Photosynthetic EnhancementBiotechnology Research Institute/National Key Facility for Genetic Resources and Gene ImprovementThe Chinese Academy of Agricultural SciencesBeijingChina
| | - Zhenhua Chen
- Joint CAAS/IRRI Laboratory for Photosynthetic EnhancementBiotechnology Research Institute/National Key Facility for Genetic Resources and Gene ImprovementThe Chinese Academy of Agricultural SciencesBeijingChina
| | - Xuehui Sun
- Joint CAAS/IRRI Laboratory for Photosynthetic EnhancementBiotechnology Research Institute/National Key Facility for Genetic Resources and Gene ImprovementThe Chinese Academy of Agricultural SciencesBeijingChina
| | - Jinxia Wu
- Joint CAAS/IRRI Laboratory for Photosynthetic EnhancementBiotechnology Research Institute/National Key Facility for Genetic Resources and Gene ImprovementThe Chinese Academy of Agricultural SciencesBeijingChina
| | - Pengfei Ai
- College of Bioscience and BioengineeringHebei University of Science and TechnologyHebeiChina
| | - William Paul Quick
- Joint CAAS/IRRI Laboratory for Photosynthetic EnhancementBiotechnology Research Institute/National Key Facility for Genetic Resources and Gene ImprovementThe Chinese Academy of Agricultural SciencesBeijingChina
- C4 Rice CenterInternational Rice Research Institute (IRRI)UPLBLos BañosLagunaPhilippines
- Department of Animal and Plant SciencesUniversity of SheffieldWestern BankSheffieldUK
| | - Tiegang Lu
- Joint CAAS/IRRI Laboratory for Photosynthetic EnhancementBiotechnology Research Institute/National Key Facility for Genetic Resources and Gene ImprovementThe Chinese Academy of Agricultural SciencesBeijingChina
| | - Zhiguo Zhang
- Joint CAAS/IRRI Laboratory for Photosynthetic EnhancementBiotechnology Research Institute/National Key Facility for Genetic Resources and Gene ImprovementThe Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
14
|
Wang H, Jiao X, Kong X, Liu Y, Chen X, Fang R, Yan Y. The histone deacetylase HDA703 interacts with OsBZR1 to regulate rice brassinosteroid signaling, growth and heading date through repression of Ghd7 expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:447-459. [PMID: 33617099 DOI: 10.1111/tpj.14936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/08/2020] [Indexed: 06/12/2023]
Abstract
The plant steroid hormones brassinosteroids (BRs) play crucial roles in plant growth and development. The BR signal transduction pathway from perception to the key transcription factors has been well understood in Arabidopsis thaliana and in rice (Oryza sativa); however, the mechanisms conferring BR-mediated growth and flowering remain largely unknown, especially in rice. In this study, we show that HDA703 is a histone H4K8 and H4K12 deacetylase in rice. Hda703 mutants display a typical BR loss-of-function phenotype and reduced sensitivity to brassinolide, the most active BR. Rice plants overexpressing HDA703 exhibit some BR gain-of-function phenotypes dependent on BR biosynthesis and signaling. We also show that HDA703 is a direct target of BRASSINAZOLE-RESISTANT1 (OsBZR1), a primary regulator of rice BR signaling, and HDA703 interacts with OsBZR1 in rice. We further show that GRAIN NUMBER, PLANT HEIGHT, and HEADING DATE 7 (Ghd7), a central regulator of growth, development, and the stress response, is a direct target of OsBZR1. HDA703 directly targets Ghd7 and represses its expression through histone H4 deacetylation. HDA703-overexpressing rice plants phenocopy Ghd7-silencing rice plants in both growth and heading date. Together, our study suggests that HDA703, a histone H4 deacetylase, interacts with OsBZR1 to regulate rice BR signaling, growth, and heading date through epigenetic regulation of Ghd7.
Collapse
Affiliation(s)
- Huacai Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoming Jiao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoyu Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yawen Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoying Chen
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rongxiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- National Plant Gene Research Center, Beijing, 100101, China
| | - Yongsheng Yan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
15
|
Abscisic Acid Represses Rice Lamina Joint Inclination by Antagonizing Brassinosteroid Biosynthesis and Signaling. Int J Mol Sci 2019; 20:ijms20194908. [PMID: 31623350 PMCID: PMC6801706 DOI: 10.3390/ijms20194908] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 11/17/2022] Open
Abstract
Leaf angle is a key parameter that determines plant architecture and crop yield. Hormonal crosstalk involving brassinosteroid (BR) plays an essential role in leaf angle regulation in cereals. In this study, we investigated whether abscisic acid (ABA), an important stress-responsive hormone, co-regulates lamina joint inclination together with BR, and, if so, what the underlying mechanism is. Therefore, lamina joint inclination assay and RNA sequencing (RNA-Seq) analysis were performed here. ABA antagonizes the promotive effect of BR on leaf angle. Hundreds of genes responsive to both hormones that are involved in leaf-angle determination were identified by RNA-Seq and the expression of a gene subset was confirmed using quantitative real-time PCR (qRT-PCR). Results from analysis of rice mutants or transgenic lines affected in BR biosynthesis and signaling indicated that ABA antagonizes the effect of BR on lamina joint inclination by targeting the BR biosynthesis gene D11 and BR signaling genes GSK2 and DLT, thus forming a multi-level regulatory module that controls leaf angle in rice. Taken together, our findings demonstrate that BR and ABA antagonistically regulate lamina joint inclination in rice, thus contributing to the elucidation of the complex hormonal interaction network that optimizes leaf angle in rice.
Collapse
|
16
|
Zhao JL, Zhang LQ, Liu N, Xu SL, Yue ZL, Zhang LL, Deng ZP, Burlingame AL, Sun DY, Wang ZY, Sun Y, Zhang SW. Mutual Regulation of Receptor-Like Kinase SIT1 and B'κ-PP2A Shapes the Early Response of Rice to Salt Stress. THE PLANT CELL 2019; 31:2131-2151. [PMID: 31221736 PMCID: PMC6751134 DOI: 10.1105/tpc.18.00706] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/22/2019] [Accepted: 06/14/2019] [Indexed: 05/03/2023]
Abstract
The receptor-like kinase SIT1 acts as a sensor in rice (Oryza sativa) roots, relaying salt stress signals via elevated kinase activity to enhance salt sensitivity. Here, we demonstrate that Protein Phosphatase 2A (PP2A) regulatory subunit B'κ constrains SIT1 activity under salt stress. B'κ-PP2A deactivates SIT1 directly by dephosphorylating the kinase at Thr515/516, a salt-induced phosphorylation site in the activation loop that is essential for SIT1 activity. B'κ overexpression suppresses the salt sensitivity of rice plants expressing high levels of SIT1, thereby contributing to salt tolerance. B'κ functions in a SIT1 kinase-dependent manner. During early salt stress, activated SIT1 phosphorylates B'κ; this not only enhances its binding with SIT1, it also promotes B'κ protein accumulation via Ser502 phosphorylation. Consequently, by blocking SIT1 phosphorylation, B'κ inhibits and fine-tunes SIT1 activity to balance plant growth and stress adaptation.
Collapse
Affiliation(s)
- Ji-Long Zhao
- College of Life Science, Hebei Normal University, Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, China
| | - Li-Qing Zhang
- College of Life Science, Hebei Normal University, Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, China
| | - Ning Liu
- College of Life Science, Hebei Normal University, Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, China
| | - Shou-Ling Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143
| | - Zhi-Liang Yue
- College of Life Science, Hebei Normal University, Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, China
| | - Lu-Lu Zhang
- College of Life Science, Hebei Normal University, Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, China
| | - Zhi-Ping Deng
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143
| | - Da-Ye Sun
- College of Life Science, Hebei Normal University, Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, China
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Ying Sun
- College of Life Science, Hebei Normal University, Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, China
| | - Sheng-Wei Zhang
- College of Life Science, Hebei Normal University, Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, China
| |
Collapse
|
17
|
Insertional Mutagenesis Approaches and Their Use in Rice for Functional Genomics. PLANTS 2019; 8:plants8090310. [PMID: 31470516 PMCID: PMC6783850 DOI: 10.3390/plants8090310] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 01/01/2023]
Abstract
Insertional mutagenesis is an indispensable tool for engendering a mutant population using exogenous DNA as the mutagen. The advancement in the next-generation sequencing platform has allowed for faster screening and analysis of generated mutated populations. Rice is a major staple crop for more than half of the world's population; however, the functions of most of the genes in its genome are yet to be analyzed. Various mutant populations represent extremely valuable resources in order to achieve this goal. Here, we have reviewed different insertional mutagenesis approaches that have been used in rice, and have discussed their principles, strengths, and limitations. Comparisons between transfer DNA (T-DNA), transposons, and entrapment tagging approaches have highlighted their utilization in functional genomics studies in rice. We have also summarised different forward and reverse genetics approaches used for screening of insertional mutant populations. Furthermore, we have compiled information from several efforts made using insertional mutagenesis approaches in rice. The information presented here would serve as a database for rice insertional mutagenesis populations. We have also included various examples which illustrate how these populations have been useful for rice functional genomics studies. The information provided here will be very helpful for future functional genomics studies in rice aimed at its genetic improvement.
Collapse
|
18
|
Liao CC, Chen LJ, Lo SF, Chen CW, Chu YW. EAT-Rice: A predictive model for flanking gene expression of T-DNA insertion activation-tagged rice mutants by machine learning approaches. PLoS Comput Biol 2019; 15:e1006942. [PMID: 31067213 PMCID: PMC6505892 DOI: 10.1371/journal.pcbi.1006942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/09/2019] [Indexed: 11/17/2022] Open
Abstract
T-DNA activation-tagging technology is widely used to study rice gene functions. When T-DNA inserts into genome, the flanking gene expression may be altered using CaMV 35S enhancer, but the affected genes still need to be validated by biological experiment. We have developed the EAT-Rice platform to predict the flanking gene expression of T-DNA insertion site in rice mutants. The three kinds of DNA sequences including UPS1K, DISTANCE, and MIDDLE were retrieved to encode and build a forecast model of two-layer machine learning. In the first-layer models, the features nucleotide context (N-gram), cis-regulatory elements (Motif), nucleotide physicochemical properties (NPC), and CG-island (CGI) were used to build SVM models by analysing the concealed information embedded within the three kinds of sequences. Logistic regression was used to estimate the probability of gene activation which as feature-encoding weighting within first-layer model. In the second-layer models, the NaiveBayesUpdateable algorithm was used to integrate these first layer-models, and the system performance was 88.33% on 5-fold cross-validation, and 79.17% on independent-testing finally. In the three kinds of sequences, the model constructed by Middle had the best contribution to the system for identifying the activated genes. The EAT-Rice system provided better performance and gene expression prediction at further distances when compared to the TRIM database. An online server based on EAT-rice is available at http://predictor.nchu.edu.tw/EAT-Rice.
Collapse
Affiliation(s)
- Chi-Chou Liao
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Liang-Jwu Chen
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan.,Advanced Plant Biotechnology Center National Chung Hsing University, Taichung, Taiwan
| | - Shuen-Fang Lo
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chi-Wei Chen
- Department of Computer Science and Engineering, National Chung Hsing University, Taichung, Taiwan
| | - Yen-Wei Chu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan.,Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.,Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.,Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan.,Rong Hsing Research Center For Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
19
|
Davies JP, Reddy VS, Liu XL, Reddy AS, Ainley W, Folkerts O, Marri P, Jiang K, Wagner D. Development of an activation tagging system for maize. PLANT DIRECT 2019; 3:e00118. [PMID: 31245761 PMCID: PMC6508757 DOI: 10.1002/pld3.118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/10/2019] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Abstract
Activation Tagging, distributing transcriptional enhancers throughout the genome to induce transcription of nearby genes, is a powerful tool for discovering the function of genes in plants. We have developed a transposable element system to distribute a novel activation tagging element throughout the genome of maize. The transposon system is built from the Enhancer/Suppressor (En/Spm) transposon system and uses an engineered seed color marker to show when the transposon excises. Both somatic and germinal excision events can be detected by the seed color. The activation tagging element is in a Spm-derived non-autonomous transposon and contains four copies of the Sugarcane Bacilliform Virus-enhancer (SCBV-enhancer) and the AAD1 selectable marker. We have demonstrated that the transposon can give rise to germinal excision events that can re-integrate into non-linked genomic locations. The transposon has remained active for three generations and events displaying high rates of germinal excision in the T2 generation have been identified. This system can generate large numbers of activation tagged maize lines that can be screened for agriculturally relevant phenotypes.
Collapse
Affiliation(s)
| | - Vaka S. Reddy
- Dow AgroSciencesIndianapolisIndiana
- Present address:
Molecular MicrobiologySchool of MedicineWashington University in St LouisSt LouisMissouri
| | | | | | | | | | | | - Ke Jiang
- Dow AgroSciencesIndianapolisIndiana
- Present address:
Genus PLCDe ForestWisconsin
| | | |
Collapse
|
20
|
Pan G, Liu Y, Ji L, Zhang X, He J, Huang J, Qiu Z, Liu D, Sun Z, Xu T, Liu L, Wang C, Jiang L, Cheng X, Wan J. Brassinosteroids mediate susceptibility to brown planthopper by integrating with the salicylic acid and jasmonic acid pathways in rice. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4433-4442. [PMID: 29893903 PMCID: PMC6093477 DOI: 10.1093/jxb/ery223] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/08/2018] [Indexed: 05/03/2023]
Abstract
Improved knowledge of the interactions between plants and insects will facilitate better insect control in crops. Brassinosteroids (BRs) play a vital role in plant growth, developmental processes, and responses to pathogen infection, but the role of BRs in interactions between plants and insects remain largely unknown. In this study, we characterized a negative role of BRs in rice defense against brown planthopper (BPH, Nilaparvata lugens) and examined its underlying mechanisms. We found that BPH infestation suppressed the BR pathway while successively activating the salicylic acid (SA) and jasmonic acid (JA) pathways. In addition, BR-overproducing mutants and plants treated with 24-epibrassinolide (BL) showed increased susceptibility to BPH, whereas BR-deficient mutants were more resistant than the wild-type. BRs down-regulated the expression of genes related to the SA pathway and reduced SA content while genes related to the JA pathway were up-regulated and JA content increased after BPH infestation. Furthermore, BR-mediated suppression of the SA pathway was impaired both in JA-deficient and JA-insensitive mutants. Our results demonstrate that BRs promote the susceptibility of rice plants to BPH by modulating the SA and JA pathways.
Collapse
Affiliation(s)
- Gen Pan
- State Key Laboratory for Crop Genetics & Germplasm Enhancement, Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Weigang, Nanjing, China
| | - Yuqiang Liu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement, Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Weigang, Nanjing, China
| | - Linshan Ji
- State Key Laboratory for Crop Genetics & Germplasm Enhancement, Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Weigang, Nanjing, China
| | - Xiao Zhang
- State Key Laboratory for Crop Genetics & Germplasm Enhancement, Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Weigang, Nanjing, China
| | - Jun He
- State Key Laboratory for Crop Genetics & Germplasm Enhancement, Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Weigang, Nanjing, China
| | - Jie Huang
- State Key Laboratory for Crop Genetics & Germplasm Enhancement, Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Weigang, Nanjing, China
| | - Zeyu Qiu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement, Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Weigang, Nanjing, China
| | - Daoming Liu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement, Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Weigang, Nanjing, China
| | - Zhiguang Sun
- State Key Laboratory for Crop Genetics & Germplasm Enhancement, Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Weigang, Nanjing, China
| | - Tingting Xu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement, Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Weigang, Nanjing, China
| | - Linglong Liu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement, Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Weigang, Nanjing, China
| | - Chunming Wang
- State Key Laboratory for Crop Genetics & Germplasm Enhancement, Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Weigang, Nanjing, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics & Germplasm Enhancement, Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Weigang, Nanjing, China
| | - Xianian Cheng
- State Key Laboratory for Crop Genetics & Germplasm Enhancement, Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Weigang, Nanjing, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics & Germplasm Enhancement, Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Weigang, Nanjing, China
- Institute of Crop Science, the National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
21
|
Pursuing extreme sensitivity for determination of endogenous brassinosteroids through direct fishing from plant matrices and eliminating most interferences with boronate affinity magnetic nanoparticles. Anal Bioanal Chem 2017; 410:1363-1374. [PMID: 29238862 DOI: 10.1007/s00216-017-0777-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/09/2017] [Accepted: 11/21/2017] [Indexed: 01/31/2023]
Abstract
Brassinosteroids (BRs) are important plant hormones regulating plant growth and development. High-performance analytical methods for quantifying endogenous BRs are important for studying the molecular mechanisms of BR action. Herein we developed a high-performance sample pretreatment method based on boronate affinity magnetic nanoparticles (BAMNPs). The high specificity of boronate affinity enables direct fishing of BRs from plant matrices. The strong binding energy makes it possible to remove most contaminants in plant matrices with a small loss of target BRs. Besides these advantages, the novel two-step oxidation-hydrolysis elution system raised BR recoveries to 70.5%-98.2%, which was much higher than other boronate affinity applications. The high cleanliness of the final eluents lowered the matrix effects to 85.2%-92.4%. As a result, this method enables simultaneously good recoveries of endogenous BRs and thorough removal of matrix interferences, which greatly improves the sensitivity of BR analysis and reduces the use of plant materials for routine analysis to <10 mg. In addition, the sample handling time can be shortened to <3 h due to the operating convenience of BAMNPs and their easy separation from plant powders. Based on these advantages of BAMNP solid phase extraction, the organ-specific BR distribution analysis in Arabidopsis and rice tissues demonstrates excellent sensitivity, good reproducibility and high throughput of the method. Graphical abstract A high-sensitivity and time-saving UPLC-MS/MS-based quantification method for brassinosteroids (BRs) was developed through directly fishing BRs from plant matrices and eliminating most matrix interferences with as-prepared boronate affinity magnetic nanoparticles (BAMNPs).
Collapse
|
22
|
Pérez‐Martín F, Yuste‐Lisbona FJ, Pineda B, Angarita‐Díaz MP, García‐Sogo B, Antón T, Sánchez S, Giménez E, Atarés A, Fernández‐Lozano A, Ortíz‐Atienza A, García‐Alcázar M, Castañeda L, Fonseca R, Capel C, Goergen G, Sánchez J, Quispe JL, Capel J, Angosto T, Moreno V, Lozano R. A collection of enhancer trap insertional mutants for functional genomics in tomato. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1439-1452. [PMID: 28317264 PMCID: PMC5633825 DOI: 10.1111/pbi.12728] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/03/2017] [Accepted: 03/15/2017] [Indexed: 05/06/2023]
Abstract
With the completion of genome sequencing projects, the next challenge is to close the gap between gene annotation and gene functional assignment. Genomic tools to identify gene functions are based on the analysis of phenotypic variations between a wild type and its mutant; hence, mutant collections are a valuable resource. In this sense, T-DNA collections allow for an easy and straightforward identification of the tagged gene, serving as the basis of both forward and reverse genetic strategies. This study reports on the phenotypic and molecular characterization of an enhancer trap T-DNA collection in tomato (Solanum lycopersicum L.), which has been produced by Agrobacterium-mediated transformation using a binary vector bearing a minimal promoter fused to the uidA reporter gene. Two genes have been isolated from different T-DNA mutants, one of these genes codes for a UTP-glucose-1-phosphate uridylyltransferase involved in programmed cell death and leaf development, which means a novel gene function reported in tomato. Together, our results support that enhancer trapping is a powerful tool to identify novel genes and regulatory elements in tomato and that this T-DNA mutant collection represents a highly valuable resource for functional analyses in this fleshy-fruited model species.
Collapse
Affiliation(s)
- Fernando Pérez‐Martín
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | | | - Benito Pineda
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - María Pilar Angarita‐Díaz
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Begoña García‐Sogo
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Teresa Antón
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Sibilla Sánchez
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Estela Giménez
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Alejandro Atarés
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Antonia Fernández‐Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Ana Ortíz‐Atienza
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Manuel García‐Alcázar
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Laura Castañeda
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Rocío Fonseca
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Carmen Capel
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Geraldine Goergen
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Jorge Sánchez
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Jorge L. Quispe
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Juan Capel
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Trinidad Angosto
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Vicente Moreno
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| |
Collapse
|
23
|
Feng D, Wang Y, Wu J, Lu T, Zhang Z. Development and drought tolerance assay of marker-free transgenic rice with OsAPX2 using biolistic particle-mediated co-transformation. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.cj.2017.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Abe K, Ichikawa H. Gene Overexpression Resources in Cereals for Functional Genomics and Discovery of Useful Genes. FRONTIERS IN PLANT SCIENCE 2016; 7:1359. [PMID: 27708649 PMCID: PMC5030214 DOI: 10.3389/fpls.2016.01359] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/26/2016] [Indexed: 05/12/2023]
Abstract
Identification and elucidation of functions of plant genes is valuable for both basic and applied research. In addition to natural variation in model plants, numerous loss-of-function resources have been produced by mutagenesis with chemicals, irradiation, or insertions of transposable elements or T-DNA. However, we may be unable to observe loss-of-function phenotypes for genes with functionally redundant homologs and for those essential for growth and development. To offset such disadvantages, gain-of-function transgenic resources have been exploited. Activation-tagged lines have been generated using obligatory overexpression of endogenous genes by random insertion of an enhancer. Recent progress in DNA sequencing technology and bioinformatics has enabled the preparation of genomewide collections of full-length cDNAs (fl-cDNAs) in some model species. Using the fl-cDNA clones, a novel gain-of-function strategy, Fl-cDNA OvereXpressor gene (FOX)-hunting system, has been developed. A mutant phenotype in a FOX line can be directly attributed to the overexpressed fl-cDNA. Investigating a large population of FOX lines could reveal important genes conferring favorable phenotypes for crop breeding. Alternatively, a unique loss-of-function approach Chimeric REpressor gene Silencing Technology (CRES-T) has been developed. In CRES-T, overexpression of a chimeric repressor, composed of the coding sequence of a transcription factor (TF) and short peptide designated as the repression domain, could interfere with the action of endogenous TF in plants. Although plant TFs usually consist of gene families, CRES-T is effective, in principle, even for the TFs with functional redundancy. In this review, we focus on the current status of the gene-overexpression strategies and resources for identifying and elucidating novel functions of cereal genes. We discuss the potential of these research tools for identifying useful genes and phenotypes for application in crop breeding.
Collapse
Affiliation(s)
| | - Hiroaki Ichikawa
- Institute of Agrobiological Sciences, National Agriculture and Food Research OrganizationTsukuba, Japan
| |
Collapse
|
25
|
Feng Z, Wu C, Wang C, Roh J, Zhang L, Chen J, Zhang S, Zhang H, Yang C, Hu J, You X, Liu X, Yang X, Guo X, Zhang X, Wu F, Terzaghi W, Kim SK, Jiang L, Wan J. SLG controls grain size and leaf angle by modulating brassinosteroid homeostasis in rice. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4241-53. [PMID: 27252468 PMCID: PMC5301929 DOI: 10.1093/jxb/erw204] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Grain size and leaf angle are two important traits determining grain yield in rice. However, the mechanisms regulating the two traits remain largely unknown. Here, we characterized a rice gain-of-function mutant, slender grain Dominant (slg-D), which exhibited longer and narrower grains and larger leaf angles, similar to plants with elevated brassinosteroid (BR) levels or strengthened BR signaling. The increased cell length is responsible for the mutant phenotypes in slg-D We demonstrated that the phenotype of slg-D is caused by enhanced expression of SLG, a BAHD acyltransferase-like protein gene. SLG is preferentially expressed in young panicles and lamina joints, implying its role in controlling cell growth in those two tissues. slg-D was restored to wild type by treatment with brassinazole, an inhibitor of BR biosynthesis. Overexpression of SLG in d11-2 (deficient in BR synthesis) and d61-1 (deficient in BR signaling) did not change the existing phenotypes. The slg-D plants had elevated BR contents and, accordingly, expression of BR-related genes was changed in a manner similar to BR treatment. Moreover, SLG RNAi plants displayed mild BR-deficient phenotypes including shorter grains, smaller leaf angles, and compact semi-dwarf plant types. The in vitro biochemical assays and transgenic approaches collectively demonstrated that SLG functions as homomers. Taken together, we conclude that SLG is an important regulator in BR homeostasis and that manipulation of SLG expression to an optimal level may provide a way to develop an ideal plant type.
Collapse
Affiliation(s)
- Zhiming Feng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Chuanyin Wu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunming Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jeehee Roh
- Department of Life Science, Chung-Ang University, Seoul 156-756, Korea
| | - Long Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Chen
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shengzhong Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Huan Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunyan Yang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinlong Hu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoman You
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xi Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoming Yang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiuping Guo
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Zhang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fuqing Wu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - William Terzaghi
- Department of Biology, Wilkes University, Wilkes-Barre, PA 18766, USA
| | - Seong-Ki Kim
- Department of Life Science, Chung-Ang University, Seoul 156-756, Korea
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
26
|
Wei FJ, Tsai YC, Hsu YM, Chen YA, Huang CT, Wu HP, Huang LT, Lai MH, Kuang LY, Lo SF, Yu SM, Lin YR, Hsing YIC. Lack of Genotype and Phenotype Correlation in a Rice T-DNA Tagged Line Is Likely Caused by Introgression in the Seed Source. PLoS One 2016; 11:e0155768. [PMID: 27186981 PMCID: PMC4871347 DOI: 10.1371/journal.pone.0155768] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/03/2016] [Indexed: 01/12/2023] Open
Abstract
Rice (Oryza sativa) is one of the most important crops in the world. Several rice insertional mutant libraries are publicly available for systematic analysis of gene functions. However, the tagging efficiency of these mutant resources-the relationship between genotype and phenotype-is very low. We used whole-genome sequencing to analyze a T-DNA-tagged transformant from the Taiwan Rice Insertional Mutants (TRIM) resource. The phenomics records for M0028590, one of the TRIM lines, revealed three phenotypes-wild type, large grains, and tillering dwarf-in the 12 T1 plants. Using the sequencing data for 7 plants from three generations of this specific line, we demonstrate that introgression from an indica rice variety might occur in one generation before the seed was used for callus generation and transformation of this line. In addition, the large-grain trait came from the GS3 gene of the introgressed region and the tillering dwarf phenotype came from a single nucleotide change in the D17 gene that occurred during the callus induction to regeneration of the transformant. As well, another regenerant showed completely heterozygous single-nucleotide polymorphisms across the whole genome. In addition to the known sequence changes such as T-DNA integration, single nucleotide polymorphism, insertion, deletion, chromosome rearrangement and doubling, spontaneous outcrossing occurred in the rice field may also explain some mutated traits in a tagged mutant population. Thus, the co-segregation of an integration event and the phenotype should be checked when using these mutant populations.
Collapse
Affiliation(s)
- Fu-Jin Wei
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Yuan-Ching Tsai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Ming Hsu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-An Chen
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Ching-Ting Huang
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Hshin-Ping Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Lin-Tzu Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Ming-Hsin Lai
- Crop Science Division, Taiwan Agriculture Research Institute, Taichung, Taiwan
| | - Lin-Yun Kuang
- Transgenic Plant Core Facility, Academia Sinica, Taipei, Taiwan
| | - Shuen-Fang Lo
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Su-May Yu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yann-Rong Lin
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Yue-Ie Caroline Hsing
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
27
|
Lo SF, Fan MJ, Hsing YI, Chen LJ, Chen S, Wen IC, Liu YL, Chen KT, Jiang MJ, Lin MK, Rao MY, Yu LC, Ho THD, Yu SM. Genetic resources offer efficient tools for rice functional genomics research. PLANT, CELL & ENVIRONMENT 2016; 39:998-1013. [PMID: 26301381 DOI: 10.1111/pce.12632] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/13/2015] [Accepted: 08/16/2015] [Indexed: 05/07/2023]
Abstract
Rice is an important crop and major model plant for monocot functional genomics studies. With the establishment of various genetic resources for rice genomics, the next challenge is to systematically assign functions to predicted genes in the rice genome. Compared with the robustness of genome sequencing and bioinformatics techniques, progress in understanding the function of rice genes has lagged, hampering the utilization of rice genes for cereal crop improvement. The use of transfer DNA (T-DNA) insertional mutagenesis offers the advantage of uniform distribution throughout the rice genome, but preferentially in gene-rich regions, resulting in direct gene knockout or activation of genes within 20-30 kb up- and downstream of the T-DNA insertion site and high gene tagging efficiency. Here, we summarize the recent progress in functional genomics using the T-DNA-tagged rice mutant population. We also discuss important features of T-DNA activation- and knockout-tagging and promoter-trapping of the rice genome in relation to mutant and candidate gene characterizations and how to more efficiently utilize rice mutant populations and datasets for high-throughput functional genomics and phenomics studies by forward and reverse genetics approaches. These studies may facilitate the translation of rice functional genomics research to improvements of rice and other cereal crops.
Collapse
Affiliation(s)
- Shuen-Fang Lo
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan, ROC
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan, ROC
| | - Ming-Jen Fan
- Department of Biotechnology, Asia University, Lioufeng Road, Wufeng, Taichung, 413, Taiwan, ROC
| | - Yue-Ie Hsing
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115, Taiwan, ROC
| | - Liang-Jwu Chen
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan, ROC
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402, Taiwan, ROC
| | - Shu Chen
- Plant Germplasm Division, Taiwan Agricultural Research Institute, Wufeng, Taichung, 413, Taiwan, ROC
| | - Ien-Chie Wen
- Plant Germplasm Division, Taiwan Agricultural Research Institute, Wufeng, Taichung, 413, Taiwan, ROC
| | - Yi-Lun Liu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan, ROC
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan, ROC
| | - Ku-Ting Chen
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan, ROC
| | - Mirng-Jier Jiang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan, ROC
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan, ROC
| | - Ming-Kuang Lin
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan, ROC
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan, ROC
| | - Meng-Yen Rao
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan, ROC
| | - Lin-Chih Yu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan, ROC
| | - Tuan-Hua David Ho
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan, ROC
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115, Taiwan, ROC
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan, ROC
| | - Su-May Yu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan, ROC
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan, ROC
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan, ROC
| |
Collapse
|
28
|
The Oryza sativa Regulator HDR1 Associates with the Kinase OsK4 to Control Photoperiodic Flowering. PLoS Genet 2016; 12:e1005927. [PMID: 26954091 PMCID: PMC4783006 DOI: 10.1371/journal.pgen.1005927] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 02/19/2016] [Indexed: 11/19/2022] Open
Abstract
Rice is a facultative short-day plant (SDP), and the regulatory pathways for flowering time are conserved, but functionally modified, in Arabidopsis and rice. Heading date 1 (Hd1), an ortholog of Arabidopsis CONSTANS (CO), is a key regulator that suppresses flowering under long-day conditions (LDs), but promotes flowering under short-day conditions (SDs) by influencing the expression of the florigen gene Heading date 3a (Hd3a). Another key regulator, Early heading date 1 (Ehd1), is an evolutionarily unique gene with no orthologs in Arabidopsis, which acts as a flowering activator under both SD and LD by promoting the rice florigen genes Hd3a and RICE FLOWERING LOCUST 1 (RFT1). Here, we report the isolation and characterization of the flowering regulator Heading Date Repressor1 (HDR1) in rice. The hdr1 mutant exhibits an early flowering phenotype under natural LD in a paddy field in Beijing, China (39°54'N, 116°23'E), as well as under LD but not SD in a growth chamber, indicating that HDR1 may functionally regulate flowering time via the photoperiod-dependent pathway. HDR1 encodes a nuclear protein that is most active in leaves and floral organs and exhibits a typical diurnal expression pattern. We determined that HDR1 is a novel suppressor of flowering that upregulates Hd1 and downregulates Ehd1, leading to the downregulation of Hd3a and RFT1 under LDs. We have further identified an HDR1-interacting kinase, OsK4, another suppressor of rice flowering under LDs. OsK4 acts similarly to HDR1, suppressing flowering by upregulating Hd1 and downregulating Ehd1 under LDs, and OsK4 can phosphorylate HD1 with HDR1 presents. These results collectively reveal the transcriptional regulators of Hd1 for the day-length-dependent control of flowering time in rice. In rice, flowering time affects the potential yield, the growing season and regional adaptability. Change in day length is a key seasonal cue for regulating flowering time in rice, a facultative short-day (SD) plant. The photoperiodic pathway of rice contains the evolutionarily conserved Hd1-Hd3a module, which is homologous to the CO-FT module in the long-day (LD) plant Arabidopsis. In this work, we cloned a novel gene, HDR1, that activates Hd1 and represses Ehd1, thereby down-regulating the florigen genes Hd3a and RFT1 to postpone rice flowering. A protein associated with HDR1, OsK4, was also identified, and the resulting complex can interact with HD1 to phosphorylate HD1. We conclude that HDR1 is a novel transcriptional regulator of Hd1 that plays a crucial role in regulating flowering time via the photoperiodic pathway in rice.
Collapse
|
29
|
Wei FJ, Kuang LY, Oung HM, Cheng SY, Wu HP, Huang LT, Tseng YT, Chiou WY, Hsieh-Feng V, Chung CH, Yu SM, Lee LY, Gelvin SB, Hsing YIC. Somaclonal variation does not preclude the use of rice transformants for genetic screening. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:648-59. [PMID: 26833589 DOI: 10.1111/tpj.13132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/21/2015] [Accepted: 01/20/2016] [Indexed: 05/07/2023]
Abstract
Rice (Oryza sativa) is one of the world's most important crops. Rice researchers make extensive use of insertional mutants for the study of gene function. Approximately half a million flanking sequence tags from rice insertional mutant libraries are publicly available. However, the relationship between genotype and phenotype is very weak. Transgenic plant assays have been used frequently for complementation, overexpression or antisense analysis, but sequence changes caused by callus growth, Agrobacterium incubation medium, virulence genes, transformation and selection conditions are unknown. We used high-throughput sequencing of DNA from rice lines derived from Tainung 67 to analyze non-transformed and transgenic rice plants for mutations caused by these parameters. For comparison, we also analyzed sequence changes for two additional rice varieties and four T-DNA tagged transformants from the Taiwan Rice Insertional Mutant resource. We identified single-nucleotide polymorphisms, small indels, large deletions, chromosome doubling and chromosome translocations in these lines. Using standard rice regeneration/transformation procedures, the mutation rates of regenerants and transformants were relatively low, with no significant differences among eight tested treatments in the Tainung 67 background and in the cultivars Taikeng 9 and IR64. Thus, we could not conclusively detect sequence changes resulting from Agrobacterium-mediated transformation in addition to those caused by tissue culture-induced somaclonal variation. However, the mutation frequencies within the two publically available tagged mutant populations, including TRIM transformants or Tos17 lines, were about 10-fold higher than the frequency of standard transformants, probably because mass production of embryogenic calli and longer callus growth periods were required to generate these large libraries.
Collapse
Affiliation(s)
- Fu-Jin Wei
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128, Section 2, Yien-Chu-Yuan Road, Taipei, 11529, Taiwan
- Department of Agronomy, National Taiwan University, No. 1, Section 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Lin-Yun Kuang
- Transgenic Plant Core Facility, Academia Sinica, No. 128, Section 2, Yien-Chu-Yuan Road, Taipei, 11529, Taiwan
| | - Hui-Min Oung
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128, Section 2, Yien-Chu-Yuan Road, Taipei, 11529, Taiwan
| | - Sin-Yuan Cheng
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128, Section 2, Yien-Chu-Yuan Road, Taipei, 11529, Taiwan
| | - Hshin-Ping Wu
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128, Section 2, Yien-Chu-Yuan Road, Taipei, 11529, Taiwan
| | - Lin-Tzu Huang
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128, Section 2, Yien-Chu-Yuan Road, Taipei, 11529, Taiwan
| | - Yi-Tzu Tseng
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128, Section 2, Yien-Chu-Yuan Road, Taipei, 11529, Taiwan
- Institute of Plant Biology, National Taiwan University, No. 1, Section 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Wan-Yi Chiou
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128, Section 2, Yien-Chu-Yuan Road, Taipei, 11529, Taiwan
| | - Vicki Hsieh-Feng
- Department of Agronomy, National Taiwan University, No. 1, Section 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Cheng-Han Chung
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128, Section 2, Yien-Chu-Yuan Road, Taipei, 11529, Taiwan
| | - Su-May Yu
- Institute of Molecular Biology, Academia Sinica, No. 128, Section 2, Yien-Chu-Yuan Road, Taipei, 11529, Taiwan
| | - Lan-Ying Lee
- Department of Biological Sciences, Purdue University, 201 South University St., West Lafayette, IN, 47907-1392, USA
| | - Stanton B Gelvin
- Department of Biological Sciences, Purdue University, 201 South University St., West Lafayette, IN, 47907-1392, USA
| | - Yue-Ie C Hsing
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128, Section 2, Yien-Chu-Yuan Road, Taipei, 11529, Taiwan
| |
Collapse
|
30
|
Xin P, Yan J, Li B, Fang S, Fan J, Tian H, Shi Y, Tian W, Yan C, Chu J. A Comprehensive and Effective Mass Spectrometry-Based Screening Strategy for Discovery and Identification of New Brassinosteroids from Rice Tissues. FRONTIERS IN PLANT SCIENCE 2016; 7:1786. [PMID: 27965691 PMCID: PMC5127834 DOI: 10.3389/fpls.2016.01786] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/11/2016] [Indexed: 05/08/2023]
Abstract
The exploration and identification of new brassinosteroid (BR) compounds is critical to improve the biosynthetic research of BRs and expand the chemodiversity of active BRs. However, traditional methods are labor-intensive, time-consuming, and less sensitive. Here, we present a facile screening strategy for discovering and identifying novel BRs from plant tissues based on ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). A total of 14 potential BRs were discovered from only 1 g of rice tissues and structurally elucidated by following a MS-based clue, acquired through multiple reaction monitoring (MRM) data-dependent enhanced product ion (EPI) scan, high resolution MS, and MS survey-dependent MS/MS. One of the 14 candidates was identified as 6-deoxo-28-homotyphasterol, a brand new BR compound that is reported for the first time in the BRs biosynthesis pathway. Detailed comparison with reference standards and quantitative level analysis in rice BR mutants confirmed the availability of the other candidates. This effective, yet simple method provides an efficient way to find more and more chemically new BR biosynthetic intermediates in plants, which is significant for complementing the biosynthesis and metabolism network of BRs. This strategy may also be used to discover unknown compounds of other plant hormone species as well as their key metabolites.
Collapse
Affiliation(s)
- Peiyong Xin
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Jijun Yan
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
- College of Chemical Engineering, Qingdao University of Science and TechnologyQingdao, China
| | - Bingbing Li
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Shuang Fang
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Jinshi Fan
- College of Chemical Engineering, Qingdao University of Science and TechnologyQingdao, China
| | - Hailong Tian
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghai, China
| | - Yong Shi
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghai, China
| | - Weisheng Tian
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghai, China
| | - Cunyu Yan
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Jinfang Chu
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
- *Correspondence: Jinfang Chu
| |
Collapse
|
31
|
Wu J, Zhang Z, Zhang Q, Liu Y, Zhu B, Cao J, Li Z, Han L, Jia J, Zhao G, Sun X. Generation of Wheat Transcription Factor FOX Rice Lines and Systematic Screening for Salt and Osmotic Stress Tolerance. PLoS One 2015; 10:e0132314. [PMID: 26176782 PMCID: PMC4503417 DOI: 10.1371/journal.pone.0132314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 06/11/2015] [Indexed: 11/19/2022] Open
Abstract
Transcription factors (TFs) play important roles in plant growth, development, and responses to environmental stress. In this study, we collected 1,455 full-length (FL) cDNAs of TFs, representing 45 families, from wheat and its relatives Triticum urartu, Aegilops speltoides, Aegilops tauschii, Triticum carthlicum, and Triticum aestivum. More than 15,000 T0 TF FOX (Full-length cDNA Over-eXpressing) rice lines were generated; of these, 10,496 lines set seeds. About 14.88% of the T0 plants showed obvious phenotypic changes. T1 lines (5,232 lines) were screened for salt and osmotic stress tolerance using 150 mM NaCl and 20% (v/v) PEG-4000, respectively. Among them, five lines (591, 746, 1647, 1812, and J4065) showed enhanced salt stress tolerance, five lines (591, 746, 898, 1078, and 1647) showed enhanced osmotic stress tolerance, and three lines (591, 746, and 1647) showed both salt and osmotic stress tolerance. Further analysis of the T-DNA flanking sequences showed that line 746 over-expressed TaEREB1, line 898 over-expressed TabZIPD, and lines 1812 and J4065 over-expressed TaOBF1a and TaOBF1b, respectively. The enhanced salt and osmotic stress tolerance of lines 898 and 1812 was confirmed by retransformation of the respective genes. Our results demonstrate that a heterologous FOX system may be used as an alternative genetic resource for the systematic functional analysis of the wheat genome.
Collapse
Affiliation(s)
- Jinxia Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences/National Key Facility for Gene Resources and Gene Improvement, Beijing 100081, China
| | - Zhiguo Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences/National Key Facility for Gene Resources and Gene Improvement, Beijing 100081, China
| | - Qian Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences/National Key Facility for Gene Resources and Gene Improvement, Beijing 100081, China
| | - Yayun Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences/National Key Facility for Gene Resources and Gene Improvement, Beijing 100081, China
| | - Butuo Zhu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences/National Key Facility for Gene Resources and Gene Improvement, Beijing 100081, China
| | - Jian Cao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Gene Resources and Gene Improvement, Beijing 100081, China
| | - Zhanpeng Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences/National Key Facility for Gene Resources and Gene Improvement, Beijing 100081, China
| | - Longzhi Han
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Gene Resources and Gene Improvement, Beijing 100081, China
| | - Jizeng Jia
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Gene Resources and Gene Improvement, Beijing 100081, China
| | - Guangyao Zhao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Gene Resources and Gene Improvement, Beijing 100081, China
| | - Xuehui Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences/National Key Facility for Gene Resources and Gene Improvement, Beijing 100081, China
| |
Collapse
|
32
|
Wu J, Zhang Z, Zhang Q, Han X, Gu X, Lu T. The molecular cloning and clarification of a photorespiratory mutant, oscdm1, using enhancer trapping. Front Genet 2015; 6:226. [PMID: 26191072 PMCID: PMC4490251 DOI: 10.3389/fgene.2015.00226] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/15/2015] [Indexed: 01/08/2023] Open
Abstract
Enhancer trap systems have been demonstrated to increase the effectiveness of gene identification in rice. In this study, a chlorophyll-deficient mutant, named oscdm1, was screened and characterized in detail from a T-DNA enhancer-tagged population. The oscdm1 plants were different from other chlorophyll-deficient mutants; they produced chlorotic leaves at the third leaf stage, which gradually died with further growth of the plants. However, the oscdm1 plants were able to survive exposure to elevated CO2 levels, similar to photorespiratory mutants. An analysis of the T-DNA flanking sequence in the oscdm1 plants showed that the T-DNA was inserted into the promoter region of a serine hydroxymethyltransferase (SHMT) gene. OsSHMT1 is a key enzyme that is ubiquitous in nature and structurally conserved across kingdoms. The enzyme is responsible for the interconversion of serine and glycine and is essential for cellular one-carbon metabolism. Full-length OsSHMT1 complemented the oscdm1 phenotype, and the downregulation of OsSHMT1 in wild-type plants by RNA interference (RNAi) produced plants that mimicked the oscdm1 phenotype. GUS assays and quantitative PCR revealed the preferential expression of OsSHMT1 in young leaves. TEM revealed serious damage to the thylakoid membrane in oscdm1 chloroplasts. The oscdm1 plants showed more extensive damage than wild type using an IMAGING-PAM fluorometer, especially under high light intensities. OsSHMT1-GFP localized exclusively to mitochondria. Further analysis revealed that the H2O2 content in the oscdm1 plants was twice that in wild type at the fourth leaf stage. This suggests that the thylakoid membrane damage observed in the oscdm1 plants was caused by excessive H2O2. Interestingly, OsSHMT1-overexpressing plants exhibited increased photosynthetic efficiency and improved plant productivity. These results lay the foundation for further study of the OsSHMT1 gene and will help illuminate the functional role of OsSHMT1 in photorespiration in rice.
Collapse
Affiliation(s)
- Jinxia Wu
- Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, The Chinese Academy of Agricultural Sciences Beijing, China
| | - Zhiguo Zhang
- Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, The Chinese Academy of Agricultural Sciences Beijing, China
| | - Qian Zhang
- Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, The Chinese Academy of Agricultural Sciences Beijing, China
| | - Xiao Han
- Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, The Chinese Academy of Agricultural Sciences Beijing, China
| | - Xiaofeng Gu
- Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, The Chinese Academy of Agricultural Sciences Beijing, China
| | - Tiegang Lu
- Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, The Chinese Academy of Agricultural Sciences Beijing, China
| |
Collapse
|
33
|
Russo MT, Annunziata R, Sanges R, Ferrante MI, Falciatore A. The upstream regulatory sequence of the light harvesting complex Lhcf2 gene of the marine diatom Phaeodactylum tricornutum enhances transcription in an orientation- and distance-independent fashion. Mar Genomics 2015; 24 Pt 1:69-79. [PMID: 26117181 DOI: 10.1016/j.margen.2015.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/31/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
Abstract
Diatoms are a key phytoplankton group in the contemporary ocean, showing extraordinary adaptation capacities to rapidly changing environments. The recent availability of whole genome sequences from representative species has revealed distinct features in their genomes, like novel combinations of genes encoding distinct metabolisms and a significant number of diatom-specific genes. However, the regulatory mechanisms driving diatom gene expression are still largely uncharacterized. Considering the wide variety of fields of study orbiting diatoms, ranging from ecology, evolutionary biology to biotechnology, it is thus essential to increase our understanding of fundamental gene regulatory processes such as transcriptional regulation. To this aim, we explored the functional properties of the 5'-flanking region of the Phaeodatylum tricornutum Lhcf2 gene, encoding a member of the Light Harvesting Complex superfamily and we showed that this region enhances transcription of a GUS reporter gene in an orientation- and distance-independent fashion. This represents the first example of a cis-regulatory sequence with enhancer-like features discovered in diatoms and it is instrumental for the generation of novel genetic tools and diatom exploitation in different areas of study.
Collapse
Affiliation(s)
| | - Rossella Annunziata
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine, UMR 7238, F-75006 Paris, France; CNRS, UMR 7238, F-75006 Paris, France
| | - Remo Sanges
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | | | - Angela Falciatore
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine, UMR 7238, F-75006 Paris, France; CNRS, UMR 7238, F-75006 Paris, France.
| |
Collapse
|
34
|
Liu F, Gong D, Zhang Q, Wang D, Cui M, Zhang Z, Liu G, Wu J, Wang Y. High-throughput generation of an activation-tagged mutant library for functional genomic analyses in tobacco. PLANTA 2015; 241:629-40. [PMID: 25408504 DOI: 10.1007/s00425-014-2186-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/29/2014] [Indexed: 06/04/2023]
Abstract
Tobacco (Nicotiana tabacum L.) is an ideal model system for molecular biological and genetic studies. In this study, activation tagging was used to generate approximately 100,000 transgenic tobacco plants. Southern blot analysis indicated that there were 1.6 T-DNA inserts per line on average in our transformed population. The phenotypes observed include abnormalities in leaf and flower morphology, plant height, flowering time, branching, and fertility. Among 6,000 plants in the T0 generation, 57 displayed obvious phenotypes. Among 4,105 lines in the T1 generation, 311 displayed abnormal phenotypes. Fusion primer and nested integrated PCR was used to identify 963 independent genomic loci of T-DNA insertion sites in 1,257 T1 lines. The distribution of T-DNA insertions was non-uniform and correlated well with the predicted gene density along each chromosome. The insertions were biased toward genic regions and noncoding regions within 5 kb of a gene. Fifteen plants that showed the same phenotype as their parent with a dominant pattern in the T2 generation were chosen randomly to detect the expression levels of genes adjacent to the T-DNA integration sites by semi-quantitative RT-PCR. Fifteen candidate genes were identified. Activation was observed in 7 out of the 15 adjacent genes, including one that was located 13.1 kb away from the enhancer sequence. The activation-tagged population described in this paper will be a highly valuable resource for tobacco functional genomics research using both forward and reverse genetic approaches.
Collapse
Affiliation(s)
- Feng Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Xiao C, Anderson CT. Activation tag screening for cell expansion genes in Arabidopsis thaliana. Methods Mol Biol 2015; 1242:159-171. [PMID: 25408452 DOI: 10.1007/978-1-4939-1902-4_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Forward genetic screens for growth-deficient loss-of-function mutants have uncovered a wide array of genes involved in cell expansion. However, the centrality of cell growth to plant survival means that null mutations in many genes involved in this process are likely to be lethal early in development, making phenotypic analysis difficult. Additionally, the phenotypes of loss-of-function mutations in genes that are members of large gene families might be masked by functional redundancy with other family members. Activation tagging provides a method of screening for dominant overexpression phenotypes in an arbitrarily large collection of transgenic individuals, allowing for functional genomic identification of genes related to cell growth and expansion. In this chapter, we discuss the advantages and limitations of activation tag screening and describe a protocol for identifying activation tag lines with enhanced cell expansion, using dark-grown Arabidopsis thaliana seedlings as an experimental system. We also describe secondary screens to identify candidate genes for further cell biological and genetic characterization. These protocols can be adapted to any process or species of interest, as long as a suitable activation-tagged population and a genome sequence are available.
Collapse
Affiliation(s)
- Chaowen Xiao
- Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, PA, USA
| | | |
Collapse
|
36
|
Davies JP, Reddy V, Liu XL, Reddy AS, Ainley WM, Thompson M, Sastry-Dent L, Cao Z, Connell J, Gonzalez DO, Wagner DR. Identification and use of the sugarcane bacilliform virus enhancer in transgenic maize. BMC PLANT BIOLOGY 2014; 14:359. [PMID: 25526789 PMCID: PMC4302606 DOI: 10.1186/s12870-014-0359-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/27/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND Transcriptional enhancers are able to increase transcription from heterologous promoters when placed upstream, downstream and in either orientation, relative to the promoter. Transcriptional enhancers have been used to enhance expression of specific promoters in transgenic plants and in activation tagging studies to help elucidate gene function. RESULTS A transcriptional enhancer from the Sugarcane Bacilliform Virus - Ireng Maleng isolate (SCBV-IM) that can cause increased transcription when integrated into the the genome near maize genes has been identified. In transgenic maize, the SCBV-IM promoter was shown to be comparable in strength to the maize ubiquitin 1 promoter in young leaf and root tissues. The promoter was dissected to identify sequences that confer high activity in transient assays. Enhancer sequences were identified and shown to increase the activity of a heterologous truncated promoter. These enhancer sequences were shown to be more active when arrayed in 4 copy arrays than in 1 or 2 copy arrays. When the enhancer array was transformed into maize plants it caused an increase in accumulation of transcripts of genes near the site of integration in the genome. CONCLUSIONS The SCBV-IM enhancer can activate transcription upstream or downstream of genes and in either orientation. It may be a useful tool to activate enhance from specific promoters or in activation tagging.
Collapse
Affiliation(s)
- John P Davies
- />Dow AgroSciences, 16160 SW Upper Boones Ferry Rd, Portland, OR 97224 USA
| | - Vaka Reddy
- />Dow AgroSciences, 16160 SW Upper Boones Ferry Rd, Portland, OR 97224 USA
- />Current address: GEVO, Inc., 345 Inverness Dr S C-310, Englewood, CO 80112 USA
| | - Xing L Liu
- />Dow AgroSciences, 16160 SW Upper Boones Ferry Rd, Portland, OR 97224 USA
| | - Avutu S Reddy
- />Dow AgroSciences, 9330 Zionsville Rd, Indianapolis, IN 46268 USA
| | | | - Mark Thompson
- />Dow AgroSciences, 9330 Zionsville Rd, Indianapolis, IN 46268 USA
| | | | - Zehui Cao
- />Dow AgroSciences, 9330 Zionsville Rd, Indianapolis, IN 46268 USA
| | - James Connell
- />Dow AgroSciences, 9330 Zionsville Rd, Indianapolis, IN 46268 USA
| | | | - Douglas Ry Wagner
- />Dow AgroSciences, 16160 SW Upper Boones Ferry Rd, Portland, OR 97224 USA
- />Dow AgroSciences, 9330 Zionsville Rd, Indianapolis, IN 46268 USA
- />Current address: Agrinos, Inc, 279 Cousteau Place, Davis, CA 95618 USA
| |
Collapse
|
37
|
Tong H, Xiao Y, Liu D, Gao S, Liu L, Yin Y, Jin Y, Qian Q, Chu C. Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. THE PLANT CELL 2014; 26:4376-93. [PMID: 25371548 PMCID: PMC4277228 DOI: 10.1105/tpc.114.132092] [Citation(s) in RCA: 237] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 09/14/2014] [Accepted: 10/15/2014] [Indexed: 05/18/2023]
Abstract
Brassinosteroid (BR) and gibberellin (GA) are two predominant hormones regulating plant cell elongation. A defect in either of these leads to reduced plant growth and dwarfism. However, their relationship remains unknown in rice (Oryza sativa). Here, we demonstrated that BR regulates cell elongation by modulating GA metabolism in rice. Under physiological conditions, BR promotes GA accumulation by regulating the expression of GA metabolic genes to stimulate cell elongation. BR greatly induces the expression of D18/GA3ox-2, one of the GA biosynthetic genes, leading to increased GA1 levels, the bioactive GA in rice seedlings. Consequently, both d18 and loss-of-function GA-signaling mutants have decreased BR sensitivity. When excessive active BR is applied, the hormone mostly induces GA inactivation through upregulation of the GA inactivation gene GA2ox-3 and also represses BR biosynthesis, resulting in decreased hormone levels and growth inhibition. As a feedback mechanism, GA extensively inhibits BR biosynthesis and the BR response. GA treatment decreases the enlarged leaf angles in plants with enhanced BR biosynthesis or signaling. Our results revealed a previously unknown mechanism underlying BR and GA crosstalk depending on tissues and hormone levels, which greatly advances our understanding of hormone actions in crop plants and appears much different from that in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Hongning Tong
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunhua Xiao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dapu Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shaopei Gao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Linchuan Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanhai Yin
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Yun Jin
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
38
|
Yang Z, Zhang C, Yang X, Liu K, Wu Z, Zhang X, Zheng W, Xun Q, Liu C, Lu L, Yang Z, Qian Y, Xu Z, Li C, Li J, Li F. PAG1, a cotton brassinosteroid catabolism gene, modulates fiber elongation. THE NEW PHYTOLOGIST 2014; 203:437-448. [PMID: 24786710 DOI: 10.1111/nph.12824] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/22/2014] [Indexed: 05/19/2023]
Abstract
Cotton (Gossypium hirsutum) is the major source of natural textile fibers. Brassinosteroids (BRs) play crucial roles in regulating fiber development. The molecular mechanisms of BRs in regulating fiber elongation, however, are poorly understood. pagoda1 (pag1) was identified via an activation tagging genetic screen and characterized by genome walking and brassinolide (BL) supplementation. RNA-Seq analysis was employed to elucidate the mechanisms of PAG1 in regulating fiber development. pag1 exhibited dwarfism and reduced fiber length due to significant inhibition of cell elongation and expansion. BL treatment rescued its growth and fiber elongation. PAG1 encodes a homolog of Arabidopsis CYP734A1 that inactivates BRs via C-26 hydroxylation. RNA-Seq analyses showed that the constitutive expression of PAG1 downregulated the expression of genes involved in very-long-chain fatty acids (VLCFA) biosynthesis, ethylene-mediated signaling, response to cadmium, cell wall development, cytoskeleton organization and cell growth. Our results demonstrate that PAG1 plays crucial roles in regulating fiber development via controlling the level of endogenous bioactive BRs, which may affect ethylene signaling cascade by mediating VLCFA. Therefore, BR may be a critical regulator of fiber elongation, a role which may in turn be linked to effects on VLCFA biosynthesis, ethylene and cadmium signaling, cell wall- and cytoskeleton-related gene expression.
Collapse
Affiliation(s)
- Zuoren Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Chaojun Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaojie Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Kun Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhixia Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xueyan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wu Zheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Qingqing Xun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chuanliang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Lili Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhaoen Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yuyuan Qian
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhenzhen Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Changfeng Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| |
Collapse
|
39
|
Feldman AB, Murchie EH, Leung H, Baraoidan M, Coe R, Yu SM, Lo SF, Quick WP. Increasing leaf vein density by mutagenesis: laying the foundations for C4 rice. PLoS One 2014; 9:e94947. [PMID: 24760084 PMCID: PMC3997395 DOI: 10.1371/journal.pone.0094947] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/21/2014] [Indexed: 11/24/2022] Open
Abstract
A high leaf vein density is both an essential feature of C4 photosynthesis and a foundation trait to C4 evolution, ensuring the optimal proportion and proximity of mesophyll and bundle sheath cells for permitting the rapid exchange of photosynthates. Two rice mutant populations, a deletion mutant library with a cv. IR64 background (12,470 lines) and a T-DNA insertion mutant library with a cv. Tainung 67 background (10,830 lines), were screened for increases in vein density. A high throughput method with handheld microscopes was developed and its accuracy was supported by more rigorous microscopy analysis. Eight lines with significantly increased leaf vein densities were identified to be used as genetic stock for the global C4 Rice Consortium. The candidate population was shown to include both shared and independent mutations and so more than one gene controlled the high vein density phenotype. The high vein density trait was found to be linked to a narrow leaf width trait but the linkage was incomplete. The more genetically robust narrow leaf width trait was proposed to be used as a reliable phenotypic marker for finding high vein density variants in rice in future screens.
Collapse
Affiliation(s)
- Aryo B. Feldman
- School of Biosciences, University of Nottingham Malaysia Campus, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Erik H. Murchie
- School of Biosciences, University of Nottingham Sutton Bonington Campus, Sutton Bonington, Leicestershire, United Kingdom
- * E-mail:
| | - Hei Leung
- Plant Breeding, Genetics and Biotechnology, the International Rice Research Institute, Los Baños, Philippines
| | - Marietta Baraoidan
- Plant Breeding, Genetics and Biotechnology, the International Rice Research Institute, Los Baños, Philippines
| | - Robert Coe
- The C4 Rice Center, the International Rice Research Institute, Los Baños, Philippines
| | - Su-May Yu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Shuen-Fang Lo
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - William P. Quick
- The C4 Rice Center, the International Rice Research Institute, Los Baños, Philippines
| |
Collapse
|
40
|
Aulakh SS, Veilleux RE, Dickerman AW, Tang G, Flinn BS. Characterization and RNA-seq analysis of underperformer, an activation-tagged potato mutant. PLANT MOLECULAR BIOLOGY 2014; 84:635-658. [PMID: 24306493 DOI: 10.1007/s11103-013-0159-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/21/2013] [Indexed: 06/02/2023]
Abstract
The potato cv. Bintje and a Bintje activation-tagged mutant, underperformer (up) were compared. Mutant up plants grown in vitro were dwarf, with abundant axillary shoot growth, greater tuber yield, altered tuber traits and early senescence compared to wild type. Under in vivo conditions, the dwarf and early senescence phenotypes of the mutant remained, but the up plants exhibited a lower tuber yield and fewer axillary shoots compared to wild type. Southern blot analyses indicated a single T-DNA insertion in the mutant, located on chromosome 10. Initial PCR-based gene expression studies indicated transcriptional activation/repression of several genes in the mutant flanking the insertion. The gene immediately flanking the right border of the T-DNA insertion, which encoded an uncharacterized Broad complex, Tramtrac, Bric-a-brac; also known as Pox virus and Zinc finger (BTB/POZ) domain-containing protein (StBTB/POZ1) containing an Armadillo repeat region, was up-regulated in the mutant. Global gene expression comparisons between Bintje and up using RNA-seq on leaves from 60 day-old plants revealed a dataset of over 1,600 differentially expressed genes. Gene expression analyses suggested a variety of biological processes and pathways were modified in the mutant, including carbohydrate and lipid metabolism, cell division and cell cycle activity, biotic and abiotic stress responses, and proteolysis.
Collapse
|
41
|
Chong K, Xu Z. Investment in plant research and development bears fruit in China. PLANT CELL REPORTS 2014; 33:541-50. [PMID: 24615161 PMCID: PMC3976507 DOI: 10.1007/s00299-014-1587-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/05/2014] [Accepted: 02/07/2014] [Indexed: 05/15/2023]
Abstract
Recent rapid progress in plant science and biotechnology in China demonstrates that China's stronger support for funding in plant research and development (R&D) has borne fruit. Chinese groups have contributed major advances in a range of fields, such as rice biology, plant hormone and developmental biology, genomics and evolution, plant genetics and epigenetics, as well as plant biotechnology. Strigolactone studies including those identifying its receptor and dissecting its complex structure and signaling are representative of the recent researches from China at the forefront of the field. These advances are attributable in large part to interdisciplinary studies among scientists from plant science, chemistry, bioinformatics, structural biology, and agronomy. The platforms provided by national facilities facilitate this collaboration. As well, efficient restructuring of the top-down organization of state programs and free exploration of scientists' interests have accelerated achievements by Chinese researchers. Here, we provide a general outline of China's progress in plant R&D to highlight fields in which Chinese research has made significant contributions.
Collapse
Affiliation(s)
- Kang Chong
- CAS Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Zhihong Xu
- College of Life Sciences, Peking University, Beijing, 100871 China
| |
Collapse
|
42
|
Lu G, Wang X, Liu J, Yu K, Gao Y, Liu H, Wang C, Wang W, Wang G, Liu M, Mao G, Li B, Qin J, Xia M, Zhou J, Liu J, Jiang S, Mo H, Cui J, Nagasawa N, Sivasankar S, Albertsen MC, Sakai H, Mazur BJ, Lassner MW, Broglie RM. Application of T-DNA activation tagging to identify glutamate receptor-like genes that enhance drought tolerance in plants. PLANT CELL REPORTS 2014; 33:617-31. [PMID: 24682459 DOI: 10.1007/s00299-014-1586-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 05/26/2023]
Abstract
A high-quality rice activation tagging population has been developed and screened for drought-tolerant lines using various water stress assays. One drought-tolerant line activated two rice glutamate receptor-like genes. Transgenic overexpression of the rice glutamate receptor-like genes conferred drought tolerance to rice and Arabidopsis. Rice (Oryza sativa) is a multi-billion dollar crop grown in more than one hundred countries, as well as a useful functional genetic tool for trait discovery. We have developed a population of more than 200,000 activation-tagged rice lines for use in forward genetic screens to identify genes that improve drought tolerance and other traits that improve yield and agronomic productivity. The population has an expected coverage of more than 90 % of rice genes. About 80 % of the lines have a single T-DNA insertion locus and this molecular feature simplifies gene identification. One of the lines identified in our screens, AH01486, exhibits improved drought tolerance. The AH01486 T-DNA locus is located in a region with two glutamate receptor-like genes. Constitutive overexpression of either glutamate receptor-like gene significantly enhances the drought tolerance of rice and Arabidopsis, thus revealing a novel function of this important gene family in plant biology.
Collapse
Affiliation(s)
- Guihua Lu
- Beijing Kaituo DNA Biotech Research Center, Co., Ltd., Beijing, 102206, China,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wei FJ, Droc G, Guiderdoni E, Hsing YIC. International Consortium of Rice Mutagenesis: resources and beyond. RICE (NEW YORK, N.Y.) 2013; 6:39. [PMID: 24341871 PMCID: PMC3946042 DOI: 10.1186/1939-8433-6-39] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/04/2013] [Indexed: 05/20/2023]
Abstract
Rice is one of the most important crops in the world. The rice community needs to cooperate and share efforts and resources so that we can understand the functions of rice genes, especially those with a role in important agronomical traits, for application in agricultural production. Mutation is a major source of genetic variation that can be used for studying gene function. We will present here the status of mutant collections affected in a random manner by physical/chemical and insertion mutageneses.As of early September 2013, a total of 447, 919 flanking sequence tags from rice mutant libraries with T-DNA, Ac/Ds, En/Spm, Tos17, nDART/aDART insertions have been collected and publicly available. From these, 336,262 sequences are precisely positioned on the japonica rice chromosomes, and 67.5% are in gene interval. We discuss the genome coverage and preference of the insertion, issues limiting the exchange and use of the current collections, as well as new and improved resources. We propose a call to renew all mutant populations as soon as possible. We also suggest that a common web portal should be established for ordering seeds.
Collapse
Affiliation(s)
- Fu-Jin Wei
- Institute of Plant and Microbial Biology, Academia Sinica, Hsing: Rm312, IPMB, Academia Sinica, Nankang District, Taipei 11529 Taiwan
| | - Gaëtan Droc
- CIRAD, Centre de coopération Internationale en Recherche Agronomique pour le Développement, Cirad - av. Agropolis -TA A-108/03, 34398 Montpellier Cedex 5, France
| | - Emmanuel Guiderdoni
- CIRAD, Centre de coopération Internationale en Recherche Agronomique pour le Développement, Cirad - av. Agropolis -TA A-108/03, 34398 Montpellier Cedex 5, France
| | - Yue-ie C Hsing
- Institute of Plant and Microbial Biology, Academia Sinica, Hsing: Rm312, IPMB, Academia Sinica, Nankang District, Taipei 11529 Taiwan
| |
Collapse
|
44
|
Ma B, He SJ, Duan KX, Yin CC, Chen H, Yang C, Xiong Q, Song QX, Lu X, Chen HW, Zhang WK, Lu TG, Chen SY, Zhang JS. Identification of rice ethylene-response mutants and characterization of MHZ7/OsEIN2 in distinct ethylene response and yield trait regulation. MOLECULAR PLANT 2013; 6:1830-48. [PMID: 23718947 DOI: 10.1093/mp/sst087] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Ethylene plays essential roles in adaptive growth of rice plants in water-saturating environment; however, ethylene signaling pathway in rice is largely unclear. In this study, we report identification and characterization of ethylene-response mutants based on the specific ethylene-response phenotypes of etiolated rice seedlings, including ethylene-inhibited root growth and ethylene-promoted coleoptile elongation, which is different from the ethylene triple-response phenotype in Arabidopsis. We establish an efficient system for screening and a set of rice mutants have been identified. Genetic analysis reveals that these mutants form eight complementation groups. All the mutants show insensitivity or reduced sensitivity to ethylene in root growth but exhibit differential responses in coleoptile growth. One mutant group mhz7 has insensitivity to ethylene in both root and coleoptile growth. We identified the corresponding gene by a map-based cloning method. MHZ7 encodes a membrane protein homologous to EIN2, a central component of ethylene signaling in Arabidopsis. Upon ethylene treatment, etiolated MHZ7-overexpressing seedlings exhibit enhanced coleoptile elongation, increased mesocotyl growth and extremely twisted short roots, featuring enhanced ethylene-response phenotypes in rice. Grain length was promoted in MHZ7-transgenic plants and 1000-grain weight was reduced in mhz7 mutants. Leaf senescent process was also affected by MHZ7 expression. Manipulation of ethylene signaling may improve adaptive growth and yield-related traits in rice.
Collapse
Affiliation(s)
- Biao Ma
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kim SL, Choi M, Jung KH, An G. Analysis of the early-flowering mechanisms and generation of T-DNA tagging lines in Kitaake, a model rice cultivar. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4169-82. [PMID: 23966593 PMCID: PMC3808308 DOI: 10.1093/jxb/ert226] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
As an extremely early flowering cultivar, rice cultivar Kitaake is a suitable model system for molecular studies. Expression analyses revealed that transcript levels of the flowering repressor Ghd7 were decreased while those of its downstream genes, Ehd1, Hd3a, and RFT1, were increased. Sequencing the known flowering-regulator genes revealed mutations in Ghd7 and OsPRR37 that cause early translation termination and amino acid substitutions, respectively. Genetic analysis of F2 progeny from a cross between cv. Kitaake and cv. Dongjin indicated that those mutations additively contribute to the early-flowering phenotype in cv. Kitaake. Because the short life cycle facilitates genetics research, this study generated 10 000 T-DNA tagging lines and deduced 6758 flanking sequence tags (FSTs), in which 3122 were genic and 3636 were intergenic. Among the genic lines, 367 (11.8%) were inserted into new genes that were not previously tagged. Because the lines were generated by T-DNA that contained the promoterless GUS reporter gene, which had an intron with triple splicing donors/acceptors in the right border region, a high efficiency of GUS expression was shown in various organs. Sequencing of the GUS-positive lines demonstrated that the third splicing donor and the first splicing acceptor of the vector were extensively used. The FST data have now been released into the public domain for seed distribution and facilitation of rice research.
Collapse
Affiliation(s)
- Song Lim Kim
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Minkyung Choi
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea
- Department of Plant Molecular Systems Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| | - Ki-Hong Jung
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea
- Department of Plant Molecular Systems Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| | - Gynheung An
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea
- Department of Plant Molecular Systems Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| |
Collapse
|
46
|
Yang Y, Li Y, Wu C. Genomic resources for functional analyses of the rice genome. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:157-63. [PMID: 23571012 DOI: 10.1016/j.pbi.2013.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 03/15/2013] [Accepted: 03/15/2013] [Indexed: 05/07/2023]
Abstract
With the availability of the rice genome sequence, rice research communities are entering a new era of plant functional genomics. The last decade has seen rapid worldwide progress on establishing platforms for rice functional genomic research. These platforms offer practical toolkits and genomic resources for high-throughput identification of genes and pathways. In this review, we summarize available genomic resources for functional analyses of the rice genome. These genomic resources include high-quality bacterial artificial chromosome libraries, large-scale expression sequence tags, full-length cDNA collections, large amounts of data on global expression profiles, various mutant libraries and integrated bioinformatics databases. We not only present the current status of genomic resources but also discuss their usage in elucidating gene functions of the rice genome.
Collapse
Affiliation(s)
- Ying Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | | | | |
Collapse
|
47
|
Wang N, Long T, Yao W, Xiong L, Zhang Q, Wu C. Mutant resources for the functional analysis of the rice genome. MOLECULAR PLANT 2013; 6:596-604. [PMID: 23204502 DOI: 10.1093/mp/sss142] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Rice is one of the most important crops worldwide, both as a staple food and as a model system for genomic research. In order to systematically assign functions to all predicted genes in the rice genome, a large number of rice mutant lines, including those created by T-DNA insertion, Ds/dSpm tagging, Tos17 tagging, and chemical/irradiation mutagenesis, have been generated by groups around the world. In this study, we have reviewed the current status of mutant resources for functional analysis of the rice genome. A total of 246 566 flanking sequence tags from rice mutant libraries with T-DNA, Ds/dSpm, or Tos17 insertion have been collected and analyzed. The results show that, among 211 470 unique hits, inserts located in the genic region account for 68.16%, and 60.49% of nuclear genes contain at least one insertion. Currently, 57% of non-transposable-element-related genes in rice have insertional tags. In addition, chemical/irradiation-induced rice mutant libraries have contributed a lot to both gene identification and new technology for the identification of mutant sites. In this review, we summarize how these tools have been used to generate a large collection of mutants. In addition, we discuss the merits of classic mutation strategies. In order to achieve saturation of mutagenesis in rice, DNA targeting, and new resources like RiceFox for gene functional identification are reviewed from a perspective of the future generation of rice mutant resources.
Collapse
Affiliation(s)
- Nili Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | |
Collapse
|
48
|
Rigó G, Papdi C, Szabados L. Transformation using controlled cDNA overexpression system. Methods Mol Biol 2013; 913:277-90. [PMID: 22895767 DOI: 10.1007/978-1-61779-986-0_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
The controlled cDNA overexpression system (COS) was developed to identify novel regulatory genes in model plants as well as in other species that might have a particular valuable trait. The COS system (Papdi et al. Plant Physiol 147:528-542, 2008) is composed of a random cDNA library prepared in a T-DNA plant expression vector, under the control of the estradiol-inducible XVE promoter. Large-scale genetic transformation of Arabidopsis thaliana generates a transgenic plant population with randomly inserted cDNA clones. Overexpression of the inserted cDNA can create selectable phenotypes, allowing the facile identification and cloning of the responsible genes. Here we describe protocols to create and use the COS system for diverse purposes in plant biology.
Collapse
Affiliation(s)
- Gábor Rigó
- Institute of Plant Biology, Biological Research Center, Szeged, Hungary
| | | | | |
Collapse
|
49
|
Chang Y, Long T, Wu C. Effort and contribution of T-DNA Insertion mutant library for rice functional genomics research in China: review and perspective. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:953-966. [PMID: 23020748 DOI: 10.1111/j.1744-7909.2012.01171.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
With the completion of the rice (Oryza sativa L.) genome-sequencing project, the rice research community proposed to characterize the function of every predicted gene in rice by 2020. One of the most effective and high-throughput strategies for studying gene function is to employ genetic mutations induced by insertion elements such as T-DNA or transposons. Since 1999, with support from the Ministry of Science and Technology of China for Rice Functional Genomics Programs, large-scale T-DNA insertion mutant populations have been generated in Huazhong Agricultural University, the Chinese Academy of Sciences and the Chinese Academy of Agricultural Sciences. Currently, a total of 372,346 mutant lines have been generated, and 58,226 T-DNA or Tos17 flanking sequence tags have been isolated. Using these mutant resources, more than 40 genes with potential applications in rice breeding have already been identified. These include genes involved in biotic or abiotic stress responses, nutrient metabolism, pollen development, and plant architecture. The functional analysis of these genes will not only deepen our understanding of the fundamental biological questions in rice, but will also offer valuable gene resources for developing Green Super Rice that is high-yielding with few inputs even under the poor growth conditions of many regions of Africa and Asia.
Collapse
Affiliation(s)
- Yuxiao Chang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research-Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | | | | |
Collapse
|
50
|
Bragg JN, Wu J, Gordon SP, Guttman ME, Thilmony R, Lazo GR, Gu YQ, Vogel JP. Generation and characterization of the Western Regional Research Center Brachypodium T-DNA insertional mutant collection. PLoS One 2012; 7:e41916. [PMID: 23028431 PMCID: PMC3444500 DOI: 10.1371/journal.pone.0041916] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 06/29/2012] [Indexed: 11/18/2022] Open
Abstract
The model grass Brachypodium distachyon (Brachypodium) is an excellent system for studying the basic biology underlying traits relevant to the use of grasses as food, forage and energy crops. To add to the growing collection of Brachypodium resources available to plant scientists, we further optimized our Agrobacterium tumefaciens-mediated high-efficiency transformation method and generated 8,491 Brachypodium T-DNA lines. We used inverse PCR to sequence the DNA flanking the insertion sites in the mutants. Using these flanking sequence tags (FSTs) we were able to assign 7,389 FSTs from 4,402 T-DNA mutants to 5,285 specific insertion sites (ISs) in the Brachypodium genome. More than 29% of the assigned ISs are supported by multiple FSTs. T-DNA insertions span the entire genome with an average of 19.3 insertions/Mb. The distribution of T-DNA insertions is non-uniform with a larger number of insertions at the distal ends compared to the centromeric regions of the chromosomes. Insertions are correlated with genic regions, but are biased toward UTRs and non-coding regions within 1 kb of genes over exons and intron regions. More than 1,300 unique genes have been tagged in this population. Information about the Western Regional Research Center Brachypodium insertional mutant population is available on a searchable website (http://brachypodium.pw.usda.gov) designed to provide researchers with a means to order T-DNA lines with mutations in genes of interest.
Collapse
Affiliation(s)
- Jennifer N. Bragg
- United States Department of Agriculture- Agriculture Research Service (USDA-ARS), Western Regional Research Center, Albany, California, United States of America
- University of California Davis, Davis, California, United States of America
| | - Jiajie Wu
- United States Department of Agriculture- Agriculture Research Service (USDA-ARS), Western Regional Research Center, Albany, California, United States of America
- University of California Davis, Davis, California, United States of America
| | - Sean P. Gordon
- United States Department of Agriculture- Agriculture Research Service (USDA-ARS), Western Regional Research Center, Albany, California, United States of America
| | - Mara E. Guttman
- United States Department of Agriculture- Agriculture Research Service (USDA-ARS), Western Regional Research Center, Albany, California, United States of America
| | - Roger Thilmony
- United States Department of Agriculture- Agriculture Research Service (USDA-ARS), Western Regional Research Center, Albany, California, United States of America
| | - Gerard R. Lazo
- United States Department of Agriculture- Agriculture Research Service (USDA-ARS), Western Regional Research Center, Albany, California, United States of America
| | - Yong Q. Gu
- United States Department of Agriculture- Agriculture Research Service (USDA-ARS), Western Regional Research Center, Albany, California, United States of America
| | - John P. Vogel
- United States Department of Agriculture- Agriculture Research Service (USDA-ARS), Western Regional Research Center, Albany, California, United States of America
- * E-mail:
| |
Collapse
|