1
|
Self-Incompatibility in Apricot: Identifying Pollination Requirements to Optimize Fruit Production. PLANTS 2022; 11:plants11152019. [PMID: 35956497 PMCID: PMC9370128 DOI: 10.3390/plants11152019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022]
Abstract
In recent years, an important renewal of apricot cultivars is taking place worldwide, with the introduction of many new releases. Self-incompatible genotypes tolerant to the sharka disease caused by the plum pox virus (PPV), which can severely reduce fruit production and quality, are being used as parents in most breeding programs. As a result, the self-incompatibility trait present in most of those accessions can be transmitted to the offspring, leading to the release of new self-incompatible cultivars. This situation can considerably affect apricot management, since pollination requirements were traditionally not considered in this crop and information is lacking for many cultivars. Thus, the objective of this work was to determine the pollination requirements of a group of new apricot cultivars by molecular identification of the S-alleles through PCR amplification of RNase and SFB regions with different primer combinations. The S-genotype of 66 apricot cultivars is reported, 41 for the first time. Forty-nine cultivars were considered self-compatible and 12 self-incompatible, which were allocated in their corresponding incompatibility groups. Additionally, the available information was reviewed and added to the new results obtained, resulting in a compilation of the pollination requirements of 235 apricot cultivars. This information will allow an efficient selection of parents in apricot breeding programs, the proper design of new orchards, and the identification and solution of production problems associated with a lack of fruit set in established orchards. The diversity at the S-locus observed in the cultivars developed in breeding programs indicates a possible genetic bottleneck due to the use of a reduced number of parents.
Collapse
|
2
|
Fernandez i Marti A, Castro S, DeJong TM, Dodd RS. Evaluation of the S-locus in Prunus domestica, characterization, phylogeny and 3D modelling. PLoS One 2021; 16:e0251305. [PMID: 33983990 PMCID: PMC8118244 DOI: 10.1371/journal.pone.0251305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/23/2021] [Indexed: 11/18/2022] Open
Abstract
Self-compatibility has become the primary objective of most prune (Prunus domestica) breeding programs in order to avoid the problems related to the gametophytic self-incompatibility (GSI) system present in this crop. GSI is typically under the control of a specific locus., known as the S-locus., which contains at least two genes. The first gene encodes glycoproteins with RNase activity in the pistils., and the second is an SFB gene expressed in the pollen. There is limited information on genetics of SI/SC in prune and in comparison., with other Prunus species, cloning., sequencing and discovery of different S-alleles is very scarce. Clear information about S-alleles can be used for molecular identification and characterization of the S-haplotypes. We determined the S-alleles of 36 cultivars and selections using primers that revealed 17 new alleles. In addition, our study describes for the first time the association and design of a molecular marker for self-compatibility in P. domestica. Our phylogenetic tree showed that the S-alleles are spread across the phylogeny, suggesting that like previous alleles detected in the Rosaceae., they were of trans-specific origin. We provide for the first time 3D models for the P. domestica SI RNase alleles as well as in other Prunus species, including P. salicina (Japanese plum), P. avium (cherry), P. armeniaca (apricot), P. cerasifera and P. spinosa.
Collapse
Affiliation(s)
- Angel Fernandez i Marti
- Environmental Science, Policy and Management, University of California, Berkeley, California, United States of America
- * E-mail:
| | - Sarah Castro
- Plant Science, University of California, Davis, California, United States of America
| | - Theodore M. DeJong
- Plant Science, University of California, Davis, California, United States of America
| | - Richard S. Dodd
- Environmental Science, Policy and Management, University of California, Berkeley, California, United States of America
| |
Collapse
|
3
|
Lénárt J, Gere A, Causon T, Hann S, Dernovics M, Németh O, Hegedűs A, Halász J. LC-MS based metabolic fingerprinting of apricot pistils after self-compatible and self-incompatible pollinations. PLANT MOLECULAR BIOLOGY 2021; 105:435-447. [PMID: 33296063 PMCID: PMC7892686 DOI: 10.1007/s11103-020-01098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE LC-MS based metabolomics approach revealed that putative metabolites other than flavonoids may significantly contribute to the sexual compatibility reactions in Prunus armeniaca. Possible mechanisms on related microtubule-stabilizing effects are provided. Identification of metabolites playing crucial roles in sexual incompatibility reactions in apricot (Prunus armeniaca L.) was the aim of the study. Metabolic fingerprints of self-compatible and self-incompatible apricot pistils were created using liquid chromatography coupled to time-of-flight mass spectrometry followed by untargeted compound search. Multivariate statistical analysis revealed 15 significant differential compounds among the total of 4006 and 1005 aligned metabolites in positive and negative ion modes, respectively. Total explained variance of 89.55% in principal component analysis (PCA) indicated high quality of differential expression analysis. The statistical analysis showed significant differences between genotypes and pollination time as well, which demonstrated high performance of the metabolic fingerprinting and revealed the presence of metabolites with significant influence on the self-incompatibility reactions. Finally, polyketide-based macrolides similar to peloruside A and a hydroxy sphingosine derivative are suggested to be significant differential metabolites in the experiment. These results indicate a strategy of pollen tubes to protect microtubules and avoid growth arrest involved in sexual incompatibility reactions of apricot.
Collapse
Affiliation(s)
- József Lénárt
- Department of Applied Chemistry, Faculty of Food Science, Szent István University, Villányi út 29-43, Budapest, 1118, Hungary
- Department of Genetics and Plant Breeding, Faculty of Horticultural Science, Szent István University, Ménesi út 44, Budapest, 1118, Hungary
| | - Attila Gere
- Department of Postharvest Sciences and Sensory Evaluation, Faculty of Food Science, Szent István University, Villányi út 29-43, 1118, Budapest, Hungary
| | - Tim Causon
- Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Stephan Hann
- Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Mihály Dernovics
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Brunszvik u. 2, Martonvásár, 2462, Hungary
| | - Olga Németh
- Department of Applied Chemistry, Faculty of Food Science, Szent István University, Villányi út 29-43, Budapest, 1118, Hungary
| | - Attila Hegedűs
- Department of Genetics and Plant Breeding, Faculty of Horticultural Science, Szent István University, Ménesi út 44, Budapest, 1118, Hungary
| | - Júlia Halász
- Department of Genetics and Plant Breeding, Faculty of Horticultural Science, Szent István University, Ménesi út 44, Budapest, 1118, Hungary.
| |
Collapse
|
4
|
Muñoz-Sanz JV, Zuriaga E, Badenes ML, Romero C. A disulfide bond A-like oxidoreductase is a strong candidate gene for self-incompatibility in apricot (Prunus armeniaca) pollen. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5069-5078. [PMID: 29036710 PMCID: PMC5853662 DOI: 10.1093/jxb/erx336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/14/2017] [Indexed: 05/21/2023]
Abstract
S-RNase based gametophytic self-incompatibility (SI) is a widespread prezygotic reproductive barrier in flowering plants. In the Solanaceae, Plantaginaceae and Rosaceae gametophytic SI is controlled by the pistil-specific S-RNases and the pollen S-locus F-box proteins but non-S-specific factors, namely modifiers, are also required. In apricot, Prunus armeniaca (Rosaceae), we previously mapped two pollen-part mutations that confer self-compatibility in cultivars Canino and Katy at the distal end of chromosome 3 (M-locus) unlinked to the S-locus. Here, we used high-resolution mapping to identify the M-locus with an ~134 kb segment containing ParM-1-16 genes. Gene expression analysis identified four genes preferentially expressed in anthers as modifier gene candidates, ParM-6, -7, -9 and -14. Variant calling of WGS Illumina data from Canino, Katy, and 10 self-incompatible cultivars detected a 358 bp miniature inverted-repeat transposable element (MITE) insertion in ParM-7 shared only by self-compatible apricots, supporting ParM-7 as strong candidate gene required for SI. ParM-7 encodes a disulfide bond A-like oxidoreductase protein, which we named ParMDO. The MITE insertion truncates the ParMDO ORF and produces a loss of SI function, suggesting that pollen rejection in Prunus is dependent on redox regulation. Based on phylogentic analyses we also suggest that ParMDO may have originated from a tandem duplication followed by subfunctionalization and pollen-specific expression.
Collapse
Affiliation(s)
- Juan Vicente Muñoz-Sanz
- Fruit Tree Breeding Department. Instituto Valenciano de Investigaciones Agrarias (IVIA). CV-315, Km. 10, Moncada (Valencia), Spain
| | - Elena Zuriaga
- Fruit Tree Breeding Department. Instituto Valenciano de Investigaciones Agrarias (IVIA). CV-315, Km. 10, Moncada (Valencia), Spain
| | - María L Badenes
- Fruit Tree Breeding Department. Instituto Valenciano de Investigaciones Agrarias (IVIA). CV-315, Km. 10, Moncada (Valencia), Spain
| | - Carlos Romero
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas. C/Ingeniero Fausto Elio s/n, Valencia, Spain
- Correspondence:
| |
Collapse
|
5
|
Muñoz-Sanz JV, Zuriaga E, López I, Badenes ML, Romero C. Self-(in)compatibility in apricot germplasm is controlled by two major loci, S and M. BMC PLANT BIOLOGY 2017; 17:82. [PMID: 28441955 PMCID: PMC5405505 DOI: 10.1186/s12870-017-1027-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 04/07/2017] [Indexed: 05/27/2023]
Abstract
BACKGROUND Apricot (Prunus armeniaca L.) exhibits a gametophytic self-incompatibility (GSI) system and it is mostly considered as a self-incompatible species though numerous self-compatible exceptions occur. These are mainly linked to the mutated S C-haplotype carrying an insertion in the S-locus F-box gene that leads to a truncated protein. However, two S-locus unlinked pollen-part mutations (PPMs) termed m and m' have also been reported to confer self-compatibility (SC) in the apricot cultivars 'Canino' and 'Katy', respectively. This work was aimed to explore whether other additional mutations might explain SC in apricot as well. RESULTS A set of 67 cultivars/accessions with different geographic origins were analyzed by PCR-screening of the S- and M-loci genotypes, contrasting results with the available phenotype data. Up to 20 S-alleles, including 3 new ones, were detected and sequence analysis revealed interesting synonymies and homonymies in particular with S-alleles found in Chinese cultivars. Haplotype analysis performed by genotyping and determining linkage-phases of 7 SSR markers, showed that the m and m' PPMs are linked to the same m 0-haplotype. Results indicate that m 0-haplotype is tightly associated with SC in apricot germplasm being quite frequent in Europe and North-America. However, its prevalence is lower than that for S C in terms of frequency and geographic distribution. Structures of 34 additional M-haplotypes were inferred and analyzed to depict phylogenetic relationships and M 1-2 was found to be the closest haplotype to m 0. Genotyping results showed that four cultivars classified as self-compatible do not have neither the S C- nor the m 0-haplotype. CONCLUSIONS According to apricot germplasm S-genotyping, a loss of genetic diversity affecting the S-locus has been produced probably due to crop dissemination. Genotyping and phenotyping data support that self-(in)compatibility in apricot relies mainly on the S- but also on the M-locus. Regarding this latter, we have shown that the m 0-haplotype associated with SC is shared by 'Canino', 'Katy' and many other cultivars. Its origin is still unknown but phylogenetic analysis supports that m 0 arose later in time than S C from a widely distributed M-haplotype. Lastly, other mutants putatively carrying new mutations conferring SC have also been identified deserving future research.
Collapse
Affiliation(s)
- Juan Vicente Muñoz-Sanz
- Fruit Tree Breeding Department, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, Km. 10,7., 46113 Moncada, Valencia Spain
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, 65211 Columbia , MO USA
| | - Elena Zuriaga
- Fruit Tree Breeding Department, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, Km. 10,7., 46113 Moncada, Valencia Spain
| | - Inmaculada López
- Fruit Tree Breeding Department, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, Km. 10,7., 46113 Moncada, Valencia Spain
| | - María L. Badenes
- Fruit Tree Breeding Department, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, Km. 10,7., 46113 Moncada, Valencia Spain
| | - Carlos Romero
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Camino de Vera, 46022 Valencia, Spain
| |
Collapse
|
6
|
Li W, Yang Q, Gu Z, Wu C, Meng D, Yu J, Chen Q, Li Y, Yuan H, Wang D, Li T. Molecular and genetic characterization of a self-compatible apple cultivar, 'CAU-1'. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:162-175. [PMID: 27717452 DOI: 10.1016/j.plantsci.2016.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/16/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
In this study, we characterized a naturally occurring self-compatible apple cultivar, 'CAU-1' (S1S9), and studied the underlying mechanism that causes its compatibility. Analyses of both fruit set rate and seed number after self-pollination or cross-pollination with 'Fuji' (S1S9), and of pollen tube growth, demonstrated that 'CAU-1' is self-compatible. Genetic analysis by S-RNase PCR-typing of selfed progeny of 'CAU-1' revealed the presence of all progeny classes (S1S1, S1S9, and S9S9). Moreover, no evidence of S-allele duplication was found. These findings support the hypothesis that loss of function of an S-locus unlinked pollen-part mutation (PPM) expressed in pollen, rather than a natural mutation in the pollen-S gene (S1- and S9- haplotype), leads to SI breakdown in 'CAU-1'. In addition, there were no significant differences in pollen morphology or fertility between 'Fuji' and 'CAU-1'. However, we found that the effect of S1- and S9-RNase on the SI behavior of pollen could not be addressed better in 'CAU-1' than in 'Fuji'. Furthermore, we found that a pollen-expressed hexose transporter, MdHT1, interacted with S-RNases and showed significantly less expression in 'CAU-1' than in 'Fuji' pollen tubes. These findings support the hypothesis that MdHT1 may participate in S-RNase internalization during the SI process, and decrease of MdHT1 expression in 'CAU-1' hindered the release of self S-RNase into the cytoplasm of pollen tubes, thereby protecting pollen from the cytotoxicity of S-RNase, finally probably resulting in self-compatibility. Together, these findings indicate that S-locus external factors are required for gametophytic SI in the Rosaceae subtribe Pyrinae.
Collapse
Affiliation(s)
- Wei Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Qing Yang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Zhaoyu Gu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Chuanbao Wu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Dong Meng
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Jie Yu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Qiuju Chen
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yang Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Hui Yuan
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Dongmei Wang
- Institute of Pomology, Liaoning Academy of Agricultural Sciences, Yingkou 115009, China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
7
|
Sassa H. Molecular mechanism of the S-RNase-based gametophytic self-incompatibility in fruit trees of Rosaceae. BREEDING SCIENCE 2016; 66:116-21. [PMID: 27069396 PMCID: PMC4780795 DOI: 10.1270/jsbbs.66.116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/11/2015] [Indexed: 05/07/2023]
Abstract
Self-incompatibility (SI) is a major obstacle for stable fruit production in fruit trees of Rosaceae. SI of Rosaceae is controlled by the S locus on which at least two genes, pistil S and pollen S, are located. The product of the pistil S gene is a polymorphic and extracellular ribonuclease, called S-RNase, while that of the pollen S gene is a protein containing the F-box motif, SFB (S haplotype-specific F-box protein)/SFBB (S locus F-box brothers). Recent studies suggested that SI of Rosaceae includes two different systems, i.e., Prunus of tribe Amygdaleae exhibits a self-recognition system in which its SFB recognizes self-S-RNase, while tribe Pyreae (Pyrus and Malus) shows a non-self-recognition system in which many SFBB proteins are involved in SI, each recognizing subset of non-self-S-RNases. Further biochemical and biological characterization of the S locus genes, as well as other genes required for SI not located at the S locus, will help our understanding of the molecular mechanisms, origin, and evolution of SI of Rosaceae, and may provide the basis for breeding of self-compatible fruit tree cultivars.
Collapse
|
8
|
Wu J, Li M, Li T. Genetic features of the spontaneous self-compatible mutant, 'Jin Zhui' (Pyrus bretschneideri Rehd.). PLoS One 2013; 8:e76509. [PMID: 24116113 PMCID: PMC3792025 DOI: 10.1371/journal.pone.0076509] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 08/26/2013] [Indexed: 11/18/2022] Open
Abstract
‘Jin Zhui’ is a spontaneous self-compatible mutant of ‘Ya Li’ (Pyrus bretschneideri Rehd. S21S34), the latter displaying a typical S-RNase-based gametophytic self-incompatibility (GSI). The pollen-part mutation (PPM) of ‘Jin Zhui’ might be due to a natural mutation in the pollen-S gene (S34 haplotype). However, the molecular mechanisms behind these phenotypic changes are still unclear. In this study, we identified five SLF (S-Locus F-box) genes in ‘Ya Li’, while no nucleotide differences were found in the SLF genes of ‘Jin Zhui’. Further genetic analysis by S-RNase PCR-typing of selfed progeny of ‘Jin Zhui’ and ‘Ya Li’ × ‘Jin Zhui’ progeny showed three progeny classes (S21S21, S21S34 and S34S34) as opposed to the two classes reported previously (S21S34 and S34S34), indicating that the pollen gametes of ‘Jin Zhui’, bearing either the S21- or S34-haplotype, were able to overcome self-incompatibility (SI) barriers. Moreover, no evidence of pollen-S duplication was found. These findings support the hypothesis that loss of function of S-locus unlinked PPM expressed in pollen leads to SI breakdown in ‘Jin Zhui’, rather than natural mutation in the pollen-S gene (S34 haplotype). Furthermore, abnormal meiosis was observed in a number of pollen mother cells (PMCs) in ‘Jin Zhui’, but not in ‘Ya Li’. These and other interesting findings are discussed.
Collapse
Affiliation(s)
- Junkai Wu
- Laboratory of Fruit Tree Cell and Molecular Breeding, China Agricultural University, Beijing, China
| | - Maofu Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- * E-mail: (MFL); (TZL)
| | - Tianzhong Li
- Laboratory of Fruit Tree Cell and Molecular Breeding, China Agricultural University, Beijing, China
- * E-mail: (MFL); (TZL)
| |
Collapse
|
9
|
Gonthier L, Blassiau C, Mörchen M, Cadalen T, Poiret M, Hendriks T, Quillet MC. High-density genetic maps for loci involved in nuclear male sterility (NMS1) and sporophytic self-incompatibility (S-locus) in chicory (Cichorium intybus L., Asteraceae). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:2103-21. [PMID: 23689744 DOI: 10.1007/s00122-013-2122-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 05/08/2013] [Indexed: 05/14/2023]
Abstract
High-density genetic maps were constructed for loci involved in nuclear male sterility (NMS1-locus) and sporophytic self-incompatibility (S-locus) in chicory (Cichorium intybus L.). The mapping population consisted of 389 F1' individuals derived from a cross between two plants, K28 (male-sterile) and K59 (pollen-fertile), both heterozygous at the S-locus. This F1' mapping population segregated for both male sterility (MS) and strong self-incompatibility (SI) phenotypes. Phenotyping F1' individuals for MS allowed us to map the NMS1-locus to linkage group (LG) 5, while controlled diallel and factorial crosses to identify compatible/incompatible phenotypes mapped the S-locus to LG2. To increase the density of markers around these loci, bulked segregant analysis was used. Bulks and parental plants K28 and K59 were screened using amplified fragment length polymorphism (AFLP) analysis, with a complete set of 256 primer combinations of EcoRI-ANN and MseI-CNN. A total of 31,000 fragments were generated, of which 2,350 showed polymorphism between K59 and K28. Thirteen AFLP markers were identified close to the NMS1-locus and six in the vicinity of the S-locus. From these AFLP markers, eight were transformed into sequence-characterized amplified region (SCAR) markers and of these five showed co-dominant polymorphism. The chromosomal regions containing the NMS1-locus and the S-locus were each confined to a region of 0.8 cM. In addition, we mapped genes encoding proteins similar to S-receptor kinase, the female determinant of sporophytic SI in the Brasicaceae, and also markers in the vicinity of the putative S-locus of sunflower, but none of these genes or markers mapped close to the chicory S-locus.
Collapse
Affiliation(s)
- Lucy Gonthier
- Université de Lille, UMR INRA-Lille 1 1281, Stress Abiotiques et Différenciation des Végétaux Cultivés, Villeneuve d'Ascq, France
| | | | | | | | | | | | | |
Collapse
|
10
|
An S-locus independent pollen factor confers self-compatibility in 'Katy' apricot. PLoS One 2013; 8:e53947. [PMID: 23342044 PMCID: PMC3544744 DOI: 10.1371/journal.pone.0053947] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/06/2012] [Indexed: 11/19/2022] Open
Abstract
Loss of pollen-S function in Prunus self-compatible cultivars has been mostly associated with deletions or insertions in the S-haplotype-specific F-box (SFB) genes. However, self-compatible pollen-part mutants defective for non-S-locus factors have also been found, for instance, in the apricot (Prunus armeniaca) cv. ‘Canino’. In the present study, we report the genetic and molecular analysis of another self-compatible apricot cv. termed ‘Katy’. S-genotype of ‘Katy’ was determined as S1S2 and S-RNase PCR-typing of selfing and outcrossing populations from ‘Katy’ showed that pollen gametes bearing either the S1- or the S2-haplotype were able to overcome self-incompatibility (SI) barriers. Sequence analyses showed no SNP or indel affecting the SFB1 and SFB2 alleles from ‘Katy’ and, moreover, no evidence of pollen-S duplication was found. As a whole, the obtained results are compatible with the hypothesis that the loss-of-function of a S-locus unlinked factor gametophytically expressed in pollen (M’-locus) leads to SI breakdown in ‘Katy’. A mapping strategy based on segregation distortion loci mapped the M’-locus within an interval of 9.4 cM at the distal end of chr.3 corresponding to ∼1.29 Mb in the peach (Prunus persica) genome. Interestingly, pollen-part mutations (PPMs) causing self-compatibility (SC) in the apricot cvs. ‘Canino’ and ‘Katy’ are located within an overlapping region of ∼273 Kb in chr.3. No evidence is yet available to discern if they affect the same gene or not, but molecular markers seem to indicate that both cultivars are genetically unrelated suggesting that every PPM may have arisen independently. Further research will be necessary to reveal the precise nature of ‘Katy’ PPM, but fine-mapping already enables SC marker-assisted selection and paves the way for future positional cloning of the underlying gene.
Collapse
|