1
|
Kaya S, Erdogan DE, Sancar A, Adebali O, Oztas O. Global repair is the primary nucleotide excision repair subpathway for the removal of pyrimidine-pyrimidone (6-4) damage from the Arabidopsis genome. Sci Rep 2024; 14:3308. [PMID: 38332020 PMCID: PMC10853524 DOI: 10.1038/s41598-024-53472-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
Ultraviolet (UV) component of solar radiation impairs genome stability by inducing the formation of pyrimidine-pyrimidone (6-4) photoproducts [(6-4)PPs] in plant genomes. (6-4)PPs disrupt growth and development by interfering with transcription and DNA replication. To resist UV stress, plants employ both photoreactivation and nucleotide excision repair that excises oligonucleotide containing (6-4)PPs through two subpathways: global and transcription-coupled excision repair (TCR). Here, we analyzed the genome-wide excision repair-mediated repair of (6-4)PPs in Arabidopsis thaliana and found that (6-4)PPs can be repaired by TCR; however, the main subpathway to remove (6-4)PPs from the genome is global repair. Our analysis showed that open chromatin genome regions are more rapidly repaired than heterochromatin regions, and the repair level peaks at the promoter, transcription start site and transcription end site of genes. Our study revealed that the repair of (6-4)PP in plants showed a distinct genome-wide repair profile compared to the repair of other major UV-induced DNA lesion called cyclobutane pyrimidine dimers (CPDs).
Collapse
Affiliation(s)
- Sezgi Kaya
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Dugcar Ebrar Erdogan
- Department of Molecular Biology and Genetics, College of Sciences, Koc University, Istanbul, Turkey
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Ogun Adebali
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey.
| | - Onur Oztas
- Department of Molecular Biology and Genetics, College of Sciences, Koc University, Istanbul, Turkey.
| |
Collapse
|
2
|
Alrayes L, Stout J, Schroeder D. Arabidopsis RAD16 Homologues Are Involved in UV Tolerance and Growth. Genes (Basel) 2023; 14:1552. [PMID: 37628604 PMCID: PMC10454142 DOI: 10.3390/genes14081552] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
In plants, prolonged exposure to ultraviolet (UV) radiation causes harmful DNA lesions. Nucleotide excision repair (NER) is an important DNA repair mechanism that operates via two pathways: transcription coupled repair (TC-NER) and global genomic repair (GG-NER). In plants and mammals, TC-NER is initiated by the Cockayne Syndrome A and B (CSA/CSB) complex, whereas GG-NER is initiated by the Damaged DNA Binding protein 1/2 (DDB1/2) complex. In the yeast Saccharomyces cerevisiae (S. cerevisiae), GG-NER is initiated by the Radiation Sensitive 7 and 16, (RAD7/16) complex. Arabidopsis thaliana has two homologues of yeast RAD16, At1g05120 and At1g02670, which we named AtRAD16 and AtRAD16b, respectively. In this study, we characterized the roles of AtRAD16 and AtRAD16b. Arabidopsis rad16 and rad16b null mutants exhibited increased UV sensitivity. Moreover, AtRAD16 overexpression increased plant UV tolerance. Thus, AtRAD16 and AtRAD16b contribute to plant UV tolerance and growth. Additionally, we found physical interaction between AtRAD16 and AtRAD7. Thus, the Arabidopsis RAD7/16 complex is functional in plant NER. Furthermore, AtRAD16 makes a significant contribution to Arabidopsis UV tolerance compared to the DDB1/2 and the CSB pathways. This is the first time the role and interaction of DDB1/2, RAD7/16, and CSA/CSB components in a single system have been studied.
Collapse
Affiliation(s)
- Linda Alrayes
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (J.S.); (D.S.)
| | | | | |
Collapse
|
3
|
Wang H, Tang X, Liu Y. SlCK2α as a novel substrate for CRL4 E3 ligase regulates fruit size through maintenance of cell division homeostasis in tomato. PLANTA 2023; 257:38. [PMID: 36645501 DOI: 10.1007/s00425-023-04070-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
This study unravels a novel regulatory module (CRL4-CK2α-CDK2) involving fruit size control by mediating cell division homeostasis (SlCK2α and SlCDK2) in tomato. Fruit size is one of the crucial agronomical traits for crop production. UV-damaged DNA binding protein 1 (DDB1), a core component of Cullin4-RING E3 ubiquitin ligase complex (CRL4), has been identified as a negative regulator of fruit size in tomato (Solanum lycopersicum). However, the underlying molecular mechanism remains largely unclear. Here, we report the identification and characterization of a SlDDB1-interacting protein putatively involving fruit size control through regulating cell proliferation in tomato. It is a tomato homolog SlCK2α, the catalytic subunit of the casein kinase 2 (CK2), identified by yeast two-hybrid (Y2H) assays. The interaction between SlDDB1 and SlCK2α was demonstrated by bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (Co-IP). RNA interference (RNAi) and CRISPR/Cas9-based mutant analyses showed that lack of SlCK2α resulted in reduction of fruit size with reduced cell number, suggesting it is a positive regulator on fruit size by promoting cell proliferation. We also showed SlDDB1 is required to ubiquitinate SlCK2α and negatively regulate its stability through 26S proteasome-mediated degradation. Furthermore, we found that a tomato homolog of cell division protein kinase 2 (SlCDK2) could interact with and specifically be phosphorylated by SlCK2α, resulting in an increase of SlCDK2 protein stability. CRISPR/Cas9-based genetic evidence showed that SlCDK2 is also a positive regulator of fruit size by influencing cell division in tomato. Taken together, our findings, thus, unravel a novel regulatory module CRL4-CK2α-CDK2 in finely modulating cell division homeostasis and the consequences on fruit size.
Collapse
Affiliation(s)
- Hongtao Wang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiaofeng Tang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Yongsheng Liu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China.
- School of Horticulture and State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
4
|
Genome-Wide Association Study for Ultraviolet-B Resistance in Soybean ( Glycine max L.). PLANTS 2021; 10:plants10071335. [PMID: 34210031 PMCID: PMC8308986 DOI: 10.3390/plants10071335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 11/29/2022]
Abstract
The depletion of the stratospheric ozone layer is a major environmental issue and has increased the dosage of ultraviolet-B (UV-B) radiation reaching the Earth’s surface. Organisms are negatively affected by enhanced UV-B radiation, and especially in crop plants this may lead to severe yield losses. Soybean (Glycine max L.), a major legume crop, is sensitive to UV-B radiation, and therefore, it is required to breed the UV-B-resistant soybean cultivar. In this study, 688 soybean germplasms were phenotyped for two categories, Damage of Leaf Chlorosis (DLC) and Damage of Leaf Shape (DLS), after supplementary UV-B irradiation for 14 days. About 5% of the germplasms showed strong UV-B resistance, and GCS731 was the most resistant genotype. Their phenotypic distributions showed similar patterns to the normal, suggesting UV-B resistance as a quantitative trait governed by polygenes. A total of 688 soybean germplasms were genotyped using the Axiom® Soya 180K SNP array, and a genome-wide association study (GWAS) was conducted to identify SNPs significantly associated with the two traits, DLC and DLS. Five peaks on chromosomes 2, 6, 10, and 11 were significantly associated with either DLC or DLS, and the five adjacent genes were selected as candidate genes responsible for UV-B resistance. Among those candidate genes, Glyma.02g017500 and Glyma.06g103200 encode cryptochrome (CRY) and cryptochrome 1 (CRY1), respectively, and are known to play a role in DNA repair during photoreactivation. Real-time quantitative RT-PCR (qRT-PCR) results revealed that CRY1 was expressed significantly higher in the UV-B-resistant soybean compared to the susceptible soybean after 6 h of UV-B irradiation. This study is the first GWAS report on UV-B resistance in soybean, and the results will provide valuable information for breeding UV-B-resistant soybeans in preparation for climate change.
Collapse
|
5
|
Sharma S, Prasad A, Sharma N, Prasad M. Role of ubiquitination enzymes in abiotic environmental interactions with plants. Int J Biol Macromol 2021; 181:494-507. [PMID: 33798570 DOI: 10.1016/j.ijbiomac.2021.03.185] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/08/2021] [Accepted: 03/27/2021] [Indexed: 12/14/2022]
Abstract
Ubiquitination, a post-translational modification, plays a crucial role in various aspects of plant development and stress responses. Protein degradation by ubiquitination is well established and ubiquitin is the main underlying component directing the turnover of proteins. Recent reports have also revealed the non-proteolytic roles of ubiquitination in plants. In the past decade, ubiquitination has emerged to be one of the most important players in modulating plant's responses to abiotic stresses, which led to identification of specific E3 ligases and their targets involved in the process. Most of the E3 ligases play regulatory roles by modifying the stability and accumulation of stress responsive regulatory proteins, such as transcription factors, thus, modifying the downstream responses, or by degrading the proteins involved in the downstream cascade itself. In this review, we summarize and highlight the recent advances in the field of ubiquitination-mediated regulation of plant's responses to various abiotic stresses including limited nutrient availability and metal toxicity. The non-proteolytic role of ubiquitination in epigenetic regulation of abiotic stress induced response has also been discussed.
Collapse
Affiliation(s)
- Shambhavi Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ashish Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Namisha Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
6
|
The Dark Side of UV-Induced DNA Lesion Repair. Genes (Basel) 2020; 11:genes11121450. [PMID: 33276692 PMCID: PMC7761550 DOI: 10.3390/genes11121450] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022] Open
Abstract
In their life cycle, plants are exposed to various unfavorable environmental factors including ultraviolet (UV) radiation emitted by the Sun. UV-A and UV-B, which are partially absorbed by the ozone layer, reach the surface of the Earth causing harmful effects among the others on plant genetic material. The energy of UV light is sufficient to induce mutations in DNA. Some examples of DNA damage induced by UV are pyrimidine dimers, oxidized nucleotides as well as single and double-strand breaks. When exposed to light, plants can repair major UV-induced DNA lesions, i.e., pyrimidine dimers using photoreactivation. However, this highly efficient light-dependent DNA repair system is ineffective in dim light or at night. Moreover, it is helpless when it comes to the repair of DNA lesions other than pyrimidine dimers. In this review, we have focused on how plants cope with deleterious DNA damage that cannot be repaired by photoreactivation. The current understanding of light-independent mechanisms, classified as dark DNA repair, indispensable for the maintenance of plant genetic material integrity has been presented.
Collapse
|
7
|
Wang B, Wang G, Zhu S. DNA Damage Inducible Protein 1 is Involved in Cold Adaption of Harvested Cucumber Fruit. FRONTIERS IN PLANT SCIENCE 2020; 10:1723. [PMID: 32038689 PMCID: PMC6992665 DOI: 10.3389/fpls.2019.01723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Chilling stress can cause cellular DNA damage, affecting the faithful transmission of genetic information. Cold acclimation enhances chilling tolerance, but it is not clear that the process of cold adaption involves DNA damage responses, as cold acclimation does not form real chilling stress. Here we showed with cucumber fruit that pre-storage cold acclimation (PsCA) reduces chilling injury and upregulates DNA damage inducible protein1 (CsDDI1), suggesting that the chilling tolerance induced by cold acclimation involves CsDDI1 transcription. Application of nitric oxide (NO), abscisic acid (ABA) or H2O2 biosynthesis inhibitor before PsCA treatment downregulates CsDDI1 and aggravates chilling injury, while H2O2 generation inhibition plus exogenous NO or ABA application before PsCA treatment restores chilling tolerance, but does not restore CsDDI1 expression, suggesting H2O2 plays a crucial role in triggering cold adaption. CsDDI1 overexpression Arabidopsis lines show faster growth, stronger chilling tolerance, lower reactive oxygen species levels, enhanced catalase and superoxide dismutase activities and higher expression of nine other Arabidopsis defense genes under chilling stress, suggesting CsDDI1 strengthens defenses against chilling stress by enhancing antioxidant defense system. Taken together, CsDDI1 positively regulates chilling tolerance induced by cold acclimation in cucumber. In addition, H2O2 is involved in initiation of cold acclimation. While CsDDI1 upregulation requires H2O2 as a key signaling molecule, the upregulation of CsDDI1 activates an antioxidant system to reduce biotoxic accumulation of H2O2 and helps in DNA repair.
Collapse
Affiliation(s)
- Bin Wang
- Guangdong Province Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
- College of Ying-Tong Agricultural Science and Engineering, Shaoguan University, Shaoguan, China
| | - Guang Wang
- Guangdong Province Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shijiang Zhu
- Guangdong Province Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Fonseca S, Rubio V. Arabidopsis CRL4 Complexes: Surveying Chromatin States and Gene Expression. FRONTIERS IN PLANT SCIENCE 2019; 10:1095. [PMID: 31608079 PMCID: PMC6761389 DOI: 10.3389/fpls.2019.01095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/09/2019] [Indexed: 05/10/2023]
Abstract
CULLIN4 (CUL4) RING ligase (CRL4) complexes contain a CUL4 scaffold protein, associated to RBX1 and to DDB1 proteins and have traditionally been associated to protein degradation events. Through DDB1, these complexes can associate with numerous DCAF proteins, which directly interact with specific targets promoting their ubiquitination and subsequent degradation by the proteasome. A characteristic feature of the majority of DCAF proteins that associate with DDB1 is the presence of the DWD motif. DWD-containing proteins sum up to 85 in the plant model species Arabidopsis. In the last decade, numerous Arabidopsis DWD proteins have been studied and their molecular functions uncovered. Independently of whether their association with CRL4 has been confirmed or not, DWD proteins are often found as components of additional multimeric protein complexes that play key roles in essential nuclear events. For most of them, the significance of their complex partnership is still unexplored. Here, we summarize recent findings involving both confirmed and putative CRL4-associated DCAF proteins in regulating nuclei architecture remodelling, DNA damage repair, histone post-translational modification, mRNA processing and export, and ribosome biogenesis, that definitely have an impact in gene expression and de novo protein synthesis. We hypothesized that, by maintaining accurate levels of regulatory proteins through targeted degradation and transcriptional control, CRL4 complexes help to surveil nuclear processes essential for plant development and survival.
Collapse
|
9
|
Lahari T, Lazaro J, Marcus JM, Schroeder DF. RAD7 homologues contribute to Arabidopsis UV tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 277:267-277. [PMID: 30466592 DOI: 10.1016/j.plantsci.2018.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/07/2018] [Accepted: 09/21/2018] [Indexed: 06/09/2023]
Abstract
Frequent exposure of plants to solar ultraviolet radiation (UV) results in damaged DNA. One mechanism of DNA repair is the light independent pathway Global Genomic Nucleotide Excision Repair (GG-NER), which repairs UV damaged DNA throughout the genome. In mammals, GG-NER DNA damage recognition is performed by the Damaged DNA Binding protein 1 and 2 (DDB1/2) complex which recruits the Xeroderma Pigmentosa group C (XPC) / RAD23D complex. In the yeast Saccharomyces cerevisiae, distinct proteins, Radiation sensitive 7 and 16 (Rad7p and Rad16p), recognize the damaged DNA strand and then recruit the XPC homologue, Rad4p, and Rad23p. The remainder of the proteins involved GG-NER are well conserved. DDB1, DDB2, XPC/RAD4, and RAD23 homologues have been described in the model plant Arabidopsis thaliana. In this study we characterize three Arabidopsis RAD7 homologues, RAD7a, RAD7b, and RAD7c. Loss of function alleles of each of the three RAD7 homologues result in increased UV sensitivity. In addition, RAD7b and RAD7c overexpression lines exhibited increased UV tolerance. Thus RAD7 homologues contribute to UV tolerance in plants as well as in yeast. This is the first time any system has been shown to utilize both the DDB1/2 and RAD7/16 damage recognition complexes.
Collapse
Affiliation(s)
- Triparna Lahari
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Janelle Lazaro
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Jeffrey M Marcus
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Dana F Schroeder
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
10
|
Al Khateeb W. Plants genotoxicity as pollution bioindicator in Jordan using comet assay. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:89-97. [PMID: 29398841 PMCID: PMC5787122 DOI: 10.1007/s12298-017-0491-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/23/2017] [Accepted: 12/05/2017] [Indexed: 05/03/2023]
Abstract
This study aimed to assess genotoxicity in wild plants grown in Jordan as a pollution bioindicator. Comet assay was used to evaluate the level of DNA damage in plants collected from different areas in Jordan. Significant differences in plant DNA damage index and frequency were observed among sites of collection. Results show that plants collected from Aqaba back road and Ghour Assaal had significantly higher damage values. In contrast, plants collected from Wadi Rum, Al Naqab Heights, Swaimeh/Deadsea and Alshoneh Aljanobyeh showed low levels of DNA damage. A similar trend was observed for lipid peroxidation rates. Furthermore, heavy metal analysis showed that plants collected from Aqaba back road and Aqaba airport had the highest Al, Cr, Fe, Cu, Zn, Cd and Pb contents. A significant correlation was observed between DNA Damage Index, DNA Damage Frequency, lipid peroxidation rate, soil Cu, Cd and Pb biomarkers, indicating that heavy metals pollution is a major source for genotoxicity in these plant species. Finally, our results approved the feasibility of using plants and Comet assay system as a diagnostic tool for pollution in any environment adversely affected by different pollution sources.
Collapse
Affiliation(s)
- Wesam Al Khateeb
- Department of Biological Sciences, Yarmouk University, Irbid, Jordan
| |
Collapse
|
11
|
RAD4 and RAD23/HMR Contribute to Arabidopsis UV Tolerance. Genes (Basel) 2017; 9:genes9010008. [PMID: 29283431 PMCID: PMC5793161 DOI: 10.3390/genes9010008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 11/16/2022] Open
Abstract
In plants, exposure to solar ultraviolet (UV) light is unavoidable, resulting in DNA damage. Damaged DNA causes mutations, replication arrest, and cell death, thus efficient repair of the damaged DNA is essential. A light-independent DNA repair pathway called nucleotide excision repair (NER) is conserved throughout evolution. For example, the damaged DNA-binding protein Radiation sensitive 4 (Rad4) in Saccharomyces cerevisiae is homologous to the mammalian NER protein Xeroderma Pigmentosum complementation group C (XPC). In this study, we examined the role of the Arabidopsis thaliana Rad4/XPC homologue (AtRAD4) in plant UV tolerance by generating overexpression lines. AtRAD4 overexpression, both with and without an N-terminal yellow fluorescent protein (YFP) tag, resulted in increased UV tolerance. YFP-RAD4 localized to the nucleus, and UV treatment did not alter this localization. We also used yeast two-hybrid analysis to examine the interaction of AtRAD4 with Arabidopsis RAD23 and found that RAD4 interacted with RAD23B as well as with the structurally similar protein HEMERA (HMR). In addition, we found that hmr and rad23 mutants exhibited increased UV sensitivity. Thus, our analysis suggests a role for RAD4 and RAD23/HMR in plant UV tolerance.
Collapse
|
12
|
Córdoba-Cañero D, Cognat V, Ariza RR, Roldán Arjona T, Molinier J. Dual control of ROS1-mediated active DNA demethylation by DNA damage-binding protein 2 (DDB2). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:1170-1181. [PMID: 29078035 DOI: 10.1111/tpj.13753] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/10/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
By controlling gene expression, DNA methylation contributes to key regulatory processes during plant development. Genomic methylation patterns are dynamic and must be properly maintained and/or re-established upon DNA replication and active removal, and therefore require sophisticated control mechanisms. Here we identify direct interplay between the DNA repair factor DNA damage-binding protein 2 (DDB2) and the ROS1-mediated active DNA demethylation pathway in Arabidopsis thaliana. We show that DDB2 forms a complex with ROS1 and AGO4 and that they act at the ROS1 locus to modulate levels of DNA methylation and therefore ROS1 expression. We found that DDB2 represses enzymatic activity of ROS1. DNA demethylation intermediates generated by ROS1 are processed by the DNA 3'-phosphatase ZDP and the apurinic/apyrimidinic endonuclease APE1L, and we also show that DDB2 interacts with both enzymes and stimulates their activities. Taken together, our results indicate that DDB2 acts as a critical regulator of ROS1-mediated active DNA demethylation.
Collapse
Affiliation(s)
- Dolores Córdoba-Cañero
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Av. Menéndez Pidal, 14004, Córdoba, Spain
- University of Córdoba, Campus de Rabanales, Edif. C5, 14071, Córdoba, Spain
- Reina Sofia University Hospital, Av. Menéndez Pidal, 14004, Córdoba, Spain
| | - Valérie Cognat
- Institut de Biologie Moléculaire des Plantes, 12 Rue du Général Zimmer, 67000, Strasbourg, France
| | - Rafael R Ariza
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Av. Menéndez Pidal, 14004, Córdoba, Spain
- University of Córdoba, Campus de Rabanales, Edif. C5, 14071, Córdoba, Spain
- Reina Sofia University Hospital, Av. Menéndez Pidal, 14004, Córdoba, Spain
| | - Teresa Roldán Arjona
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Av. Menéndez Pidal, 14004, Córdoba, Spain
- University of Córdoba, Campus de Rabanales, Edif. C5, 14071, Córdoba, Spain
- Reina Sofia University Hospital, Av. Menéndez Pidal, 14004, Córdoba, Spain
| | - Jean Molinier
- Institut de Biologie Moléculaire des Plantes, 12 Rue du Général Zimmer, 67000, Strasbourg, France
| |
Collapse
|
13
|
Spampinato CP. Protecting DNA from errors and damage: an overview of DNA repair mechanisms in plants compared to mammals. Cell Mol Life Sci 2017; 74:1693-1709. [PMID: 27999897 PMCID: PMC11107726 DOI: 10.1007/s00018-016-2436-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/01/2016] [Accepted: 12/05/2016] [Indexed: 01/10/2023]
Abstract
The genome integrity of all organisms is constantly threatened by replication errors and DNA damage arising from endogenous and exogenous sources. Such base pair anomalies must be accurately repaired to prevent mutagenesis and/or lethality. Thus, it is not surprising that cells have evolved multiple and partially overlapping DNA repair pathways to correct specific types of DNA errors and lesions. Great progress in unraveling these repair mechanisms at the molecular level has been made by several talented researchers, among them Tomas Lindahl, Aziz Sancar, and Paul Modrich, all three Nobel laureates in Chemistry for 2015. Much of this knowledge comes from studies performed in bacteria, yeast, and mammals and has impacted research in plant systems. Two plant features should be mentioned. Plants differ from higher eukaryotes in that they lack a reserve germline and cannot avoid environmental stresses. Therefore, plants have evolved different strategies to sustain genome fidelity through generations and continuous exposure to genotoxic stresses. These strategies include the presence of unique or multiple paralogous genes with partially overlapping DNA repair activities. Yet, in spite (or because) of these differences, plants, especially Arabidopsis thaliana, can be used as a model organism for functional studies. Some advantages of this model system are worth mentioning: short life cycle, availability of both homozygous and heterozygous lines for many genes, plant transformation techniques, tissue culture methods and reporter systems for gene expression and function studies. Here, I provide a current understanding of DNA repair genes in plants, with a special focus on A. thaliana. It is expected that this review will be a valuable resource for future functional studies in the DNA repair field, both in plants and animals.
Collapse
Affiliation(s)
- Claudia P Spampinato
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| |
Collapse
|
14
|
Ma X, Ou YB, Gao YF, Lutts S, Li TT, Wang Y, Chen YF, Sun YF, Yao YA. Moderate salt treatment alleviates ultraviolet-B radiation caused impairment in poplar plants. Sci Rep 2016; 6:32890. [PMID: 27597726 PMCID: PMC5011775 DOI: 10.1038/srep32890] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/15/2016] [Indexed: 12/20/2022] Open
Abstract
The effects of moderate salinity on the responses of woody plants to UV-B radiation were investigated using two Populus species (Populus alba and Populus russkii). Under UV-B radiation, moderate salinity reduced the oxidation pressure in both species, as indicated by lower levels of cellular H2O2 and membrane peroxidation, and weakened the inhibition of photochemical efficiency expressed by O-J-I-P changes. UV-B-induced DNA lesions in chloroplast and nucleus were alleviated by salinity, which could be explained by the higher expression levels of DNA repair system genes under UV-B&salt condition, such as the PHR, DDB2, and MutSα genes. The salt-induced increase in organic osmolytes proline and glycine betaine, afforded more efficient protection against UV-B radiation. Therefore moderate salinity induced cross-tolerance to UV-B stress in poplar plants. It is thus suggested that woody plants growing in moderate salted condition would be less affected by enhanced UV-B radiation than plants growing in the absence of salt. Our results also showed that UV-B signal genes in poplar plants PaCOP1, PaSTO and PaSTH2 were quickly responding to UV-B radiation, but not to salt. The transcripts of PaHY5 and its downstream pathway genes (PaCHS1, PaCHS4, PaFLS1 and PaFLS2) were differently up-regulated by these treatments, but the flavonoid compounds were not involved in the cross-tolerance since their concentration increased to the same extent in both UV-B and combined stresses.
Collapse
Affiliation(s)
- Xuan Ma
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yong-Bin Ou
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yong-Feng Gao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Stanley Lutts
- Groupe de Recherche en Physiologie végétale (GRPV), Earth and Life Institute–Agronomy (ELI-A), Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Tao-Tao Li
- Key Laboratory of Biogeography and Bioresources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yang Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yong-Fu Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yu-Fang Sun
- Key Laboratory of Biogeography and Bioresources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yin-An Yao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Key Laboratory of Biogeography and Bioresources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi 830011, China
| |
Collapse
|
15
|
Puente-Sánchez F, Olsson S, Gómez-Rodriguez M, Souza-Egipsy V, Altamirano-Jeschke M, Amils R, Parro V, Aguilera A. Solar Radiation Stress in Natural Acidophilic Biofilms of Euglena mutabilis Revealed by Metatranscriptomics and PAM Fluorometry. Protist 2016; 167:67-81. [DOI: 10.1016/j.protis.2015.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 12/18/2015] [Accepted: 12/21/2015] [Indexed: 12/27/2022]
|
16
|
Tang X, Miao M, Niu X, Zhang D, Cao X, Jin X, Zhu Y, Fan Y, Wang H, Liu Y, Sui Y, Wang W, Wang A, Xiao F, Giovannoni J, Liu Y. Ubiquitin-conjugated degradation of golden 2-like transcription factor is mediated by CUL4-DDB1-based E3 ligase complex in tomato. THE NEW PHYTOLOGIST 2016; 209:1028-39. [PMID: 26352615 DOI: 10.1111/nph.13635] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 08/11/2015] [Indexed: 05/19/2023]
Abstract
CULLIN4-RING ubiquitin ligases (CRL4s) as well as their targets are fundamental regulators functioning in many key developmental and stress responses in eukaryotes. In tomato (Solanum lycopersicum), molecular cloning has revealed that the underlying genes of natural spontaneous mutations high pigment 1 (hp1), high pigment 2 (hp2) and uniform ripening (u) encode UV-DAMAGED DNA BINDING PROTEIN 1 (DDB1), DE-ETIOLATED 1 (DET1) and GOLDEN 2-LIKE (GLK2), respectively. However, the molecular basis of the opposite actions of tomato GLK2 vs CUL4-DDB1-DET1 complex on regulating plastid level and fruit quality remains unknown. Here, we provide molecular evidence showing that the tomato GLK2 protein is a substrate of the CUL4-DDB1-DET1 ubiquitin ligase complex for the proteasome degradation. SlGLK2 is degraded by the ubiquitin-proteasome system, which is mainly determined by two lysine residues (K11 and K253). SlGLK2 associates with the CUL4-DDB1-DET1 E3 complex in plant cells. Genetically impairing CUL4, DDB1 or DET1 results in a retardation of SlGLK2 degradation by the 26S proteasome. These findings are relevant to the potential of nutrient accumulation in tomato fruit by mediating the plastid level and contribute to a deeper understanding of an important regulatory loop, linking protein turnover to gene regulation.
Collapse
Affiliation(s)
- Xiaofeng Tang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Min Miao
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiangli Niu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Danfeng Zhang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xulv Cao
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xichen Jin
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yunye Zhu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Youhong Fan
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hongtao Wang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ying Liu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yuan Sui
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wenjie Wang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
- Department of Plant, Soil, and Entomological Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Anquan Wang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
- Boyce Thompson Institute for Plant Research, Cornell University, Tower Road, Ithaca, NY, 14853, USA
| | - Fangming Xiao
- Department of Plant, Soil, and Entomological Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Jim Giovannoni
- Boyce Thompson Institute for Plant Research, Cornell University, Tower Road, Ithaca, NY, 14853, USA
| | - Yongsheng Liu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
17
|
Manova V, Gruszka D. DNA damage and repair in plants - from models to crops. FRONTIERS IN PLANT SCIENCE 2015; 6:885. [PMID: 26557130 PMCID: PMC4617055 DOI: 10.3389/fpls.2015.00885] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 10/05/2015] [Indexed: 05/17/2023]
Abstract
The genomic integrity of every organism is constantly challenged by endogenous and exogenous DNA-damaging factors. Mutagenic agents cause reduced stability of plant genome and have a deleterious effect on development, and in the case of crop species lead to yield reduction. It is crucial for all organisms, including plants, to develop efficient mechanisms for maintenance of the genome integrity. DNA repair processes have been characterized in bacterial, fungal, and mammalian model systems. The description of these processes in plants, in contrast, was initiated relatively recently and has been focused largely on the model plant Arabidopsis thaliana. Consequently, our knowledge about DNA repair in plant genomes - particularly in the genomes of crop plants - is by far more limited. However, the relatively small size of the Arabidopsis genome, its rapid life cycle and availability of various transformation methods make this species an attractive model for the study of eukaryotic DNA repair mechanisms and mutagenesis. Moreover, abnormalities in DNA repair which proved to be lethal for animal models are tolerated in plant genomes, although sensitivity to DNA damaging agents is retained. Due to the high conservation of DNA repair processes and factors mediating them among eukaryotes, genes and proteins that have been identified in model species may serve to identify homologous sequences in other species, including crop plants, in which these mechanisms are poorly understood. Crop breeding programs have provided remarkable advances in food quality and yield over the last century. Although the human population is predicted to "peak" by 2050, further advances in yield will be required to feed this population. Breeding requires genetic diversity. The biological impact of any mutagenic agent used for the creation of genetic diversity depends on the chemical nature of the induced lesions and on the efficiency and accuracy of their repair. More recent targeted mutagenesis procedures also depend on host repair processes, with different pathways yielding different products. Enhanced understanding of DNA repair processes in plants will inform and accelerate the engineering of crop genomes via both traditional and targeted approaches.
Collapse
Affiliation(s)
- Vasilissa Manova
- Department of Molecular Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of SciencesSofia
| | - Damian Gruszka
- Department of Genetics, Faculty of Biology and Environment Protection, University of SilesiaKatowice, Poland
| |
Collapse
|
18
|
Ly V, Collister DT, Fonseca E, Liao TS, Schroeder DF. Light and COP1 regulate level of overexpressed DET1 protein. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 231:114-23. [PMID: 25575996 DOI: 10.1016/j.plantsci.2014.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/07/2014] [Accepted: 11/25/2014] [Indexed: 05/09/2023]
Abstract
de-etiolated 1 (det1) and constitutive photomorphogenic 1 (cop1) were initially identified as constitutively photomorphogenic Arabidopsis mutants, exhibiting light-grown phenotypes in the dark. Subsequently, both were shown to be components of Damaged DNA Binding protein 1 (DDB1)/CULLIN4-type complexes. Arabidopsis has two DDB1 homologues, DDB1A and DDB1B, and DDB1A mutants enhance det1 phenotypes. Here we examine ddb1a cop1 double mutants and find that ddb1a weakly enhances some cop1 phenotypes but not others, suggesting developmental regulation of COP1-DDB1A interaction. DET1 loss of function strongly enhances cop1 phenotypes. Here we show that MycDET1 overexpression also enhances cop1 phenotypes, thus MycDET1 overexpression in cop1 mutants also generates loss of function effects. Finally, the effect of the cop1 mutant background on the biochemical properties of MycDET1 was examined. MycDET1 levels were found to be lower in the dark than in the light and this difference required COP1. In summary, both DDB1A loss of function and MycDET1 overexpression enhance cop1 phenotypes, while cop1 mutants fail to exhibit light regulation of MycDET1 levels.
Collapse
Affiliation(s)
- Valentina Ly
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - David T Collister
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Emerald Fonseca
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Timothy S Liao
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Dana F Schroeder
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
19
|
|
20
|
Singh S, Agrawal SB, Agrawal M. UVR8 mediated plant protective responses under low UV-B radiation leading to photosynthetic acclimation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 137:67-76. [PMID: 24780386 DOI: 10.1016/j.jphotobiol.2014.03.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 03/26/2014] [Accepted: 03/31/2014] [Indexed: 11/27/2022]
Abstract
The UV-B photoreceptor UVR8 regulates the expression of several genes leading to acclimation responses in plants. Direct role of UVR8 in maintaining the photosynthesis is not defined but it is known to increase the expression of some chloroplastic proteins like SIG5 and ELIP. It provides indirect protection to photosynthesis by regulating the synthesis of secondary metabolites and photomorphogenesis. Signaling cascades controlled by UVR8 mediate many protective responses thus promotes plant acclimation against stress and secures its survival.
Collapse
Affiliation(s)
- Suruchi Singh
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi 221005, India
| | - S B Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi 221005, India.
| | - Madhoolika Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
21
|
Choi CM, Gray WM, Mooney S, Hellmann H. Composition, roles, and regulation of cullin-based ubiquitin e3 ligases. THE ARABIDOPSIS BOOK 2014; 12:e0175. [PMID: 25505853 PMCID: PMC4262284 DOI: 10.1199/tab.0175] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Due to their sessile nature, plants depend on flexible regulatory systems that allow them to adequately regulate developmental and physiological processes in context with environmental cues. The ubiquitin proteasome pathway, which targets a great number of proteins for degradation, is cellular tool that provides the necessary flexibility to accomplish this task. Ubiquitin E3 ligases provide the needed specificity to the pathway by selectively binding to particular substrates and facilitating their ubiquitylation. The largest group of E3 ligases known in plants is represented by CULLIN-REALLY INTERESTING NEW GENE (RING) E3 ligases (CRLs). In recent years, a great amount of knowledge has been generated to reveal the critical roles of these enzymes across all aspects of plant life. This review provides an overview of the different classes of CRLs in plants, their specific complex compositions, the variety of biological processes they control, and the regulatory steps that can affect their activities.
Collapse
Affiliation(s)
| | | | | | - Hanjo Hellmann
- Washington State University, Pullman, Washington
- Address correspondence to
| |
Collapse
|
22
|
Ly V, Hatherell A, Kim E, Chan A, Belmonte MF, Schroeder DF. Interactions between Arabidopsis DNA repair genes UVH6, DDB1A, and DDB2 during abiotic stress tolerance and floral development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 213:88-97. [PMID: 24157211 DOI: 10.1016/j.plantsci.2013.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/28/2013] [Accepted: 09/02/2013] [Indexed: 05/29/2023]
Abstract
Plants must protect themselves from a spectrum of abiotic stresses. For example, the sun is a source of heat, intense light, and DNA-damaging ultraviolet (UV) rays. Damaged DNA binding protein 1A (DDB1A), DDB2, and UV hypersensitive 6 (UVH6)/XPD are all involved in the repair of UV-damaged DNA - DDB1A and DDB2 in the initial damage recognition stage, while the UVH6/XPD helicase unwinds the damaged strand. We find that, as predicted, Arabidopsis ddb1a and ddb2 mutants do not affect uvh6/xpd UV tolerance. In addition, uvh6 is heat sensitive, and ddb1a and ddb2 weakly enhance this trait. The uvh6 ddb1a and uvh6 ddb2 double mutants also exhibit sensitivity to oxidative stress, suggesting a role for DDB1 complexes in heat and oxidative stress tolerance. Finally, we describe a new uvh6 phenotype, the low penetrance production of flowers with five petals and five sepals. ddb1a and ddb2 suppress this phenotype in uvh6 mutants. Interestingly, heat treatment also induces five-petalled flowers in the ddb1a and ddb2 single mutants. Thus UVH6, DDB1A, and DDB2 all contribute to UV tolerance, heat tolerance and floral patterning.
Collapse
Affiliation(s)
- Valentina Ly
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
E3 ligases comprise a highly diverse and important group of enzymes that act within the 26S ubiquitin proteasome pathway. They facilitate the transfer of ubiquitin moieties to substrate proteins which may be marked for degradation by this step. As such, they serve as central regulators in many cellular and physiological processes in plants. The review provides an update on the multitude of different E3 ligases currently known in plants, and illustrates the central role in plant biology of specific examples.
Collapse
Affiliation(s)
- Liyuan Chen
- Plant Stress Physiology, School of Biological Sciences, Abelson 435, PO Box 644236, Washington State University, Pullman, WA 99164-4236, USA
| | | |
Collapse
|
24
|
Genetic interactions of Arabidopsis thaliana damaged DNA binding protein 1B (DDB1B) with DDB1A, DET1, and COP1. G3-GENES GENOMES GENETICS 2013; 3:493-503. [PMID: 23450167 PMCID: PMC3583456 DOI: 10.1534/g3.112.005249] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 01/08/2013] [Indexed: 01/01/2023]
Abstract
Damaged DNA Binding protein 1 (DDB1)–CULLIN4 E3 ubiquitin ligase complexes have been implicated in diverse biological processes in a range of organisms. Arabidopsis thaliana encodes two homologs of DDB1, DDB1A, and DDB1B. In this study we use a viable partial loss of function allele of DDB1B, ddb1b-2, to examine genetic interactions with DDB1A, DET1 and COP1. Although the ddb1b-2 ddb1a double mutant is lethal, ddb1a ddb1b-2/+ and ddb1b-2 ddb1a/+ heterozygotes exhibit few developmental phenotypes but do exhibit decreased tolerance of ultraviolet light. In addition, germination in ddb1a and ddb1a ddb1b-2/+ was found to be sensitive to salt and mannitol, and both DDB1 single mutants as well as the heterozygotes exhibited heat sensitivity. DE-ETIOLATED1 (DET1) and CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) are negative regulators of light development which interact with DDB1-CUL4 complexes. Although ddb1a strongly enhances det1 phenotypes in both dark- and light-grown seedlings, ddb1b-2 weakly enhanced the det1 short hypocotyl phenotype in the dark, as well as enhancing anthocyanin levels and suppressing the det1 low chlorophyll phenotype in light-grown seedlings. In adults, ddb1a suppresses det1 early flowering and enhances the det1 dwarf phenotype. A similar trend was observed in ddb1b-2 det1 double mutants, although the effects were smaller in magnitude. In cop1 mutants, ddb1b-2 enhanced the cop1-4 short hypocotyl phenotype in dark and light, enhanced anthocyanin levels in cop1-1 in the light, but had no effect in adults. Thus the requirement for DDB1B varies in the course of development, from COP1-specific effects in hypocotyls to DET1-specific in adults.
Collapse
|
25
|
Jeon EH, Pak JH, Kim MJ, Kim HJ, Shin SH, Lee JH, Kim DH, Oh JS, Oh BJ, Jung HW, Chung YS. Ectopic expression of ubiquitin-conjugating enzyme gene from wild rice, OgUBC1, confers resistance against UV-B radiation and Botrytis infection in Arabidopsis thaliana. Biochem Biophys Res Commun 2012; 427:309-14. [PMID: 23000158 DOI: 10.1016/j.bbrc.2012.09.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 09/08/2012] [Indexed: 12/16/2022]
Abstract
A previously unidentified gene encoding ubiquitin-conjugating enzyme was isolated from leaves of wild rice plant treated with wounding and microbe-associated molecular patterns. The OgUBC1 gene was composed of 148 amino acids and contained a typical active site and 21 ubiquitin thioester intermediate interaction residues and 4 E3 interaction residues. Both exogenous application of salicylic acid and UV-B irradiation triggered expression of OgUBC1 in leaves of wild rice. Recombinant OgUBC1 proteins bound to ubiquitins in vitro, proposing that the protein might act as E2 enzyme in planta. Heterologous expression of the OgUBC1 in Arabidopsis thaliana protected plants from cellular damage caused by an excess of UV-B radiation. A stable expression of chalcone synthase gene was detected in leaves of OgUBC1-expressing Arabidopsis, resulting in producing higher amounts of anthocyanin than those in wild-type Col-0 plants. Additionally, both pathogenesis-related gene1 and 5 were transcribed in the transgenic Arabidopsis in the absence of pathogen infection. The OgUBC1-expressing plants were resistant to the infection of Botrytis cinerea. Taken together, we suggested that the OgUBC1 is involved in ubiquitination process important for cellular response against biotic and abiotic stresses in plants.
Collapse
Affiliation(s)
- En Hee Jeon
- Department of Genetic Engineering, Dong-A University, Busan 604-714, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Castells E, Molinier J, Benvenuto G, Bourbousse C, Zabulon G, Zalc A, Cazzaniga S, Genschik P, Barneche F, Bowler C. The conserved factor DE-ETIOLATED 1 cooperates with CUL4-DDB1DDB2 to maintain genome integrity upon UV stress. EMBO J 2011; 30:1162-72. [PMID: 21304489 DOI: 10.1038/emboj.2011.20] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Accepted: 01/10/2011] [Indexed: 11/09/2022] Open
Abstract
Plants and many other eukaryotes can make use of two major pathways to cope with mutagenic effects of light, photoreactivation and nucleotide excision repair (NER). While photoreactivation allows direct repair by photolyase enzymes using light energy, NER requires a stepwise mechanism with several protein complexes acting at the levels of lesion detection, DNA incision and resynthesis. Here we investigated the involvement in NER of DE-ETIOLATED 1 (DET1), an evolutionarily conserved factor that associates with components of the ubiquitylation machinery in plants and mammals and acts as a negative repressor of light-driven photomorphogenic development in Arabidopsis. Evidence is provided that plant DET1 acts with CULLIN4-based ubiquitin E3 ligase, and that appropriate dosage of DET1 protein is necessary for efficient removal of UV photoproducts through the NER pathway. Moreover, DET1 is required for CULLIN4-dependent targeted degradation of the UV-lesion recognition factor DDB2. Finally, DET1 protein is degraded concomitantly with DDB2 upon UV irradiation in a CUL4-dependent mechanism. Altogether, these data suggest that DET1 and DDB2 cooperate during the excision repair process.
Collapse
Affiliation(s)
- Enric Castells
- Institut de Biologie de l'Ecole Normale Supérieure, Section de Génomique Environnementale et Evolutive, CNRS UMR 8197 INSERM U1021, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bernhardt A, Mooney S, Hellmann H. Arabidopsis DDB1a and DDB1b are critical for embryo development. PLANTA 2010; 232:555-66. [PMID: 20499085 DOI: 10.1007/s00425-010-1195-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 05/09/2010] [Indexed: 05/25/2023]
Abstract
DNA Damaged binding protein 1 (DDB1) is a highly conserved protein of around 125 kDa. It serves as a substrate adaptor subunit to a CUL4-based E3 ubiquitin ligase within the ubiquitin proteasome pathway. However, based on a set of three beta-propellers, the protein is able to mediate various protein-protein interactions, suggesting that it participates in many developmental and physiological processes in the plant. Arabidopsis encodes for two closely related DDB1 proteins, named DDB1a and DDB1b. While loss-of DDB1a does not severely affect development, loss-of DDB1b has been reported to result in an embryo lethal phenotype. Here we describe two novel ddb1b T-DNA insertion mutants that are not embryo lethal, which we utilized as genetic tools to dissect DDB1b from DDB1a function. Information generated by these studies showed that the C-terminal part of the DDB1 proteins is critical for specific protein-protein interactions. In addition, we demonstrated that DDB1a, like DDB1b, is critical for embryo development, and that both proteins have distinct functions in whole plant development.
Collapse
|
28
|
Zhang C, Guo H, Zhang J, Guo G, Schumaker KS, Guo Y. Arabidopsis cockayne syndrome A-like proteins 1A and 1B form a complex with CULLIN4 and damage DNA binding protein 1A and regulate the response to UV irradiation. THE PLANT CELL 2010; 22:2353-69. [PMID: 20622147 PMCID: PMC2929103 DOI: 10.1105/tpc.110.073973] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Revised: 06/07/2010] [Accepted: 06/21/2010] [Indexed: 05/19/2023]
Abstract
In plants, as in animals, DNA is constantly subject to chemical modification. UV-B irradiation is a major genotoxic agent and has significant effects on plant growth and development. Through forward genetic screening, we identified a UV-B-sensitive mutant (csaat1a-3) in Arabidopsis thaliana, in which expression of CSAat1A, encoding a Cockayne Syndrome A-like protein, is reduced due to insertion of a T-DNA in the promoter region. Arabidopsis lacking CSAat1A or its homolog CSAat1B is more sensitive to UV-B and the genotoxic drug methyl methanesulfonate and exhibits reduced transcription-coupled repair activity. Yeast two-hybrid analysis indicated that both CSAat1A and B interact with DDB1A (UV-Damage DNA Binding Protein1). Coimmunoprecipitation assays demonstrated that CSAat1A and B associate with the CULLIN4 (CUL4)-DDB1A complex in Arabidopsis. A split-yellow fluorescent protein assay showed that this interaction occurs in the nucleus, consistent with the idea that the CUL4-DDB1A-CSA complex functions as a nuclear E3 ubiquitin ligase. CSAat1A and B formed heterotetramers in Arabidopsis. Taken together, our data suggest that the plant CUL4-DDB1A(CSAat1A and B) complex represents a unique mechanism to promote ubiquitination of substrates in response to DNA damage.
Collapse
Affiliation(s)
- Caiguo Zhang
- Institute of Cell Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- National Institute of Biological Sciences, Beijing 102206, China
| | - Huiping Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - Jun Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Guangqin Guo
- Institute of Cell Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Karen S. Schumaker
- Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Yan Guo
- National Institute of Biological Sciences, Beijing 102206, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, China
- Address correspondence to
| |
Collapse
|
29
|
Biedermann S, Hellmann H. The DDB1a interacting proteins ATCSA-1 and DDB2 are critical factors for UV-B tolerance and genomic integrity in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:404-15. [PMID: 20128879 DOI: 10.1111/j.1365-313x.2010.04157.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The integrity of the genome is a fundamental prerequisite for the well-being of all living organisms. Critical for the genomic integrity are effective DNA damage detection mechanisms that enable the cell to rapidly activate the necessary repair machinery. Here, we describe Arabidopsis thaliana ATCSA-1, which is an ortholog of the mammalian Cockayne Syndrome type-A protein involved in transcription-coupled DNA repair processes. ATCSA-1 is a critical component for initiating the repair of UV-B-induced DNA lesions, and, together with the damage-specific DNA binding protein 2 (DDB2), is necessary for light-independent repair processes in Arabidopsis. The transcriptional profile of both genes revealed that ATCSA-1 is strongly expressed in most tissues, whereas DDB2 is only weakly expressed, predominantly in the root tips and anthers of flowers. In contrast to ATCSA-1, DDB2 expression is rapidly inducible by UV treatment. Like DDB2, ATCSA-1 is localized to the nucleus, and assembles with DDB1 and CUL4 proteins into a complex. ATCSA-1 is an unstable protein that is degraded in a 26S proteasome-dependent manner. Overall, the results presented here form a functional description of a plant Cockayne syndrome factor A (CSA) ortholog, and demonstrate the importance of ATCSA-1 for UV-B tolerance.
Collapse
Affiliation(s)
- Sascha Biedermann
- School of Biological Sciences, Washington State University, Pullman, 99164, WA, USA
| | | |
Collapse
|
30
|
Zhang Y, Schroeder DF. Effect of overexpression of Arabidopsis damaged DNA-binding protein 1A on de-etiolated 1. PLANTA 2010; 231:337-348. [PMID: 19921247 DOI: 10.1007/s00425-009-1056-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 10/30/2009] [Indexed: 05/28/2023]
Abstract
In Arabidopsis thaliana, de-etiolated 1 mutants (det1) grown in the dark resemble light-grown wild-type seedlings. Arabidopsis DET1 encodes a 62 kD protein, which is a negative regulator of light signaling. UV-damaged DNA-binding protein 1 (DDB1) was initially identified due to its role in human DNA damage repair. Arabidopsis has two DDB1 homologs: DDB1A and DDB1B. DDB1A mutation enhances det1 mutant phenotypes. In this study, we generated Arabidopsis lines that overexpress DDB1A-3HA in wild-type, det1, as well as Myc-DET1 or GFP-DET1 rescued genetic backgrounds. DDB1A-3HA overexpression resulted in decreased apical hook formation in wild-type dark-grown seedlings, and enhanced det1 small rosette and early flowering time phenotypes. In the Myc-DET1 background, DDB1A-3HA overexpression resulted in decreased rescue of dark- and light-grown hypocotyl length, light-grown anthocyanin and chlorophyll levels, adult height and stem number phenotypes. This result is consistent with the decreased levels of Myc-DET1 protein detected in the DDB1A-3HA overexpression line. The GFP-DET1 DDB1A-3HA double overexpression line exhibited increased rescue of dark and light-grown hypocotyl length and light-grown chlorophyll level phenotypes relative to GFP-DET1 alone, despite the fact that GFP-DET1 protein also decreased in the double overexpression line. In addition, increased DET1 resulted in decreased DDB1A-3HA levels due to proteasomal degradation. Overall, DDB1A-3HA overexpression affected phenotypes in a variety of DET1 backgrounds, reduced epitope-tagged DET1 levels, and, correlatively, in general dampened the rescue of det1 mutants by the DET1-DDB1A complex.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | |
Collapse
|
31
|
CRL4s: the CUL4-RING E3 ubiquitin ligases. Trends Biochem Sci 2009; 34:562-70. [PMID: 19818632 DOI: 10.1016/j.tibs.2009.07.002] [Citation(s) in RCA: 314] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 07/01/2009] [Accepted: 07/10/2009] [Indexed: 02/07/2023]
Abstract
The evolutionarily conserved cullin family proteins can assemble as many as 400 distinct E3 ubiquitin ligase complexes that regulate diverse cellular pathways. CUL4, one of three founding cullins conserved from yeast to humans, uses a large beta-propeller protein, DDB1, as a linker to interact with a subset of WD40 proteins that serve as substrate receptors, forming as many as 90 E3 complexes in mammals. Many CRL4 complexes are involved in chromatin regulation and are frequently hijacked by different viruses.
Collapse
|