1
|
Daunay A, Hardy LM, Bouyacoub Y, Sahbatou M, Touvier M, Blanché H, Deleuze JF, How-Kit A. Centenarians consistently present a younger epigenetic age than their chronological age with four epigenetic clocks based on a small number of CpG sites. Aging (Albany NY) 2022; 14:7718-7733. [PMID: 36202132 PMCID: PMC9596211 DOI: 10.18632/aging.204316] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022]
Abstract
Aging is a progressive time-dependent biological process affecting differentially individuals, who can sometimes present exceptional longevity. Epigenetic alterations are one of the hallmarks of aging, which comprise the epigenetic drift and clock at DNA methylation level. In the present study, we estimated the DNA methylation-based age (DNAmage) using four epigenetic clocks based on a small number of CpGs in French centenarians and semi-supercentenarians (CSSC, n=214) as well as nonagenarians' and centenarians' offspring (NCO, n=143) compared to individuals from the French general population (CG, n=149). DNA methylation analysis of the nine CpGs included in the epigenetic clocks showed high correlation with chronological age (-0.66>R>0.54) and also the presence of an epigenetic drift for four CpGs that was only visible in CSSC. DNAmage analysis showed that CSSC and to a lesser extend NCO present a younger DNAmage than their chronological age (15-28.5 years for CSSC, 4.4-11.5 years for NCO and 4.2-8.2 years for CG), which were strongly significant in CSSC compared to CG (p-values<2.2e-16). These differences suggest that epigenetic aging and potentially biological aging are slowed in exceptionally long-lived individuals and that epigenetic clocks based on a small number of CpGs are sufficient to reveal alterations of the global epigenetic clock.
Collapse
Affiliation(s)
- Antoine Daunay
- Laboratory for Genomics, Foundation Jean Dausset - CEPH, Paris, France
| | - Lise M Hardy
- Laboratory for Genomics, Foundation Jean Dausset - CEPH, Paris, France.,Laboratory of Excellence GenMed, Paris, France
| | - Yosra Bouyacoub
- Laboratory for Genomics, Foundation Jean Dausset - CEPH, Paris, France.,Laboratory of Excellence GenMed, Paris, France
| | - Mourad Sahbatou
- Laboratory for Genomics, Foundation Jean Dausset - CEPH, Paris, France
| | - Mathilde Touvier
- Sorbonne Paris Nord University, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center Inserm U1153, Inrae U1125, Cnam, University of Paris (CRESS), Bobigny, France
| | - Hélène Blanché
- Laboratory of Excellence GenMed, Paris, France.,Centre de Ressources Biologiques, CEPH Biobank, Foundation Jean Dausset - CEPH, Paris, France
| | - Jean-François Deleuze
- Laboratory for Genomics, Foundation Jean Dausset - CEPH, Paris, France.,Laboratory of Excellence GenMed, Paris, France.,Centre de Ressources Biologiques, CEPH Biobank, Foundation Jean Dausset - CEPH, Paris, France.,Centre National de Recherche en Génomique Humaine, CEA, Institut François Jacob, Evry, France
| | - Alexandre How-Kit
- Laboratory for Genomics, Foundation Jean Dausset - CEPH, Paris, France
| |
Collapse
|
2
|
Ramasamy D, Rao AKDM, Rajkumar T, Mani S. Experimental and Computational Approaches for Non-CpG Methylation Analysis. EPIGENOMES 2022; 6:epigenomes6030024. [PMID: 35997370 PMCID: PMC9397002 DOI: 10.3390/epigenomes6030024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022] Open
Abstract
Cytosine methylation adjacent to adenine, thymine, and cytosine residues but not guanine of the DNA is distinctively known as non-CpG methylation. This CA/CT/CC methylation accounts for 15% of the total cytosine methylation and varies among different cell and tissue types. The abundance of CpG methylation has largely concealed the role of non-CpG methylation. Limitations in the early detection methods could not distinguish CpG methylation from non-CpG methylation. Recent advancements in enrichment strategies and high throughput sequencing technologies have enabled the detection of non-CpG methylation. This review discusses the advanced experimental and computational approaches to detect and describe the genomic distribution and function of non-CpG methylation. We present different approaches such as enzyme-based and antibody-based enrichment, which, when coupled, can also improve the sensitivity and specificity of non-CpG detection. We also describe the current bioinformatics pipelines and their specific application in computing and visualizing the imbalance of CpG and non-CpG methylation. Enrichment modes and the computational suites need to be further developed to ease the challenges of understanding the functional role of non-CpG methylation.
Collapse
Affiliation(s)
| | | | | | - Samson Mani
- Correspondence: ; Tel.: +91-44-22350131 (ext. 196)
| |
Collapse
|
3
|
A high-throughput real-time PCR tissue-of-origin test to distinguish blood from lymphoblastoid cell line DNA for (epi)genomic studies. Sci Rep 2022; 12:4684. [PMID: 35304543 PMCID: PMC8933453 DOI: 10.1038/s41598-022-08663-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Lymphoblastoid cell lines (LCLs) derive from blood infected in vitro by Epstein–Barr virus and were used in several genetic, transcriptomic and epigenomic studies. Although few changes were shown between LCL and blood genotypes (SNPs) validating their use in genetics, more were highlighted for other genomic features and/or in their transcriptome and epigenome. This could render them less appropriate for these studies, notably when blood DNA could still be available. Here we developed a simple, high-throughput and cost-effective real-time PCR approach allowing to distinguish blood from LCL DNA samples based on the presence of EBV relative load and rearranged T-cell receptors γ and β. Our approach was able to achieve 98.5% sensitivity and 100% specificity on DNA of known origin (458 blood and 316 LCL DNA). It was further applied to 1957 DNA samples from the CEPH Aging cohort comprising DNA of uncertain origin, identifying 784 blood and 1016 LCL DNA. A subset of these DNA was further analyzed with an epigenetic clock indicating that DNA extracted from blood should be preferred to LCL for DNA methylation-based age prediction analysis. Our approach could thereby be a powerful tool to ascertain the origin of DNA in old collections prior to (epi)genomic studies.
Collapse
|
4
|
Garali I, Sahbatou M, Daunay A, Baudrin LG, Renault V, Bouyacoub Y, Deleuze JF, How-Kit A. Improvements and inter-laboratory implementation and optimization of blood-based single-locus age prediction models using DNA methylation of the ELOVL2 promoter. Sci Rep 2020; 10:15652. [PMID: 32973211 PMCID: PMC7515898 DOI: 10.1038/s41598-020-72567-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 09/02/2020] [Indexed: 01/21/2023] Open
Abstract
Several blood-based age prediction models have been developed using less than a dozen to more than a hundred DNA methylation biomarkers. Only one model (Z-P1) based on pyrosequencing has been developed using DNA methylation of a single locus located in the ELOVL2 promoter, which is considered as one of the best age-prediction biomarker. Although multi-locus models generally present better performances compared to the single-locus model, they require more DNA and present more inter-laboratory variations impacting the predictions. Here we developed 17,018 single-locus age prediction models based on DNA methylation of the ELOVL2 promoter from pooled data of four different studies (training set of 1,028 individuals aged from 0 and 91 years) using six different statistical approaches and testing every combination of the 7 CpGs, aiming to improve the prediction performances and reduce the effects of inter-laboratory variations. Compared to Z-P1 model, three statistical models with the optimal combinations of CpGs presented improved performances (MAD of 4.41–4.77 in the testing set of 385 individuals) and no age-dependent bias. In an independent testing set of 100 individuals (19–65 years), we showed that the prediction accuracy could be further improved by using different CpG combinations and increasing the number of technical replicates (MAD of 4.17).
Collapse
Affiliation(s)
- Imene Garali
- Laboratory for Bioinformatics, Foundation Jean Dausset-CEPH, Paris, France.,Laboratory of Excellence GenMed, Paris, France
| | - Mourad Sahbatou
- Laboratory for Human Genetics, Foundation Jean Dausset-CEPH, Paris, France
| | - Antoine Daunay
- Laboratory for Genomics, Foundation Jean Dausset-CEPH, 75010, Paris, France
| | - Laura G Baudrin
- Laboratory of Excellence GenMed, Paris, France.,Laboratory for Genomics, Foundation Jean Dausset-CEPH, 75010, Paris, France
| | - Victor Renault
- Laboratory for Bioinformatics, Foundation Jean Dausset-CEPH, Paris, France
| | - Yosra Bouyacoub
- Laboratory of Excellence GenMed, Paris, France.,Laboratory for Genomics, Foundation Jean Dausset-CEPH, 75010, Paris, France
| | - Jean-François Deleuze
- Laboratory for Bioinformatics, Foundation Jean Dausset-CEPH, Paris, France.,Laboratory of Excellence GenMed, Paris, France.,Laboratory for Human Genetics, Foundation Jean Dausset-CEPH, Paris, France.,Laboratory for Genomics, Foundation Jean Dausset-CEPH, 75010, Paris, France.,Centre National de Recherche en Génomique Humaine, CEA, Institut François Jacob, Evry, France
| | - Alexandre How-Kit
- Laboratory for Genomics, Foundation Jean Dausset-CEPH, 75010, Paris, France.
| |
Collapse
|
5
|
Morris MJ, Hesson LB, Youngson NA. Non-CpG methylation biases bisulphite PCR towards low or unmethylated mitochondrial DNA: recommendations for the field. ENVIRONMENTAL EPIGENETICS 2020; 6:dvaa001. [PMID: 32154030 PMCID: PMC7055202 DOI: 10.1093/eep/dvaa001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 05/04/2023]
Abstract
Mitochondrial DNA (mtDNA) is a circular genome of 16 kb that is present in multiple copies in mitochondria. mtDNA codes for genes that contribute to mitochondrial structure and function. A long-standing question has asked whether mtDNA is epigenetically regulated similarly to the nuclear genome. Recently published data suggest that unlike the nuclear genome where CpG methylation is the norm, mtDNA is methylated predominantly at non-CpG cytosines. This raises important methodological considerations for future investigations. In particular, existing bisulphite PCR techniques may be unsuitable due to primers being biased towards amplification from unmethylated mtDNA. Here, we describe how this may have led to previous studies underestimating the level of mtDNA methylation and reiterate methodological strategies for its accurate assessment.
Collapse
Affiliation(s)
| | - Luke B Hesson
- Prince of Wales Clinical School and Lowy Cancer Research Centre, UNSW Sydney, NSW 2052, Australia
| | - Neil A Youngson
- School of Medical Sciences, UNSW Sydney, NSW 2052, Australia
- The Institute of Hepatology, Foundation for Liver Research, London, SE5 9NT, UK
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
- Correspondence address. The Institute of Hepatology, Foundation for Liver Research, London, UK. Tel : +44 (0)20 7255 9835; E-mail:
| |
Collapse
|
6
|
Eprintsev AT, Fedorin DN, Cherkasskikh MV, Igamberdiev AU. Regulation of expression of the mitochondrial and cytosolic forms of aconitase in maize leaves via phytochrome. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:157-162. [PMID: 31751915 DOI: 10.1016/j.plaphy.2019.11.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/14/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Regulation of expression and methylation of promoters of two aconitase (EC 4.2.1.3) genes by light have been investigated in maize (Zea mays L.) in relation to the involvement of phytochrome. Transferring of plants from light to darkness resulted in the stimulation of aconitase activity in mitochondria and in its suppression in the cytosol. Irradiation by red light reversed aconitase activity to the levels observed under white light while far red light reverted the effect of red light. Electrophoretic staining of aconitase activity revealed the preference of the cytosolic form in white and red light and of the mitochondrial form in darkness and in far red light. Both forms of aconitase were purified, the mitochondrial form revealed lower affinity to citrate and higher to isocitrate as compared to the cytosolic form. The study of the aconitase gene Aco1 encoding the mitochondrial form revealed its low expression and high promoter methylation in the light and upon irradiation by red light as compared to high expression and low promoter methylation in darkness and in far red light. The pattern of expression and promoter methylation of the gene Aco2 encoding the cytosolic form was opposite. It is concluded that expression of the mitochondrial and cytosolic forms of aconitase is under control of light via phytochrome in opposite ways at the level of promoter methylation. Light inhibits expression of the mitochondrial aconitase, while it stimulates expression of the cytosolic aconitase which is important for directing citrate exported from mitochondria to the synthesis of amino acids.
Collapse
Affiliation(s)
- Alexander T Eprintsev
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394006, Voronezh, Russia
| | - Dmitry N Fedorin
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394006, Voronezh, Russia
| | - Mikhail V Cherkasskikh
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394006, Voronezh, Russia
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|
7
|
Evaluation of six blood-based age prediction models using DNA methylation analysis by pyrosequencing. Sci Rep 2019; 9:8862. [PMID: 31222117 PMCID: PMC6586942 DOI: 10.1038/s41598-019-45197-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/22/2019] [Indexed: 01/08/2023] Open
Abstract
DNA methylation has been identified as the most promising molecular biomarker for the prediction of age. Several DNA methylation-based models have been proposed for age prediction based on blood samples, using mainly pyrosequencing. These methods present different performances for age prediction and have rarely, if ever, been evaluated and intercompared in an independent validation study. Here, for the first time, we evaluate and compare six blood-based age prediction models (Bekaert1, Park2, Thong3, Weidner4, and the Zbiec-Piekarska 15 and Zbiec-Piekarska 26), using DNA methylation analysis by pyrosequencing on 100 blood samples from French individuals aged between 19–65 years. For each model, we perform correlation analysis and evaluate age-prediction performance (mean absolute deviation (MAD) and standard error of the estimate (SEE)). The best age-prediction performances were found with the Bekaert and Thong models (MAD of 4.5–5.2, SEE of 6.8–7.2), followed by the Zbiec-Piekarska 1 model (MAD of 6.8 and SEE of 9.2), while the Park, Weidner and Zbiec-Piekarska 2 models presented lower performances (MAD of 7.2–8.7 and SEE of 9.2–10.3). Given these results, we recommend performing systematic, independent evaluation of all age prediction models on a same cohort to validate the different models and compare their performance.
Collapse
|
8
|
Singh A, Vancura A, Woycicki RK, Hogan DJ, Hendrick AG, Nowacki M. Determination of the presence of 5-methylcytosine in Paramecium tetraurelia. PLoS One 2018; 13:e0206667. [PMID: 30379964 PMCID: PMC6209305 DOI: 10.1371/journal.pone.0206667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/17/2018] [Indexed: 11/19/2022] Open
Abstract
5-methylcytosine DNA methylation regulates gene expression and developmental programming in a broad range of eukaryotes. However, its presence and potential roles in ciliates, complex single-celled eukaryotes with germline-somatic genome specialization via nuclear dimorphism, are largely uncharted. While canonical cytosine methyltransferases have not been discovered in published ciliate genomes, recent studies performed in the stichotrichous ciliate Oxytricha trifallax suggest de novo cytosine methylation during macronuclear development. In this study, we applied bisulfite genome sequencing, DNA mass spectrometry and antibody-based fluorescence detection to investigate the presence of DNA methylation in Paramecium tetraurelia. While the antibody-based methods suggest cytosine methylation, DNA mass spectrometry and bisulfite sequencing reveal that levels are actually below the limit of detection. Our results suggest that Paramecium does not utilize 5-methylcytosine DNA methylation as an integral part of its epigenetic arsenal.
Collapse
Affiliation(s)
- Aditi Singh
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Freiestrasse 1, Bern, Switzerland
| | - Adrienne Vancura
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Bern, Switzerland
| | - Rafal K. Woycicki
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Bern, Switzerland
| | - Daniel J. Hogan
- Tocagen Incorporated, San Diego, California, United States of America
| | - Alan G. Hendrick
- Storm Therapeutics Limited, Moneta Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Bern, Switzerland
- * E-mail:
| |
Collapse
|
9
|
Busato F, Dejeux E, El Abdalaoui H, Gut IG, Tost J. Quantitative DNA Methylation Analysis at Single-Nucleotide Resolution by Pyrosequencing®. Methods Mol Biol 2018; 1708:427-445. [PMID: 29224157 DOI: 10.1007/978-1-4939-7481-8_22] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Many protocols for gene-specific DNA methylation analysis are either labor intensive, not quantitative and/or limited to the measurement of the methylation status of only one or very few CpG positions. Pyrosequencing is a real-time sequencing technology that overcomes these limitations. After bisulfite modification of genomic DNA, a region of interest is amplified by PCR with one of the two primers being biotinylated. The PCR generated template is rendered single-stranded and a pyrosequencing primer is annealed to analyze quantitatively cytosine methylation. In comparative studies, pyrosequencing has been shown to be among the most accurate and reproducible technologies for locus-specific DNA methylation analyses and has become a widely used tool for the validation of DNA methylation changes identified in genome-wide studies as well as for locus-specific analyses with clinical impact such as methylation analysis of the MGMT promoter. Advantages of the Pyrosequencing technology are the ease of its implementation, the high quality and the quantitative nature of the results, and its ability to identify differentially methylated positions in close proximity.
Collapse
Affiliation(s)
- Florence Busato
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Bâtiment G2, 2 rue Gaston Crémieux, 91000, Evry, France
| | - Emelyne Dejeux
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Bâtiment G2, 2 rue Gaston Crémieux, 91000, Evry, France
| | - Hafida El Abdalaoui
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Bâtiment G2, 2 rue Gaston Crémieux, 91000, Evry, France
| | - Ivo Glynne Gut
- Biomedical Genomics Group, Centro Nacional de Analisis Genomico, CNAG-CRG, Center for Genomic Regulation, Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Bâtiment G2, 2 rue Gaston Crémieux, 91000, Evry, France.
| |
Collapse
|
10
|
Krasnov GS, Melnikova NV, Lakunina VA, Snezhkina AV, Kudryavtseva AV, Dmitriev AA. MethyMer: Design of combinations of specific primers for bisulfite sequencing of complete CpG islands. J Bioinform Comput Biol 2018; 16:1840004. [PMID: 29382254 DOI: 10.1142/s0219720018400048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We present MethyMer, a Python-based tool aimed at selecting primers for amplification of complete CpG islands. These regions are difficult in terms of selecting appropriate primers because of their low-complexity, high GC content. Moreover, bisulfite treatment, in fact, leads to the reduction of the 4-letter alphabet (ATGC) to 3-letter one (ATG, except for methylated cytosines), and this also reduces region complexity and increases mispriming potential. MethyMer has a flexible scoring system, which optimizes the balance between various characteristics such as nucleotide composition, thermodynamic features (melting temperature, dimers [Formula: see text]G, etc.), the presence of CpG sites and polyN tracts, and primer specificity, which is assessed with aligning primers to the bisulfite-treated genome using bowtie (up to three mismatches are allowed). Users are able to customize desired or limit ranges of various parameters as well as penalties for non-desired values. Moreover, MethyMer allows picking up the optimal combination of PCR primer pairs to perform the amplification of a large genomic locus, e.g. CpG island or other hard-to-study region, with minimal overlap of the individual amplicons. MethyMer incorporates ENCODE genome annotation records (promoter/enhancer/insulator), The Cancer Genome Atlas (TCGA) CpG methylation data derived with Illumina Infinium 450K microarrays, and records on correlations between TCGA RNA-Seq and CpG methylation data for 20 cancer types. These databases are included in the MethyMer release. Our tool is available at https://sourceforge.net/projects/methymer/ .
Collapse
Affiliation(s)
- George S Krasnov
- 1 Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Nataliya V Melnikova
- 1 Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Valentina A Lakunina
- 1 Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Anastasiya V Snezhkina
- 1 Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Anna V Kudryavtseva
- 1 Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexey A Dmitriev
- 1 Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
11
|
Ma SC, Cao JC, Zhang HP, Jiao Y, Zhang H, He YY, Wang YH, Yang XL, Yang AN, Tian J, Zhang MH, Yang XM, Lu GJ, Jin SJ, Jia YX, Jiang YD. Aberrant promoter methylation of multiple genes in VSMC proliferation induced by Hcy. Mol Med Rep 2017; 16:7775-7783. [PMID: 28944836 DOI: 10.3892/mmr.2017.7521] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 08/10/2017] [Indexed: 11/06/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) proliferation is a primary pathological event in atherosclerosis (AS), and homocysteine (Hcy) is an independent risk factor for AS. However, the underlying mechanisms are still lagging. Studies have used the combination of methylation of promoters of multiple genes to diagnose tumors, thus the aim of the current study was to investigate the role of methylation status of several genes in VSMCs treated with Hcy. CpG islands were identified in the promoters of platelet‑derived growth factor (PDGF), p53, phosphatase and tensin homologue on chromosome 10 (PTEN) and mitofusin 2 (MFN2). Hypomethylation was observed to occur in the promoter region of PDGF, hypermethylation in p53, PTEN and MFN2, and hypomethylation in two global methylation indicators, aluminium (Alu) and long interspersed nucleotide element‑1 (Line‑1). This was accompanied by an increase in the expression of PDGF, and reductions of p53, PTEN and MFN2, both in mRNA and protein levels. An elevation of S‑adenosylmethionine (SAM) and a reduction of S‑adenosylhomocysteine (SAH) and the SAM/SAH ratio were also identified. In conclusion, Hcy impacted methylation the of AS‑associated genes and global methylation status that mediate the cell proliferation, which may be a character of VSMCs treated with Hcy. The data provided evidence for mechanisms of VSMCs proliferation in AS induced by Hcy and may provide a new perspective for AS induced by Hcy.
Collapse
Affiliation(s)
- Sheng-Chao Ma
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Jian-Cheng Cao
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Hui-Ping Zhang
- Department of Prenatal Diagnosis Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yun Jiao
- Department of Infectious Disease, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Hui Zhang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yang-Yang He
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yan-Hua Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Xiao-Ling Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - An-Ning Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Jue Tian
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Ming-Hao Zhang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Xiao-Ming Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Guan-Jun Lu
- Department of Urinary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Shao-Ju Jin
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yue-Xia Jia
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yi-Deng Jiang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
12
|
Eprintsev AT, Fedorin DN, Karabutova LA, Igamberdiev AU. Expression of genes encoding subunits A and B of succinate dehydrogenase in germinating maize seeds is regulated by methylation of their promoters. JOURNAL OF PLANT PHYSIOLOGY 2016; 205:33-40. [PMID: 27591393 DOI: 10.1016/j.jplph.2016.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/17/2016] [Accepted: 08/17/2016] [Indexed: 06/06/2023]
Abstract
Succinate dehydrogenase (SDH) activity, isoenzyme pattern, and expression of two genes encoding subunit A and of three genes encoding subunit B have been investigated in the scutellum of germinating maize (Zea mays L.) seeds. Four SDH isoforms were detected electrophoretically and by ion-exchange chromatography at the peak of activity of the glyoxylate cycle (on the 4th and 5th day of germination), while in dry seeds and on the 8th and 9th day of germination only two isoforms were present, which can be related to differential expression of the genes encoding SDH subunits. The levels of transcription of Sdh1-1, Sdh1-2, Sdh2-1, Sdh2-2 and Sdh2-3 and the intensity of methylation of their promoters have been determined. In the course of seed germination, the level of methylation of the promoters of one gene encoding subunit A (Sdh1-1) and of two genes encoding subunit B (Sdh2-1 and Sdh2-2) changed from low to the highest, which resulted in suppression of their transcription during the period when the intensity of the glyoxylate cycle was decreasing, while methylation of the promoter of Sdh2-3 did not change and expression of this gene was constitutive during germination. Methylation of the promoter of Sdh1-2 increased but less sharply as compared to Sdh1-1. It is suggested that epigenetic mechanisms of SDH expression via methylation of promoters play an important role in the regulation of transcription of Sdh1-1, Sdh2-1 and Sdh2-2 in maize seeds during germination. These genes may play a role in the provision of operation of the glyoxylate cycle, while Sdh1-2 and Sdh2-3 are involved mainly in the respiratory processes that are not connected with utilization of succinate formed in the glyoxylate cycle.
Collapse
Affiliation(s)
- Alexander T Eprintsev
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394006 Voronezh, Russia
| | - Dmitry N Fedorin
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394006 Voronezh, Russia
| | - Lyudmila A Karabutova
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394006 Voronezh, Russia
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
13
|
Abstract
In plants, genomic DNA methylation which contributes to development and stress responses can be actively removed by DEMETER-like DNA demethylases (DMLs). Indeed, in Arabidopsis DMLs are important for maternal imprinting and endosperm demethylation, but only a few studies demonstrate the developmental roles of active DNA demethylation conclusively in this plant. Here, we show a direct cause and effect relationship between active DNA demethylation mainly mediated by the tomato DML, SlDML2, and fruit ripening- an important developmental process unique to plants. RNAi SlDML2 knockdown results in ripening inhibition via hypermethylation and repression of the expression of genes encoding ripening transcription factors and rate-limiting enzymes of key biochemical processes such as carotenoid synthesis. Our data demonstrate that active DNA demethylation is central to the control of ripening in tomato.
Collapse
|