1
|
Bharathi JK, Anandan R, Benjamin LK, Muneer S, Prakash MAS. Recent trends and advances of RNA interference (RNAi) to improve agricultural crops and enhance their resilience to biotic and abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:600-618. [PMID: 36529010 DOI: 10.1016/j.plaphy.2022.11.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/04/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Over the last two decades, significant advances have been made using genetic engineering technology to modify genes from various exotic origins and introduce them into plants to induce favorable traits. RNA interference (RNAi) was discovered earlier as a natural process for controlling the expression of genes across all higher species. It aims to enhance precision and accuracy in pest/pathogen resistance, quality improvement, and manipulating the architecture of plants. However, it existed as a widely used technique recently. RNAi technologies could well be used to down-regulate any genes' expression without disrupting the expression of other genes. The use of RNA interference to silence genes in various organisms has become the preferred method for studying gene functions. The establishment of new approaches and applications for enhancing desirable characters is essential in crops by gene suppression and the refinement of knowledge of endogenous RNAi mechanisms in plants. RNAi technology in recent years has become an important and choicest method for controlling insects, pests, pathogens, and abiotic stresses like drought, salinity, and temperature. Although there are certain drawbacks in efficiency of this technology such as gene candidate selection, stability of trigger molecule, choice of target species and crops. Nevertheless, from past decade several target genes has been identified in numerous crops for their improvement towards biotic and abiotic stresses. The current review is aimed to emphasize the research done on crops under biotic and abiotic stress using RNAi technology. The review also highlights the gene regulatory pathways/gene silencing, RNA interference, RNAi knockdown, RNAi induced biotic and abiotic resistance and advancements in the understanding of RNAi technology and the functionality of various components of the RNAi machinery in crops for their improvement.
Collapse
Affiliation(s)
- Jothi Kanmani Bharathi
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India
| | - Ramaswamy Anandan
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India
| | - Lincy Kirubhadharsini Benjamin
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Sowbiya Muneer
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| | - Muthu Arjuna Samy Prakash
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India.
| |
Collapse
|
2
|
Zhao T, Zeng J, Yang M, Qiu F, Tang Y, Zeng L, Yang C, He P, Lan X, Chen M, Liao Z, Zhang F. Ornithine decarboxylase regulates putrescine-related metabolism and pollen development in Atropa belladonna. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:110-119. [PMID: 36219994 DOI: 10.1016/j.plaphy.2022.09.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Polyamines, including putrescine, spermidine, and spermine, play critical roles in cell physiology by different forms. As a rate-limiting enzyme that converts ornithine to putrescine, ornithine decarboxylase (ODC, EC 1.1.1.37) has been studied in detail in animals and microorganisms, but its specific functions are poorly understood in plants. In this study, the metabolic and developmental roles of the ODC gene were studied through RNAi-mediated suppression of the ODC gene (AbODC) in A. belladonna. Suppression of AbODC reduced the production of precursors of medicinal tropane alkaloids, including putrescine and N-methylputrescine, as well as hyoscyamine and scopolamine. In AbODC-RNAi roots, the production of putrescine and spermidine in free form was reduced, but in the AbODC-RNAi leaves, the content of free polyamines was not altered. In the roots/leaves of AbODC-RNAi plants, the production of conjugated and bound polyamines was reduced. In addition, suppression of the ODC gene resulted in reduction of polyamines and pollen sterility in AbODC-RNAi flowers. In floral organs, GUS-staining results indicated that AbODC was domainantly expressed in pollen. In summary, ornithine decarboxylase not only plays a key role in regulating the biosynthesis of diverse forms of polyamines and medicinal tropane alkaloids, but also participates in pollen development.
Collapse
Affiliation(s)
- Tengfei Zhao
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Junlan Zeng
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Mei Yang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Fei Qiu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yueli Tang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Lingjiang Zeng
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Chunxian Yang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Ping He
- Chongqing Academy of Science and Technology, Chongqing, 401123, China
| | - Xiaozhong Lan
- The Provincial and Ministerial Co-founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, The Center for Xizang Chinese (Tibetan) Medicine Resource, Tibet Agriculture and Animal Husbandry University, Nyingchi of Tibet, 860000, China
| | - Min Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Zhihua Liao
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China; Chongqing Academy of Science and Technology, Chongqing, 401123, China.
| | - Fangyuan Zhang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
3
|
Cheng Z, Song W, Zhang X. Genic male and female sterility in vegetable crops. HORTICULTURE RESEARCH 2022; 10:uhac232. [PMID: 36643746 PMCID: PMC9832880 DOI: 10.1093/hr/uhac232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/30/2022] [Indexed: 06/17/2023]
Abstract
Vegetable crops are greatly appreciated for their beneficial nutritional and health components. Hybrid seeds are widely used in vegetable crops for advantages such as high yield and improved resistance, which require the participation of male (stamen) and female (pistil) reproductive organs. Male- or female-sterile plants are commonly used for production of hybrid seeds or seedless fruits in vegetables. In this review we will focus on the types of genic male sterility and factors affecting female fertility, summarize typical gene function and research progress related to reproductive organ identity and sporophyte and gametophyte development in vegetable crops [mainly tomato (Solanum lycopersicum) and cucumber (Cucumis sativus)], and discuss the research trends and application perspectives of the sterile trait in vegetable breeding and hybrid production, in order to provide a reference for fertility-related germplasm innovation.
Collapse
Affiliation(s)
- Zhihua Cheng
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Weiyuan Song
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Xiaolan Zhang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
4
|
Li Z, Yang X, Li W, Wen Z, Duan J, Jiang Z, Zhang D, Xie X, Wang X, Li F, Li D, Zhang Y. SAMDC3 enhances resistance to Barley stripe mosaic virus by promoting the ubiquitination and proteasomal degradation of viral γb protein. THE NEW PHYTOLOGIST 2022; 234:618-633. [PMID: 35075654 DOI: 10.1111/nph.17993] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Posttranslational modifications (PTMs) play important roles in virus-host interplay. We previously demonstrated that Barley stripe mosaic virus (BSMV) γb protein is phosphorylated by different host kinases to support or impede viral infection. However, whether and how other types of PTMs participate in BSMV infection remains to be explored. Here, we report that S-adenosylmethionine decarboxylase 3 (SAMDC3) from Nicotiana benthamiana or wheat (Triticum aestivum) interacts with γb. BSMV infection induced SAMDC3 expression. Overexpression of SAMDC3 led to the destabilization of γb and reduction in viral infectivity, whereas knocking out NbSAMDC3 increased susceptibility to BSMV. NbSAMDC3 positively regulated the 26S proteasome-mediated degradation of γb via its PEST domain. Further mechanistic studies revealed that γb can be ubiquitinated in planta and that NbSAMDC3 promotes the proteasomal degradation of γb by increasing γb ubiquitination. We also found evidence that ubiquitination occurs at nonlysine residues (Ser-133 and Cys-144) within γb. Together, our results provide a function for SAMDC3 in defence against BSMV infection through targeting of γb abundance, which contributes to our understanding of how a plant host deploys the ubiquitin-proteasome system to mount defences against viral infections.
Collapse
Affiliation(s)
- Zhaolei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xinxin Yang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenli Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhiyan Wen
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jiangning Duan
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhihao Jiang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Dingliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xialin Xie
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xueting Wang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
5
|
Rajput M, Choudhary K, Kumar M, Vivekanand V, Chawade A, Ortiz R, Pareek N. RNA Interference and CRISPR/Cas Gene Editing for Crop Improvement: Paradigm Shift towards Sustainable Agriculture. PLANTS 2021; 10:plants10091914. [PMID: 34579446 PMCID: PMC8467553 DOI: 10.3390/plants10091914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/09/2023]
Abstract
With the rapid population growth, there is an urgent need for innovative crop improvement approaches to meet the increasing demand for food. Classical crop improvement approaches involve, however, a backbreaking process that cannot equipoise with increasing crop demand. RNA-based approaches i.e., RNAi-mediated gene regulation and the site-specific nuclease-based CRISPR/Cas9 system for gene editing has made advances in the efficient targeted modification in many crops for the higher yield and resistance to diseases and different stresses. In functional genomics, RNA interference (RNAi) is a propitious gene regulatory approach that plays a significant role in crop improvement by permitting the downregulation of gene expression by small molecules of interfering RNA without affecting the expression of other genes. Gene editing technologies viz. the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (CRISPR/Cas) have appeared prominently as a powerful tool for precise targeted modification of nearly all crops' genome sequences to generate variation and accelerate breeding efforts. In this regard, the review highlights the diverse roles and applications of RNAi and CRISPR/Cas9 system as powerful technologies to improve agronomically important plants to enhance crop yields and increase tolerance to environmental stress (biotic or abiotic). Ultimately, these technologies can prove to be important in view of global food security and sustainable agriculture.
Collapse
Affiliation(s)
- Meenakshi Rajput
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305801, Rajasthan, India; (M.R.); (K.C.); (M.K.)
| | - Khushboo Choudhary
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305801, Rajasthan, India; (M.R.); (K.C.); (M.K.)
| | - Manish Kumar
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305801, Rajasthan, India; (M.R.); (K.C.); (M.K.)
| | - V. Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology, Jaipur 302017, Rajasthan, India;
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, 230 53 Alnarp, Sweden;
- Correspondence: (A.C.); (N.P.)
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, 230 53 Alnarp, Sweden;
| | - Nidhi Pareek
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305801, Rajasthan, India; (M.R.); (K.C.); (M.K.)
- Correspondence: (A.C.); (N.P.)
| |
Collapse
|
6
|
Jia T, Hou J, Iqbal MZ, Zhang Y, Cheng B, Feng H, Li Z, Liu L, Zhou J, Feng G, Nie G, Ma X, Liu W, Peng Y. Overexpression of the white clover TrSAMDC1 gene enhanced salt and drought resistance in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 165:147-160. [PMID: 34038811 DOI: 10.1016/j.plaphy.2021.05.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/14/2021] [Indexed: 05/20/2023]
Abstract
S-adenosylmethionine decarboxylase (SAMDC) mediates the biosynthesis of polyamines (PAs) and plays a positive role in plants' response to adversity stress tolerance. In this study, we isolated a SAMDC gene from white clover, which is located in mitochondria. It was strongly induced when white clover exposed to drought (15% PEG6000), salinity (200 mM NaCl), 20 μM spermidine, 100 μM abscisic acid, and 10 mM H2O2, especially in leaves. The INVSc1 yeast introduced with TrSAMDC1 had tolerance to drought, salt, and oxidative stress. Overexpression of TrSAMDC1 in Arabidopsis showed higher fresh weight and dry weight under drought and salt treatment and without growth inhibition under normal conditions. Leaf senescence induced by drought and saline was further delayed in transgenic plants, regardless of cultivation in 1/2 MS medium and soil. During drought and salt stress, transgenic plants exhibited a significant increase in relative water content, maximum photosynthesis efficiency (Fv/Fm), performance index on the absorption basis (PIABS), activities of antioxidant protective enzymes such as SOD, POD, CAT, and APX, and a significant decrease in accumulation of MDA and H2O2 as compared to the WT. The concentrations of total PAs, putrescine, spermidine, and spermidine in transgenic lines were higher in transgenic plants than in WT under normal and drought conditions. These results suggested that TrSAMDC1 could effectively mitigate abiotic stresses without the expense of production and be a potential candidate gene for improving the drought and salt resistance of crops.
Collapse
Affiliation(s)
- Tong Jia
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jieru Hou
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Muhammad Zafar Iqbal
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Youzhi Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bizhen Cheng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huahao Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhou Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiqiong Zhou
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
7
|
Plant Transcriptome Reprograming and Bacterial Extracellular Metabolites Underlying Tomato Drought Resistance Triggered by a Beneficial Soil Bacteria. Metabolites 2021; 11:metabo11060369. [PMID: 34207663 PMCID: PMC8230097 DOI: 10.3390/metabo11060369] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
Water deficit is one of the major constraints to crop production and food security worldwide. Some plant growth-promoting rhizobacteria (PGPR) strains are capable of increasing plant drought resistance. Knowledge about the mechanisms underlying bacteria-induced plant drought resistance is important for PGPR applications in agriculture. In this study, we show the drought stress-mitigating effects on tomato plants by the Bacillus megaterium strain TG1-E1, followed by the profiling of plant transcriptomic responses to TG1-E1 and the profiling of bacterial extracellular metabolites. Comparison between the transcriptomes of drought-stressed plants with and without TG1-E1 inoculation revealed bacteria-induced transcriptome reprograming, with highlights on differentially expressed genes belonging to the functional categories including transcription factors, signal transduction, and cell wall biogenesis and organization. Mass spectrometry-based analysis identified over 40 bacterial extracellular metabolites, including several important regulators or osmoprotectant precursors for increasing plant drought resistance. These results demonstrate the importance of plant transcriptional regulation and bacterial metabolites in PGPR-induced plant drought resistance.
Collapse
|
8
|
Zhu H, Tian W, Zhu X, Tang X, Wu L, Hu X, Jin S. Ectopic expression of GhSAMDC 1 improved plant vegetative growth and early flowering through conversion of spermidine to spermine in tobacco. Sci Rep 2020; 10:14418. [PMID: 32879344 PMCID: PMC7468128 DOI: 10.1038/s41598-020-71405-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/14/2020] [Indexed: 01/11/2023] Open
Abstract
Polyamines play essential roles in plant development and various stress responses. In this study, one of the cotton S-adenosylmethionine decarboxylase (SAMDC) genes, GhSAMDC1, was constructed in the pGWB17 vector and overexpressed in tobacco. Leaf area and plant height increased 25.9-36.6% and 15.0-27.0%, respectively, compared to the wild type, and flowering time was advanced by 5 days in transgenic tobacco lines. Polyamine and gene expression analyses demonstrated that a decrease in spermidine and an increase in total polyamines and spermine might be regulated by NtSPDS4 and NtSPMS in transgenic plants. Furthermore, exogenous spermidine, spermine and spermidine synthesis inhibitor dicyclohexylamine were used for complementary tests, which resulted in small leaves and dwarf plants, big leaves and early flowering, and big leaves and dwarf plants, respectively. These results indicate that spermidine and spermine are mainly involved in the vegetative growth and early flowering stages, respectively. Expression analysis of flowering-related genes suggested that NtSOC1, NtAP1, NtNFL1 and NtFT4 were upregulated in transgenic plants. In conclusion, ectopic GhSAMDC1 is involved in the conversion of spermidine to spermine, resulting in rapid vegetative growth and early flowering in tobacco, which could be applied to genetically improve plants.
Collapse
Affiliation(s)
- Huaguo Zhu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China.
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, 438000, Huanggang, Hubei, China.
| | - Wengang Tian
- College of Agronomy, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Xuefeng Zhu
- College of Agronomy, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Xinxin Tang
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, 438000, Huanggang, Hubei, China
| | - Lan Wu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, 438000, Huanggang, Hubei, China
| | - Xiaoming Hu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, 438000, Huanggang, Hubei, China
| | - Shuangxia Jin
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| |
Collapse
|
9
|
Nambeesan SU, Mattoo AK, Handa AK. Nexus Between Spermidine and Floral Organ Identity and Fruit/Seed Set in Tomato. FRONTIERS IN PLANT SCIENCE 2019; 10:1033. [PMID: 31608074 PMCID: PMC6774279 DOI: 10.3389/fpls.2019.01033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Polyamines (PAs) constituting putrescine (Put), spermidine (Spd), and spermine (Spm) are ubiquitous in all organisms and play essential roles in the growth and developmental processes in living organisms, including plants. Evidences obtained through genetic, biochemical, and transgenic approaches suggest a tight homeostasis for cellular PA levels. Altered cellular PA homeostasis is associated with abnormal phenotypes. However, the mechanisms involved for these abnormalities are not yet fully understood, nor is it known whether cellular ratios of different polyamines play any role(s) in specific plant processes. We expressed a yeast spermidine synthase gene (ySpdSyn) under a constitutive promoter CaMV35S in tomato and studied the different phenotypes that developed. The constitutive expression of ySpdSyn resulted in variable flower phenotypes in independent transgenic lines, some of which lacked fruit and seed set. Quantification of PA levels in the developing flowers showed that the transgenic plants without fruit and seed set had significantly reduced Spd levels as well as low Spd/Put ratio compared to the transgenic lines with normal fruit and seed set. Transcript levels of SlDELLA, GA-20oxidase-1, and GA-3oxidase-2, which impact gibberellin (GA) metabolism and signaling, were significantly reduced in bud tissue of transgenic lines that lacked fruit and seed set. These findings indicate that PAs, particularly Spd, impact floral organ identity and fruit set in tomato involving GA metabolism and signaling. Furthermore, we suggest that a nexus exists between PA ratios and developmental programs in plants.
Collapse
Affiliation(s)
| | - Autar K. Mattoo
- Sustainable Agricultural Systems Laboratory, USDA-ARS, Beltsville Agricultural Research Center, Beltsville, MD, United States
| | - Avtar K. Handa
- Center of Plant Biology, Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
10
|
Cao X, Liu X, Wang X, Yang M, van Giang T, Wang J, Liu X, Sun S, Wei K, Wang X, Gao J, Du Y, Qin Y, Guo Y, Huang Z. B-class MADS-box TM6 is a candidate gene for tomato male sterile-15 26. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2125-2135. [PMID: 31020387 DOI: 10.1007/s00122-019-03342-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/09/2019] [Indexed: 05/27/2023]
Abstract
Tomato male sterile-1526 locus was fine-mapped to an interval of 44.6 kb, and a B-class MADS-box gene TM6 was identified as the candidate gene. Male sterile lines have been widely used for hybrid seed production in many crop plants. The tomato male sterile-1526 (ms-1526) mutant displays abnormal stamens and exerted stigmas and is suitable for practical use. In this study, the ms-1526 locus was fine-mapped to a 44.6 kb interval that contained four putative genes. Thereinto, Solyc02g084630 encodes tomato B-class MADS-box gene TM6 (syn. TDR6), which plays an important role in stamen development. Sequencing revealed that there was a 12.7 kb deletion in the ms-1526 region, where the promoter and first four exons of the TM6 gene were absent. ms-1547, an allele of ms-1526, also contained the same deletion in the TM6 gene. And the other allele ms-15 mutant contained a single-nucleotide polymorphism (SNP, C to A) in the coding region of the TM6 gene, which led to a missense mutation (G to W). The codominant insertion/deletion (InDel) marker MS26D and codominant derived cleaved amplified polymorphic sequence (dCAPS) marker MS15C were developed based on the deletion and SNP, respectively. A real-time quantitative reverse-transcription PCR showed that expression of the TM6 gene was barely detectable in the flowers of the ms-1526 and ms-1547 mutants. In addition, other floral organ identity genes, pollen development marker genes, and pistil marker genes were differentially expressed between wild type and mutant flowers. These findings may facilitate functional analysis of the TM6 gene and help in the marker-assisted selection of ms-15 and its alleles in tomato breeding.
Collapse
Affiliation(s)
- Xue Cao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100086, China
| | - Xiaoyan Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100086, China
- College of Forestry and Horticulture, Xinjiang Agricultural University, Ürümqi, 830052, China
| | - Xiaotian Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100086, China
| | - Mengxia Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100086, China
| | - Tong van Giang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100086, China
- Department of Crop Science, Faculty of Agriculture, Forestry and Fishery, Hong Duc University, Thanh Hoa City, Vietnam
| | - Jing Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100086, China
| | - Xiaolin Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100086, China
| | - Shuai Sun
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100086, China
| | - Kai Wei
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100086, China
| | - Xiaoxuan Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100086, China
| | - Jianchang Gao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100086, China
| | - Yongchen Du
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100086, China
| | - Yong Qin
- College of Forestry and Horticulture, Xinjiang Agricultural University, Ürümqi, 830052, China
| | - Yanmei Guo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100086, China.
| | - Zejun Huang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100086, China.
| |
Collapse
|
11
|
Liu X, Yang M, Liu X, Wei K, Cao X, Wang X, Wang X, Guo Y, Du Y, Li J, Liu L, Shu J, Qin Y, Huang Z. A putative bHLH transcription factor is a candidate gene for male sterile 32, a locus affecting pollen and tapetum development in tomato. HORTICULTURE RESEARCH 2019; 6:88. [PMID: 31666957 PMCID: PMC6804878 DOI: 10.1038/s41438-019-0170-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/23/2019] [Accepted: 05/15/2019] [Indexed: 05/19/2023]
Abstract
The tomato (Solanum lycopersicum) male sterile 32 (ms32) mutant has been used in hybrid seed breeding programs largely because it produces no pollen and has exserted stigmas. In this study, histological examination of anthers revealed dysfunctional pollen and tapetum development in the ms32 mutant. The ms32 locus was fine mapped to a 28.5 kb interval that encoded four putative genes. Solyc01g081100, a homolog of Arabidopsis bHLH10/89/90 and rice EAT1, was proposed to be the candidate gene of MS32 because it contained a single nucleotide polymorphism (SNP) that led to the formation of a premature stop codon. A codominant derived cleaved amplified polymorphic sequence (dCAPS) marker, MS32D, was developed based on the SNP. Real-time quantitative reverse-transcription PCR showed that most of the genes, which were proposed to be involved in pollen and tapetum development in tomato, were downregulated in the ms32 mutant. These findings may aid in marker-assisted selection of ms32 in hybrid breeding programs and facilitate studies on the regulatory mechanisms of pollen and tapetum development in tomato.
Collapse
Affiliation(s)
- Xiaoyan Liu
- College of Forestry and Horticulture, Xinjiang Agricultural University, 830052 Urumqi, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100086 Beijing, China
| | - Mengxia Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100086 Beijing, China
| | - Xiaolin Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100086 Beijing, China
| | - Kai Wei
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100086 Beijing, China
| | - Xue Cao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100086 Beijing, China
| | - Xiaotian Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100086 Beijing, China
| | - Xiaoxuan Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100086 Beijing, China
| | - Yanmei Guo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100086 Beijing, China
| | - Yongchen Du
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100086 Beijing, China
| | - Junming Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100086 Beijing, China
| | - Lei Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100086 Beijing, China
| | - Jinshuai Shu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100086 Beijing, China
| | - Yong Qin
- College of Forestry and Horticulture, Xinjiang Agricultural University, 830052 Urumqi, China
| | - Zejun Huang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100086 Beijing, China
| |
Collapse
|
12
|
Choubey A, Rajam MV. RNAi-mediated silencing of spermidine synthase gene results in reduced reproductive potential in tobacco. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:1069-1081. [PMID: 30425424 PMCID: PMC6214437 DOI: 10.1007/s12298-018-0572-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 06/09/2023]
Abstract
Spermidine belongs to a class of polycationic compounds known as polyamines. Polyamines are known to be involved in a wide range of biological processes but the exact role and contribution of different polyamines to these processes are still not clear. In the present study, we have tried to understand the contribution of triamine spermidine to the growth and development of tobacco by downregulating spermidine synthase gene (SPDS) using RNA interference. Down-regulatioin of SPDS gene resulted in decreased spermidine levels and a slight increase in the levels of its precursor, the diamine putrescine and the molecule downstream of Spd, the tetraamine spermine. While the vegetative growth of the transgenics remained largely unaffected, SPDS down-regulation resulted in smaller size of flowers, decreased pollen viability and seed setting, and a reduced and delayed seed germination. When subjected to abiotic stress, the transgenics showed an increased tolerance to salinity and drought conditions owing to a steady intracellular pool of putrescine and spermine. The results not only highlight the importance of spermidine in determining reproductive potential in plants but have also help delineate its function from that of putrescine and spermine.
Collapse
Affiliation(s)
- Ami Choubey
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021 India
| | - M. V. Rajam
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021 India
| |
Collapse
|
13
|
Majumdar R, Shao L, Turlapati SA, Minocha SC. Polyamines in the life of Arabidopsis: profiling the expression of S-adenosylmethionine decarboxylase (SAMDC) gene family during its life cycle. BMC PLANT BIOLOGY 2017; 17:264. [PMID: 29281982 PMCID: PMC5745906 DOI: 10.1186/s12870-017-1208-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 12/08/2017] [Indexed: 05/07/2023]
Abstract
BACKGROUND Arabidopsis has 5 paralogs of the S-adenosylmethionine decarboxylase (SAMDC) gene. Neither their specific role in development nor the role of positive/purifying selection in genetic divergence of this gene family is known. While some data are available on organ-specific expression of AtSAMDC1, AtSAMDC2, AtSAMDC3 and AtSAMDC4, not much is known about their promoters including AtSAMDC5, which is believed to be non-functional. RESULTS (1) Phylogenetic analysis of the five AtSAMDC genes shows similar divergence pattern for promoters and coding sequences (CDSs), whereas, genetic divergence of 5'UTRs and 3'UTRs was independent of the promoters and CDSs; (2) while AtSAMDC1 and AtSAMDC4 promoters exhibit high activity (constitutive in the former), promoter activities of AtSAMDC2, AtSAMDC3 and AtSAMDC5 are moderate to low in seedlings (depending upon translational or transcriptional fusions), and are localized mainly in the vascular tissues and reproductive organs in mature plants; (3) based on promoter activity, it appears that AtSAMDC5 is both transcriptionally and translationally active, but based on it's coding sequence it seems to produce a non-functional protein; (4) though 5'-UTR based regulation of AtSAMDC expression through upstream open reading frames (uORFs) in the 5'UTR is well known, no such uORFs are present in AtSAMDC4 and AtSAMDC5; (5) the promoter regions of all five AtSAMDC genes contain common stress-responsive elements and hormone-responsive elements; (6) at the organ level, the activity of AtSAMDC enzyme does not correlate with the expression of specific AtSAMDC genes or with the contents of spermidine and spermine. CONCLUSIONS Differential roles of positive/purifying selection were observed in genetic divergence of the AtSAMDC gene family. All tissues express one or more AtSAMDC gene with significant redundancy, and concurrently, there is cell/tissue-specificity of gene expression, particularly in mature organs. This study provides valuable information about AtSAMDC promoters, which could be useful in future manipulation of crop plants for nutritive purposes, stress tolerance or bioenergy needs. The AtSAMDC1 core promoter might serve the need of a strong constitutive promoter, and its high expression in the gametophytic cells could be exploited, where strong male/female gametophyte-specific expression is desired; e.g. in transgenic modification of crop varieties.
Collapse
Affiliation(s)
- Rajtilak Majumdar
- Department of Biological Sciences, University of New Hampshire, Durham, NH USA
- USDA-ARS, SRRC, 1100 Robert E. Lee Blvd, New Orleans, LA 70124 USA
| | - Lin Shao
- Department of Biological Sciences, University of New Hampshire, Durham, NH USA
| | - Swathi A. Turlapati
- Department of Biological Sciences, University of New Hampshire, Durham, NH USA
| | - Subhash C. Minocha
- Department of Biological Sciences, University of New Hampshire, Durham, NH USA
| |
Collapse
|
14
|
Choubey A, Rajam MV. Transcriptome response and developmental implications of RNAi-mediated ODC knockdown in tobacco. Funct Integr Genomics 2017; 17:399-412. [PMID: 28011999 DOI: 10.1007/s10142-016-0539-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 12/02/2016] [Accepted: 12/09/2016] [Indexed: 11/24/2022]
Abstract
Polyamines (PAs) are ubiquitously present polycationic compounds that play a critical role in various growth and developmental processes including stress responses in plants. Yet, their specific functions and mode of action remain largely unknown. In the present study, we have targeted tobacco ornithine decarboxylase gene (ODC) by RNA interference to modulate cellular PA levels and study the effects at different developmental time points. Down-regulation of ODC resulted in significant physiological and morphological anomalies including reduced leaf size, reduced chlorophyll and carotene content, decreased abiotic stress tolerance, early onset of senescence, delayed flowering, partial male and female sterility, reduced seed setting, delayed seed germination, reduced seed viability, and poor in vitro regeneration response from leaf explants. Also, for the first time, microarray analysis has been attempted to study genome-wide gene expression changes in response to lowered PA titers in an ODC knockdown line. A number of transcription factors, auxin- and ethylene-responsive genes, stress-induced genes, lignin-biosynthesis genes, photosynthesis-related genes, senescence-associated genes, membrane proteins, and protein kinases were found to be affected, suggesting a probable list of PA-responsive genes. Transcriptome analysis has also indicated many genes, which could directly or indirectly be responsible for regulating the PA metabolic pathway. Various phenotypic changes observed upon ODC knockdown along with the identification of a number of gene targets means it is a step forward in envisaging possible mechanisms of PA action and for assigning them with specific roles in various developmental processes they are known to be a part of.
Collapse
Affiliation(s)
- Ami Choubey
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021, India
| | - M V Rajam
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021, India.
| |
Collapse
|
15
|
Zhao M, Liu H, Deng Z, Chen J, Yang H, Li H, Xia Z, Li D. Molecular cloning and characterization of S-adenosylmethionine decarboxylase gene in rubber tree ( Hevea brasiliensis). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:281-290. [PMID: 28461717 PMCID: PMC5391351 DOI: 10.1007/s12298-017-0417-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/16/2016] [Accepted: 01/17/2017] [Indexed: 05/24/2023]
Abstract
S-Adenosylmethionine decarboxylase (SAMDC) is a key rate-limiting enzyme involved in polyamines biosynthesis, and it plays important roles in plant growth, development and stresses response. However, no SAMDC gene was reported in rubber tree. Here we report characteristics of an SAMDC gene (HbSAMDC1) in rubber tree. HbSAMDC1 contains a 1080 bp open reading frame (ORF) encoding 359 amino acids. Quantitative real-time PCR analyses revealed that HbSAMDC1 exhibited distinct expression patterns in different tissues and was regulated by various stresses, including drought, cold, salt, wounding, and H2O2 treatments. HbSAMDC1 5' untranslated region (UTR) contains a highly conserved overlapping tiny and small upstream ORFs (uORFs), encoding 2 and 52 amino acid residues, respectively. No introns were located in the main ORF of HbSAMDC1, whereas two introns were found in the 5' UTR. In transgenic tobaccos, the highly conserved small uORF of HbSAMDC1 is found to be responsible for translational repression of downstream β-glucuronidase reporter. To our knowledge, this is the first report on molecular cloning, expression profiles, and 5' UTR characteristics of HbSAMDC1. These results lay solid foundation for further elucidating HbSAMDC1 function in rubber tree.
Collapse
Affiliation(s)
- Manman Zhao
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Baodao Xincun, Danzhou, 571737 China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Hui Liu
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Baodao Xincun, Danzhou, 571737 China
| | - Zhi Deng
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Baodao Xincun, Danzhou, 571737 China
| | - Jiangshu Chen
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Baodao Xincun, Danzhou, 571737 China
| | - Hong Yang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Baodao Xincun, Danzhou, 571737 China
| | - Huiping Li
- College of Agriculture, Hainan University, Haikou, 570228 China
| | - Zhihui Xia
- College of Agriculture, Hainan University, Haikou, 570228 China
| | - Dejun Li
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Baodao Xincun, Danzhou, 571737 China
| |
Collapse
|
16
|
Alagna F, Cirilli M, Galla G, Carbone F, Daddiego L, Facella P, Lopez L, Colao C, Mariotti R, Cultrera N, Rossi M, Barcaccia G, Baldoni L, Muleo R, Perrotta G. Transcript Analysis and Regulative Events during Flower Development in Olive (Olea europaea L.). PLoS One 2016; 11:e0152943. [PMID: 27077738 PMCID: PMC4831748 DOI: 10.1371/journal.pone.0152943] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 03/20/2016] [Indexed: 02/04/2023] Open
Abstract
The identification and characterization of transcripts involved in flower organ development, plant reproduction and metabolism represent key steps in plant phenotypic and physiological pathways, and may generate high-quality transcript variants useful for the development of functional markers. This study was aimed at obtaining an extensive characterization of the olive flower transcripts, by providing sound information on the candidate MADS-box genes related to the ABC model of flower development and on the putative genetic and molecular determinants of ovary abortion and pollen-pistil interaction. The overall sequence data, obtained by pyrosequencing of four cDNA libraries from flowers at different developmental stages of three olive varieties with distinct reproductive features (Leccino, Frantoio and Dolce Agogia), included approximately 465,000 ESTs, which gave rise to more than 14,600 contigs and approximately 92,000 singletons. As many as 56,700 unigenes were successfully annotated and provided gene ontology insights into the structural organization and putative molecular function of sequenced transcripts and deduced proteins in the context of their corresponding biological processes. Differentially expressed genes with potential regulatory roles in biosynthetic pathways and metabolic networks during flower development were identified. The gene expression studies allowed us to select the candidate genes that play well-known molecular functions in a number of biosynthetic pathways and specific biological processes that affect olive reproduction. A sound understanding of gene functions and regulatory networks that characterize the olive flower is provided.
Collapse
Affiliation(s)
- Fiammetta Alagna
- Institute of Biosciences and Bioresources, National Research Council, Perugia, Italy
| | - Marco Cirilli
- Laboratory of Molecular Ecophysiology and Biotechnology of Woody Plants, Department of Agricultural and Forestry Science, University of Tuscia, Viterbo, Italy
| | - Giulio Galla
- Laboratory of Plant Genetics and Genomics, DAFNAE, University of Padova, Legnaro (PD), Italy
| | - Fabrizio Carbone
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, TRISAIA Research Center, Rotondella (MT), Italy
| | - Loretta Daddiego
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, TRISAIA Research Center, Rotondella (MT), Italy
| | - Paolo Facella
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, TRISAIA Research Center, Rotondella (MT), Italy
| | - Loredana Lopez
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, TRISAIA Research Center, Rotondella (MT), Italy
| | - Chiara Colao
- Laboratory of Molecular Ecophysiology and Biotechnology of Woody Plants, Department of Agricultural and Forestry Science, University of Tuscia, Viterbo, Italy
| | - Roberto Mariotti
- Institute of Biosciences and Bioresources, National Research Council, Perugia, Italy
| | - Nicolò Cultrera
- Institute of Biosciences and Bioresources, National Research Council, Perugia, Italy
| | - Martina Rossi
- Institute of Biosciences and Bioresources, National Research Council, Perugia, Italy
| | - Gianni Barcaccia
- Laboratory of Plant Genetics and Genomics, DAFNAE, University of Padova, Legnaro (PD), Italy
| | - Luciana Baldoni
- Institute of Biosciences and Bioresources, National Research Council, Perugia, Italy
- * E-mail: (RM); (LB)
| | - Rosario Muleo
- Laboratory of Molecular Ecophysiology and Biotechnology of Woody Plants, Department of Agricultural and Forestry Science, University of Tuscia, Viterbo, Italy
- * E-mail: (RM); (LB)
| | - Gaetano Perrotta
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, TRISAIA Research Center, Rotondella (MT), Italy
| |
Collapse
|
17
|
Aloisi I, Cai G, Serafini-Fracassini D, Del Duca S. Polyamines in Pollen: From Microsporogenesis to Fertilization. FRONTIERS IN PLANT SCIENCE 2016; 7:155. [PMID: 26925074 PMCID: PMC4757701 DOI: 10.3389/fpls.2016.00155] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/29/2016] [Indexed: 05/20/2023]
Abstract
The entire pollen life span is driven by polyamine (PA) homeostasis, achieved through fine regulation of their biosynthesis, oxidation, conjugation, compartmentalization, uptake, and release. The critical role of PAs, from microsporogenesis to pollen-pistil interaction during fertilization, is suggested by high and dynamic transcript levels of PA biosynthetic genes, as well as by the activities of the corresponding enzymes. Moreover, exogenous supply of PAs strongly affects pollen maturation and pollen tube elongation. A reduction of endogenous free PAs impacts pollen viability both in the early stages of pollen development and during fertilization. A number of studies have demonstrated that PAs largely function by modulating transcription, by structuring pollen cell wall, by modulating protein (mainly cytoskeletal) assembly as well as by modulating the level of reactive oxygen species. Both free low-molecular weight aliphatic PAs, and PAs conjugated to proteins and hydroxyl-cinnamic acids take part in these complex processes. Here, we review both historical and recent evidence regarding molecular events underlying the role of PAs during pollen development. In the concluding remarks, the outstanding issues and directions for future research that will further clarify our understanding of PA involvement during pollen life are outlined.
Collapse
Affiliation(s)
- Iris Aloisi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università degli Studi di BolognaBologna, Italia
| | - Giampiero Cai
- Dipartimento di Scienze della Vita, Università di SienaSiena, Italia
| | | | - Stefano Del Duca
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università degli Studi di BolognaBologna, Italia
- *Correspondence: Stefano Del Duca,
| |
Collapse
|
18
|
Pandey R, Gupta A, Chowdhary A, Pal RK, Rajam MV. Over-expression of mouse ornithine decarboxylase gene under the control of fruit-specific promoter enhances fruit quality in tomato. PLANT MOLECULAR BIOLOGY 2015; 87:249-60. [PMID: 25537646 DOI: 10.1007/s11103-014-0273-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 12/07/2014] [Indexed: 05/23/2023]
Abstract
Diamine putrescine (Put) and polyamines; spermidine (Spd) and spermine (Spm) are essential component of every cell because of their involvement in the regulation of cell division, growth and development. The aim of this study is to enhance the levels of Put during fruit development and see its implications in ripening and quality of tomato fruits. Transgenic tomato plants over-expressing mouse ornithine decarboxylase gene under the control of fruit-specific promoter (2A11) were developed. Transgenic fruits exhibited enhanced levels of Put, Spd and Spm, with a concomitant reduction in ethylene levels, rate of respiration and physiological loss of water. Consequently such fruits displayed significant delay of on-vine ripening and prolonged shelf life over untransformed fruits. The activation of Put biosynthetic pathway at the onset of ripening in transgenic fruits is also consistent with the improvement of qualitative traits such as total soluble solids, titratable acids and total sugars. Such changes were associated with alteration in expression pattern of ripening specific genes. Transgenic fruits were also fortified with important nutraceuticals like lycopene, ascorbate and antioxidants. Therefore, these transgenic tomatoes would be useful for the improvement of tomato cultivars through breeding approaches.
Collapse
MESH Headings
- Animals
- Biogenic Polyamines/metabolism
- Ethylenes/biosynthesis
- Food, Genetically Modified
- Fruit/enzymology
- Fruit/genetics
- Fruit/growth & development
- Genes, Plant
- Solanum lycopersicum/enzymology
- Solanum lycopersicum/genetics
- Solanum lycopersicum/growth & development
- Mice
- Nutritive Value
- Ornithine Decarboxylase/genetics
- Plants, Genetically Modified/enzymology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/growth & development
- Promoter Regions, Genetic
- Putrescine/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Recombinant Proteins/genetics
- Up-Regulation
Collapse
Affiliation(s)
- Roopali Pandey
- Plant Polyamine, Transgenic and RNAi Research Laboratory, Department of Genetics, University of Delhi South Campus, New Delhi, 110021, India
| | | | | | | | | |
Collapse
|
19
|
Ensuring Reproduction at High Temperatures: The Heat Stress Response during Anther and Pollen Development. PLANTS 2013; 2:489-506. [PMID: 27137389 PMCID: PMC4844380 DOI: 10.3390/plants2030489] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 06/28/2013] [Accepted: 07/03/2013] [Indexed: 01/01/2023]
Abstract
Sexual reproduction in flowering plants is very sensitive to environmental stresses, particularly to thermal insults which frequently occur when plants grow in field conditions in the warm season. Although abnormalities in both male and female reproductive organs due to high temperatures have been described in several crops, the failure to set fruits has mainly been attributed to the high sensitivity of developing anthers and pollen grains, particularly at certain developmental stages. A global view of the molecular mechanisms involved in the response to high temperatures in the male reproductive organs will be presented in this review. In addition, transcriptome and proteomic data, currently available, will be discussed in the light of physiological and metabolic changes occurring during anther and pollen development. A deep understanding of the molecular mechanisms involved in the stress response to high temperatures in flowers and, particularly, in the male reproductive organs will be a major step towards development of effective breeding strategies for high and stable production in crop plants.
Collapse
|