1
|
He W, Xie R, Guo D, Chai J, Wang H, Wang Y, Chen Q, Zhang J, Wu Z, Li M, Lin Y, Zhang Y, Luo Y, Zhang Y, Tang H, Wang X. The starch excess and key genes underlying citrus leaf chlorosis by rootstock-scion incompatibility. Int J Biol Macromol 2024; 282:137111. [PMID: 39486718 DOI: 10.1016/j.ijbiomac.2024.137111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Leaf chlorosis caused by rootstock-scion incompatibility in citrus orchard badly affects fruit yield and quality. Starch excess and its key genes underlying citrus leaf chlorosis in incompatible graft remained unknown. Here, using created model incompatible/ compatible rootstock-scion combinations, we investigated starch content and distribution in 116 various chlorotic leaves of incompatible graft, and characterized the relationship between leaf chlorosis and starch accumulation. Further, we identified starch metabolism-related gene families by genome-wide analysis of pomelo genome, and performed comparative transcriptomic analysis on leaves. A total of nine key differentially expressed genes of starch metabolism were validated. Among them, seven starch synthesis-related genes were significantly upregulated, and two starch degradation-related genes, CgBAM4 and CgBAM6, were significantly downregulated. Meanwhile, the relative expression of synthesis-related genes was positively correlated with starch accumulation and leaf chlorosis. Using transient overexpression and VIGS experiments in pomelo, we confirmed the function of CgGBSS2, which was the only amylose synthesis-related key gene with the most significantly upregulated expression level. We proposed a working model to illustrate the regulatory network of starch excess accumulation involving in citrus leaf chlorosis of incompatible graft in the end. This study provides insights into the molecular mechanism underlying leaf chlorosis process in rootstock-scion incompatibility.
Collapse
Affiliation(s)
- Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Chengdu 611130, China
| | - Rui Xie
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Daoxiang Guo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Jiufeng Chai
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Hao Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Chengdu 611130, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Chengdu 611130, China
| | - Jing Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Zhiwei Wu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Chengdu 611130, China.
| |
Collapse
|
2
|
Li Y, Chu Y, Yao K, Shi C, Deng X, Lin J. Response of sugar metabolism in the cotyledons and roots of Ricinus communis subjected to salt stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:62-71. [PMID: 36209370 DOI: 10.1111/plb.13475] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Ricinus communis is an important oilseed crop worldwide and is also considered one of the best potential plants for salt-affected soil improvement in northeast China. However, little is known about photosynthesis and carbohydrate metabolism in this plant, nor the distribution of carbohydrates in cotyledons and roots under salinity stress. In the present study, seedling growth, gas exchange parameters (PN , E, gs and Ci ), carbohydrate (fructose, sucrose, glucose, soluble sugar and starch) metabolism and related enzymes and genes were measured in Ricinus plants. Under salt stress, PN of cotyledons decreased significantly (P < 0.05), resulting in weak photosynthetic capacity. Furthermore, salt stress increased sucrose and glucose content in cotyledons, but decreased soluble sugar and starch content. However, sucrose increased and starch decreased in roots. This may be correlated with the increasing sugar metabolism under salinity, including notable changes in sugar-related enzyme activities (SPS, SuSy, α-amylase and β-amylase) and gene expression of RcINV, RcSUS, RcAmY, RcBAM and RcGBE1. The results suggest that salinity reduces photosynthesis of cotyledons, alters carbohydrate allocation between cotyledons and roots and also promotes starch utilization in cotyledons and starch biosynthesis in roots, leading to a functional imbalance between cotyledons and roots. Together, these findings provide insights into the crucial role of sugar metabolism in improving salt-tolerance of Ricinus during the early seedling growth stage.
Collapse
Affiliation(s)
- Y Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Landscape Architecture, Northeast Forestry University, Harbin, China
| | - Y Chu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Landscape Architecture, Northeast Forestry University, Harbin, China
| | - K Yao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Landscape Architecture, Northeast Forestry University, Harbin, China
| | - C Shi
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Landscape Architecture, Northeast Forestry University, Harbin, China
| | - X Deng
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Landscape Architecture, Northeast Forestry University, Harbin, China
| | - J Lin
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Landscape Architecture, Northeast Forestry University, Harbin, China
| |
Collapse
|
3
|
Cheng K, Pan YF, Liu LM, Zhang HQ, Zhang YM. Integrated Transcriptomic and Bioinformatics Analyses Reveal the Molecular Mechanisms for the Differences in Seed Oil and Starch Content Between Glycine max and Cicer arietinum. FRONTIERS IN PLANT SCIENCE 2021; 12:743680. [PMID: 34764968 PMCID: PMC8576049 DOI: 10.3389/fpls.2021.743680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
The seed oil and starch content of soybean are significantly different from that of chickpea. However, there are limited studies on its molecular mechanisms. To address this issue, we conducted integrated transcriptomic and bioinformatics analyses for species-specific genes and acyl-lipid-, starch-, and carbon metabolism-related genes. Among seven expressional patterns of soybean-specific genes, four were highly expressed at the middle- and late oil accumulation stages; these genes significantly enriched fatty acid synthesis and carbon metabolism, and along with common acetyl CoA carboxylase (ACCase) highly expressed at soybean middle seed development stage, common starch-degrading enzyme beta-amylase-5 (BAM5) was highly expressed at soybean early seed development stage and oil synthesis-related genes ACCase, KAS, KAR, ACP, and long-chain acyl-CoA synthetase (LACS) were co-expressed with WRI1, which may result in high seed oil content and low seed starch content in soybean. The common ADP-glucose pyrophosphorylase (AGPase) was highly expressed at chickpea middle seed development stage, along with more starch biosynthesis genes co-expressed with four-transcription-factor homologous genes in chickpea than in soybean, and the common WRI1 was not co-expressed with oil synthesis genes in chickpea, which may result in high seed starch content and low seed oil content in chickpea. The above results may be used to improve chickpea seed oil content in two ways. One is to edit CaWRI1 to co-express with oil synthesis-related genes, which may increase carbon metabolites flowing to oil synthesis, and another is to increase the expression levels of miRNA159 and miRNA319 to inhibit the expression of MYB33, which may downregulate starch synthesis-related genes, making more carbon metabolites flow into oil synthesis. Our study will provide a basis for future breeding efforts to increase the oil content of chickpea seeds.
Collapse
|
4
|
Bhuiyan F, Campos NA, Swennen R, Carpentier S. Characterizing fruit ripening in plantain and Cavendish bananas: A proteomics approach. J Proteomics 2020; 214:103632. [DOI: 10.1016/j.jprot.2019.103632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/10/2019] [Accepted: 12/27/2019] [Indexed: 10/25/2022]
|
5
|
Gao J, Huang BH, Wan YT, Chang J, Li JQ, Liao PC. Functional divergence and intron variability during evolution of angiosperm TERMINAL FLOWER1 (TFL1) genes. Sci Rep 2017; 7:14830. [PMID: 29093470 PMCID: PMC5666015 DOI: 10.1038/s41598-017-13645-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/29/2017] [Indexed: 12/29/2022] Open
Abstract
The protein encoded by the TERMINAL FLOWER1 (TFL1) gene maintains indeterminacy in inflorescence meristem to repress flowering, and has undergone multiple duplications. However, basal angiosperms have one copy of a TFL1-like gene, which clusters with eudicot TFL1/CEN paralogs. Functional conservation has been reported in the paralogs CENTRORADIALIS (CEN) in eudicots, and ROOTS CURL IN NPA (RCNs) genes in monocots. In this study, long-term functional conservation and selective constraints were found between angiosperms, while the relaxation of selective constraints led to subfunctionalisation between paralogs. Long intron lengths of magnoliid TFL1-like gene contain more conserved motifs that potentially regulate TFL1/CEN/RCNs expression. These might be relevant to the functional flexibility of the non-duplicate TFL1-like gene in the basal angiosperms in comparison with the short, lower frequency intron lengths in eudicot and monocot TFL1/CEN/RCNs paralogs. The functionally conserved duplicates of eudicots and monocots evolved according to the duplication-degeneration-complementation model, avoiding redundancy by relaxation of selective constraints on exon 1 and exon 4. These data suggest that strong purifying selection has maintained the relevant functions of TFL1/CEN/RCNs paralogs on flowering regulation throughout the evolution of angiosperms, and the shorter introns with radical amino acid changes are important for the retention of paralogous duplicates.
Collapse
Affiliation(s)
- Jian Gao
- College of Forestry, Beijing Forestry University, No.35, Tsinghua East Rd., Haidian Dist., Beijing, 100083, People's Republic of China
| | - Bing-Hong Huang
- Department of Life Science, National Taiwan Normal University, No.88, Sec. 4, Tingjhou Rd., Wunshan Dist., Taipei, 116, Taiwan, Republic of China
| | - Yu-Ting Wan
- Department of Life Science, National Taiwan Normal University, No.88, Sec. 4, Tingjhou Rd., Wunshan Dist., Taipei, 116, Taiwan, Republic of China
| | - JenYu Chang
- Department of Horticulture, Chiayi Agricultural Experiment Branch, Taiwan Agricultural Research Institute No. 1, Nung-Kai-Chang, Lutsao township, Chiayi, 611, Taiwan, Republic of China
| | - Jun-Qing Li
- College of Forestry, Beijing Forestry University, No.35, Tsinghua East Rd., Haidian Dist., Beijing, 100083, People's Republic of China
| | - Pei-Chun Liao
- Department of Life Science, National Taiwan Normal University, No.88, Sec. 4, Tingjhou Rd., Wunshan Dist., Taipei, 116, Taiwan, Republic of China.
| |
Collapse
|
6
|
Abstract
Plant metabolic studies have traditionally focused on the role and regulation of the enzymes catalyzing key reactions within specific pathways. Within the past 20 years, reverse genetic approaches have allowed direct determination of the effects of the deficiency, or surplus, of a given protein on the biochemistry of a plant. In parallel, top-down approaches have also been taken, which rely on screening broad, natural genetic diversity for metabolic diversity. Here, we compare and contrast the various strategies that have been adopted to enhance our understanding of the natural diversity of metabolism. We also detail how these approaches have enhanced our understanding of both specific and global aspects of the genetic regulation of metabolism. Finally, we discuss how such approaches are providing important insights into the evolution of plant secondary metabolism.
Collapse
Affiliation(s)
- Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany;
| | - Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany;
| |
Collapse
|
7
|
Jin Y, Hu J, Liu X, Ruan Y, Sun C, Liu C. T- 6b allocates more assimilation product for oil synthesis and less for polysaccharide synthesis during the seed development of Arabidopsis thaliana. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:19. [PMID: 28127400 PMCID: PMC5251281 DOI: 10.1186/s13068-017-0706-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/10/2017] [Indexed: 06/01/2023]
Abstract
BACKGROUND As an Agrobacterium tumefaciens T-DNA oncogene, T-6b induces the development of tumors and the enation syndrome in vegetative tissues of transgenic plants. Most of these effects are related to increases in soluble sugar contents. To verify the potential roles of T-6b in the distribution of carbon in developing seeds, not in vegetative tissues, we fused an endosperm-specific promoter to the T-6b gene for expression in transgenic Arabidopsis thaliana plants. RESULTS The expression of T-6b in reproductive organs did not induce the development of the enation syndrome, and moreover, promoted endosperm expansion, which increased the total seed biomass by more than 10%. Additionally, T-6b also increased oil content in mature seeds by more than 10% accompanied with the decrease of starch and mucilage content at the same time. CONCLUSIONS T-6b enhances seed biomass and helps oil biosynthesis but not polysaccharides in reproductive organs without disturbing vegetative growth and development. Our findings suggest T-6b may be very useful for increasing oil production in biodiesel plants.
Collapse
Affiliation(s)
- Yunkai Jin
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128 China
- Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO Box 7080, SE-75007 Uppsala, Sweden
| | - Jia Hu
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128 China
- Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128 China
| | - Xun Liu
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128 China
- Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128 China
| | - Ying Ruan
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128 China
- Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128 China
| | - Chuanxin Sun
- Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO Box 7080, SE-75007 Uppsala, Sweden
| | - Chunlin Liu
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128 China
| |
Collapse
|
8
|
Hu L, Wu G, Hao C, Yu H, Tan L. Transcriptome and selected metabolite analyses reveal points of sugar metabolism in jackfruit (Artocarpus heterophyllus Lam.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 248:45-56. [PMID: 27181946 DOI: 10.1016/j.plantsci.2016.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/16/2016] [Accepted: 04/16/2016] [Indexed: 05/18/2023]
Abstract
Artocarpus heterophyllus Lam., commonly known as jackfruit, produces the largest tree-borne fruit known thus far. The edible part of the fruit develops from the perianths, and contains many sugar-derived compounds. However, its sugar metabolism is poorly understood. A fruit perianth transcriptome was sequenced on an Illumina HiSeq 2500 platform, producing 32,459 unigenes with an average length of 1345nt. Sugar metabolism was characterized by comparing expression patterns of genes related to sugar metabolism and evaluating correlations with enzyme activity and sugar accumulation during fruit perianth development. During early development, high expression levels of acid invertases and corresponding enzyme activities were responsible for the rapid utilization of imported sucrose for fruit growth. The differential expression of starch metabolism-related genes and corresponding enzyme activities were responsible for starch accumulated before fruit ripening but decreased during ripening. Sucrose accumulated during ripening, when the expression levels of genes for sucrose synthesis were elevated and high enzyme activity was observed. The comprehensive transcriptome analysis presents fundamental information on sugar metabolism and will be a useful reference for further research on fruit perianth development in jackfruit.
Collapse
Affiliation(s)
- Lisong Hu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan 571533, China.
| | - Gang Wu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan 571533, China.
| | - Chaoyun Hao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan 571533, China.
| | - Huan Yu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan 571533, China.
| | - Lehe Tan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan 571533, China.
| |
Collapse
|
9
|
Ribeiro PR, Ligterink W, Hilhorst HWM. Expression profiles of genes related to carbohydrate metabolism provide new insights into carbohydrate accumulation in seeds and seedlings of Ricinus communis in response to temperature. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 95:103-112. [PMID: 26254183 DOI: 10.1016/j.plaphy.2015.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 07/21/2015] [Accepted: 07/21/2015] [Indexed: 06/04/2023]
Abstract
Ricinus communis possesses a specific metabolic signature to adjust growth and developmental processes in response to temperature: carbohydrates are accumulated at low temperatures, whereas amino acids are accumulated at elevated temperatures. Our objective was to assess tissue-specific changes in transcript levels of genes related with carbohydrate biosynthesis and catabolism in response to temperature. For that, we measured transcript levels of genes encoding enzymes involved in starch biosynthesis, starch catabolism, and gluconeogenesis in R. communis leaves, roots, and seeds grown at 20 °C and 35 °C. Transcript levels of genes involved in starch catabolism were higher in leaves grown at 20 °C than at 35 °C, but up-regulation of genes involved in starch biosynthesis seems to compensate for this and, therefore, are the likely explanation for higher levels of starch in leaves grown at 20 °C. Higher levels of soluble carbohydrates in leaves grown at 20 °C may be caused by a coordinated increase in transcript level of genes associated with starch catabolism and gluconeogenesis pathways. In roots, transcript levels of genes associated with starch catabolism and gluconeogenesis seem to be enhanced at elevated temperatures. Higher levels of starch in seeds germinated at low temperatures is associated with higher transcript levels of genes involved in starch biosynthesis. Similarly, higher transcript levels of RcPEPCK and RcFBPase are most likely causal for fructose and glucose accumulation in seeds germinated at 20 °C. This study provides important insights in the understanding of the plasticity of R. communis in response to temperature that may apply to other species as well.
Collapse
Affiliation(s)
- Paulo R Ribeiro
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - Wilco Ligterink
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Henk W M Hilhorst
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|