1
|
Ye XX, Chen YQ, Wu JS, Zhong HQ, Lin B, Huang ML, Fan RH. Biochemical and Transcriptome Analysis Reveals Pigment Biosynthesis Influenced Chlorina Leaf Formation in Anoectochilus roxburghii (Wall.) Lindl. Biochem Genet 2024; 62:1040-1054. [PMID: 37528284 DOI: 10.1007/s10528-023-10432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 06/15/2023] [Indexed: 08/03/2023]
Abstract
Anoectochilus roxburghii (Wall.) Lindl is a perennial herb of the Orchidaceae family; a yellow-green mutant and a yellow mutant were obtained from the wild type, thereby providing good material for the study of leaf color variation. Pigment content analysis revealed that chlorophyll, carotenoids, and anthocyanin were lower in the yellow-green and yellow mutants than in the wild type. Transcriptome analysis of the yellow mutant and wild type revealed that 78,712 unigenes were obtained, and 599 differentially expressed genes (120 upregulated and 479 downregulated) were identified. Using the Kyoto Encyclopedia of Genes and Genomes pathway analysis, candidate genes involved in the anthocyanin biosynthetic pathway (five unigenes) and the chlorophyll metabolic pathway (two unigenes) were identified. Meanwhile, the low expression of the chlorophyll and anthocyanin biosynthetic genes resulted in the absence of chlorophylls and anthocyanins in the yellow mutant. This study provides a basis for similar research in other closely related species.
Collapse
Affiliation(s)
- Xiu-Xian Ye
- Institute of Crop Sciences, Fujian Academy of Agricultural Science, Fuzhou, Fujian, China
| | - Yi-Quan Chen
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian, China
| | - Jian-She Wu
- Institute of Crop Sciences, Fujian Academy of Agricultural Science, Fuzhou, Fujian, China
| | - Huai-Qin Zhong
- Institute of Crop Sciences, Fujian Academy of Agricultural Science, Fuzhou, Fujian, China
| | - Bing Lin
- Institute of Crop Sciences, Fujian Academy of Agricultural Science, Fuzhou, Fujian, China
| | - Min-Ling Huang
- Institute of Crop Sciences, Fujian Academy of Agricultural Science, Fuzhou, Fujian, China.
| | - Rong-Hui Fan
- Institute of Crop Sciences, Fujian Academy of Agricultural Science, Fuzhou, Fujian, China.
| |
Collapse
|
2
|
Lu X, Zheng D, Feng N, Zhou G, Khan A, Zhao H, Deng P, Zhou H, Lin F, Chen Z. Metabolic Adaptations in Rapeseed: Hemin-Induced Resilience to NaCl Stress by Enhancing Growth, Photosynthesis, and Cellular Defense Ability. Metabolites 2024; 14:57. [PMID: 38248860 PMCID: PMC10818378 DOI: 10.3390/metabo14010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
This study aimed to investigate whether presoaking with hemin (5 μmol·L-1) could alleviate NaCl stress during rapeseed seedlings' growth and its role in the regulation of photosynthesis. In this experiment, 'HUAYOUZA 62 (HYZ 62)' and 'HUAYOUZA 158R (158R)' were used as materials for pot experiments to study the morphology, photosynthetic characteristics, antioxidant activity, and osmoregulatory factors of seedlings under different salt concentrations, as well as the regulatory effects of hemin-presoaked seeds. Our findings revealed that, compared the control, NaCl stress inhibited the growth of two rapeseed varieties, decreased the seedling emergence rate, and increased the content of malondialdehyde (MDA), the electrolyte leakage rate (EL) and antioxidant enzyme activity. Hemin soaking alleviated the adverse effects of salt stress and increased plant height, root elongation and dry matter accumulation. Compared with all NaCl treatments, hemin significantly enhanced photosynthetic indexes, including a percent increase of 12.99-24.36% and 5.39-16.52% in net photosynthetic rate (Pn), 17.86-48.08% and 8.6-23.44% in stomatal conductivity (Gs), and 15.42-37.94% and 11.09-19.08% in transpiration rate (Tr) for HYZ62 and 158R, respectively. Moreover, hemin soaking also increased antioxidant enzyme activities, including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX), reducing the malondialdehyde, and thus resulting in the alleviation of oxidative damage caused by NaCl stress. Furthermore, hemin stimulated the formation of soluble protein, which effectively regulated the osmo-protective qualities. The current findings strongly elucidate that hemin soaking could effectively alleviate the negative impacts of NaCl stress by regulating the morphological, photosynthetic, and antioxidant traits. This study provides a new idea regarding the effect of Hemin on the salt tolerance of rapeseed, and provides a basis for the practical application of Hemin in saline-alkali soil to improve the salt tolerance of cultivated rapeseed.
Collapse
Affiliation(s)
- Xutong Lu
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Dianfeng Zheng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Naijie Feng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Guangsheng Zhou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Aaqil Khan
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Huimin Zhao
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Peng Deng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hang Zhou
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Feng Lin
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ziming Chen
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
3
|
Zhang H, Zhang W, Xiang F, Zhang Z, Guo Y, Chen T, Duan F, Zhou Q, Li X, Fang M, Li X, Li B, Zhao X. Photosynthetic characteristics and genetic mapping of a new yellow leaf mutant crm1 in Brassica napus. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:80. [PMID: 37954030 PMCID: PMC10635920 DOI: 10.1007/s11032-023-01429-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
Chlorophyll is one of the key factors for photosynthesis and plays an important role in plant growth and development. We previously isolated an EMS mutagenized rapeseed chlorophyll-reduced mutant (crm1), which had yellow leaf, reduced chlorophyll content and fewer thylakoid stacks. Here, we found that crm1 showed attenuated utilization efficiency of both light energy and CO2 but enhanced heat dissipation efficiency and greater tolerance to high-light intensity. BSA-Seq analysis identified a single nucleotide change (C to T) and (G to A) in the third exon of the BnaA01G0094500ZS and BnaC01G0116100ZS, respectively. These two genes encode the magnesium chelatase subunit I 1 (CHLI1) that catalyzes the insertion of magnesium into protoporphyrin IX, a pivotal step in chlorophyll synthesis. The mutation sites resulted in an amino acid substitution P144S and G128E within the AAA+ domain of the CHLI1 protein. Two KASP markers were developed and co-segregated with the yellow leaf phenotype in segregating F2 population. Loss of BnaA01.CHLI1 and BnaC01.CHLI1 by CRISPR/Cas9 gene editing recapitulated the mutant phenotype. BnaA01.CHLI1 and BnaC01.CHLI1 were located in chloroplast and highly expressed in the leaves. Furthermore, RNA-seq analyses revealed the expression of chlorophyll synthesis-related genes were upregulated in the crm1 mutant. These findings provide a new insight into the regulatory mechanism of chlorophyll synthesis in rapeseed and suggest a novel target for improving the photosynthetic efficiency and tolerance to high-light intensity in crops. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01429-6.
Collapse
Affiliation(s)
- Hui Zhang
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan University, Changsha, 410082 China
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125 China
| | - Wei Zhang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128 Hunan China
| | - Fujiang Xiang
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan University, Changsha, 410082 China
| | - Zhengfeng Zhang
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan University, Changsha, 410082 China
| | - Yiming Guo
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125 China
| | - Tingzhou Chen
- Hunan Cotton Research Institute, Changde, 415100 Hunan China
| | - Feifei Duan
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan University, Changsha, 410082 China
| | - Quanyu Zhou
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan University, Changsha, 410082 China
| | - Xin Li
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan University, Changsha, 410082 China
| | | | - Xinmei Li
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan University, Changsha, 410082 China
| | - Bao Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125 China
| | - Xiaoying Zhao
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan University, Changsha, 410082 China
| |
Collapse
|
4
|
Yang M, Wan S, Chen J, Chen W, Wang Y, Li W, Wang M, Guan R. Mutation to a cytochrome P 450 -like gene alters the leaf color by affecting the heme and chlorophyll biosynthesis pathways in Brassica napus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:432-445. [PMID: 37421327 DOI: 10.1111/tpj.16382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/04/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
The regulated biosynthesis of chlorophyll is important because of its effects on plant photosynthesis and dry biomass production. In this study, a map-based cloning approach was used to isolate the cytochrome P450 -like gene BnaC08g34840D (BnCDE1) from a chlorophyll-deficient mutant (cde1) of Brassica napus obtained by ethyl methanesulfonate (EMS) mutagenization. Sequence analyses revealed that BnaC08g34840D in the cde1 mutant (BnCDE1I320T ) encodes a substitution at amino acid 320 (Ile320Thr) in the conserved region. The over-expression of BnCDE1I320T in ZS11 (i.e., gene-mapping parent with green leaves) recapitulated a yellow-green leaf phenotype. The CRISPR/Cas9 genome-editing system was used to design two single-guide RNAs (sgRNAs) targeting BnCDE1I320T in the cde1 mutant. The knockout of BnCDE1I320T in the cde1 mutant via a gene-editing method restored normal leaf coloration (i.e., green leaves). These results indicate that the substitution in BnaC08g34840D alters the leaf color. Physiological analyses showed that the over-expression of BnCDE1I320T leads to decreases in the number of chloroplasts per mesophyll cell and in the contents of the intermediates of the chlorophyll biosynthesis pathway in leaves, while it increases heme biosynthesis, thereby lowering the photosynthetic efficiency of the cde1 mutant. The Ile320Thr mutation in the highly conserved region of BnaC08g34840D inhibited chlorophyll biosynthesis and disrupted the balance between heme and chlorophyll biosynthesis. Our findings may further reveal how the proper balance between the chlorophyll and heme biosynthesis pathways is maintained.
Collapse
Affiliation(s)
- Mao Yang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shubei Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jun Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenjing Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yangming Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiyan Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Meihong Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rongzhan Guan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
5
|
Guo P, Huang Z, Zhao W, Lin N, Wang Y, Shang F. Mechanisms for leaf color changes in Osmanthus fragrans 'Ziyan Gongzhu' using physiology, transcriptomics and metabolomics. BMC PLANT BIOLOGY 2023; 23:453. [PMID: 37752431 PMCID: PMC10523669 DOI: 10.1186/s12870-023-04457-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Color-leaved O. fragrans is a variety of Osmanthus fragrans, which has both the fragrance of Osmanthus and the color of color-leaved plants. However, the molecular mechanism of color change of color-leaved O. fragrans is not clear. In this study, we analyzed the regulatory mechanism of four different color leaves of 'Ziyan Gongzhu' through physiological, transcriptome and metabolome levels. RESULTS Firstly, we measured the leaf pigments content and leaf chromatic parameters for correlation analysis, indicating a significant correlation between them. Overall, the content of chlorophyll a + b is low and the content of anthocyanin is high in T1 and T2 leaves, along with low expression of chlorophyll synthesis genes (HEMA, CHLG, and CAO, etc.) and high expression of anthocyanin synthesis genes (F3H, F3'H, DFR and ANS, etc.), resulting purple red and light purple in T1 and T2 leaves, respectively. It was also found that the pigment closely related to the color leaves of 'Ziyan Gongzhu' was cyanidin. The content anthocyanins, may be regulated by two putative MYB activators (OfMYB3 and OfMYB4) and two putative MYB repressors (OfMYB1 and OfMYB2). In contrast, the content of chlorophyll a + b is high and the content of anthocyanin is low in T3 and T4 leaves, along with high expression of chlorophyll synthesis genes and low expression of anthocyanin synthesis genes, resulting yellow green and dark green in T3 and T4 leaves, respectively. And abnormal chloroplast development affects chlorophyll content in T1, T2, and T3 leaves. Although the content of carotenoids first dropped in T2 leaves, it then rapidly accumulated in T4 leaves, in sync with the increase in the expression of genes related to carotenoid biosynthesis (ZDS, LHYB, and ZEP, for example). Analysis of photosynthetic, carbohydrate and hormone-related differentially abundant metabolites (DAMs) and DEGs found that they may participate in the regulation of leaf color change of 'Ziyan Gongzhu' by affecting pigment synthesis. CONCLUSION Our results pave the way for a comprehensive knowledge of the regulatory processes governing leaf color in 'Ziyan Gongzhu' and identify possible genes for application regarding molecular colored-leaf cultivar breeding.
Collapse
Affiliation(s)
- Peng Guo
- College of Life Science, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Zhengzhou, 450046, Henan, China
| | - Ziqi Huang
- College of Life Science, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Zhengzhou, 450046, Henan, China
| | - Wei Zhao
- College of Life Science, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Zhengzhou, 450046, Henan, China
| | - Nan Lin
- College of Life Science, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Zhengzhou, 450046, Henan, China
| | - Yihan Wang
- College of Life Science, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Zhengzhou, 450046, Henan, China.
| | - Fude Shang
- College of Life Science, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Zhengzhou, 450046, Henan, China.
| |
Collapse
|
6
|
Feng L, Wei L, Liu Y, Ren J, Liao W. Carbon monoxide/heme oxygenase system in plant: Roles in abiotic stress response and crosstalk with other signals molecules. Nitric Oxide 2023; 138-139:51-63. [PMID: 37364740 DOI: 10.1016/j.niox.2023.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Carbon monoxide (CO) has been recognized as a crucial gasotransmitter mainly produced by heme oxygenase (HO)-catalyzed heme degradation in plant. Recent studies have shown that CO plays an important role in regulating growth and development of plant, as well as and responding to a variety of abiotic stresses. Meanwhile, many studies have reported on CO working in combination with other signal molecules to mitigate abiotic stress. Here, we presented a comprehensive overview of recent developments in which CO reduces plant damage caused by abiotic stresses. The regulation of antioxidant system, photosynthetic system, ion balance and transport are the main mechanisms of CO-alleviated abiotic stress. We also proposed and discussed the relationship between CO and other signal molecules, including nitric oxide (NO), hydrogen sulfide (H2S), hydrogen gas (H2), abscisic acid (ABA), indole 3-acetic acid (IAA), gibberellin (GA), cytokine (CTK), salicylic acid (SA), jasmonic acid (JA), hydrogen peroxide (H2O2) and calcium ion (Ca2+). Furthermore, the important role of HO genes in alleviating abiotic stress was also discussed. We proposed promising and new research directions for the study of plant CO, which can provide further insights on the role of CO in plant growth and development under abiotic stress.
Collapse
Affiliation(s)
- Li Feng
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Lijuan Wei
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Yayu Liu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Jiaxuan Ren
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China.
| |
Collapse
|
7
|
Meng F, Feng N, Zheng D, Liu M, Zhang R, Huang X, Huang A, Chen Z. Exogenous Hemin alleviates NaCl stress by promoting photosynthesis and carbon metabolism in rice seedlings. Sci Rep 2023; 13:3497. [PMID: 36859499 PMCID: PMC9977858 DOI: 10.1038/s41598-023-30619-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/27/2023] [Indexed: 03/03/2023] Open
Abstract
It is widely known that salt stress restricts rice growth and productivity severely. However, little information is available regarding the stage of rice seedlings subjected to the Heme oxygenase 1 (HO-1) inducer, Hemin. This study aimed to investigate the effects of salt stress on two rice varieties (Huanghuazhan and Xiangliangyou 900) and the effect of Hemin in promoting photosynthesis, carbohydrate metabolism, and key enzymes under salt-stress conditions. At the stage of three leaves and one heart, Huanghuazhan (HHZ) and Xiangliangyou 900 (XLY900) were sprayed with 5 μmol·L-1 Hemin and then subjected to 50 mM NaCl stress. The results showed that NaCl stress decreased the contents of chlorophyll a, chlorophyll b, and carotenoids. Furthermore, the net photosynthetic rate (Pn) decreased remarkably and the starch content was also lowered. However, NaCl treatment enhanced the concentration of sucrose and soluble sugar, simultaneously enhancing the sucrose metabolism. Nevertheless, the foliar spraying of exogenous Hemin mediated the increase in fructose and starch content, along with the activities of key enzymes' soluble acid invertase (SAInv), basic/neutral invertase (A/N-Inv), and sucrose synthase (SS) in rice leaves under NaCl stress. The sucrose phosphate synthase (SPS) in leaves decreased significantly, and the fructose accumulation in leaves increased. Hemin also mediated the increase of starch content and the α-amylase, total amylase, and starch phosphorylase (SP) activities under NaCl stress. Under stress conditions, the application of the Heme oxygenase 1 (HO-1) inhibitor, ZnPP failed to alleviate the damage to rice seedlings by NaCl stress. The ZnPP treatment showed similar tendency to the NaCl treatment on pigment content, gas exchange parameters and carbon metabolism related products and enzymes. However, ZnPP decreased carotenoids, fructose, starch content and enzyme activities related to starch metabolism. The regulation effect of Hemin on HuangHuaZhan was better than XiangLiangYou 900. These results indicate that Hemin improved the effects of salt stress on the photosynthesis and physiological characteristics of rice leaves as a result of enhanced carbohydrate metabolism. Thus, Hemin could alleviate the damage caused by salt stress to a certain extent.
Collapse
Affiliation(s)
- Fengyan Meng
- grid.411846.e0000 0001 0685 868XCollege of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008 China ,National Saline-tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008 China
| | - Naijie Feng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China. .,National Saline-tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008, China. .,Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, China.
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China. .,National Saline-tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008, China. .,Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, China.
| | - Meiling Liu
- grid.411846.e0000 0001 0685 868XCollege of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008 China ,National Saline-tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008 China
| | - Rongjun Zhang
- grid.411846.e0000 0001 0685 868XCollege of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008 China ,National Saline-tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008 China
| | - Xixin Huang
- grid.411846.e0000 0001 0685 868XCollege of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008 China ,National Saline-tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008 China
| | - Anqi Huang
- grid.411846.e0000 0001 0685 868XCollege of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008 China ,National Saline-tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008 China
| | - Ziming Chen
- grid.411846.e0000 0001 0685 868XCollege of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008 China
| |
Collapse
|
8
|
Chen Z, Lin S, Chen T, Han M, Yang T, Wang Y, Bao S, Shen Z, Wan X, Zhang Z. Haem Oxygenase 1 is a potential target for creating etiolated/albino tea plants ( Camellia sinensis) with high theanine accumulation. HORTICULTURE RESEARCH 2023; 10:uhac269. [PMID: 37533676 PMCID: PMC10390853 DOI: 10.1093/hr/uhac269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/01/2022] [Indexed: 08/04/2023]
Abstract
Theanine content is highly correlated with sensory quality and health benefits of tea infusion. The tender shoots of etiolated and albino tea plants contain higher theanine than the normal green tea plants and are valuable materials for high quality green tea processing. However, why these etiolated or albino tea plants can highly accumulate theanine is largely unknown. In this study, we observed an Arabidopsis etiolated mutant hy1-100 (mutation in Haem Oxygenase 1, HO1) that accumulated higher levels of glutamine (an analog of theanine). We therefore identified CsHO1 in tea plants and found CsHO1 is conserved in amino acid sequences and subcellular localization with its homologs in other plants. Importantly, CsHO1 expression in the new shoots was much lower in an etiolated tea plants 'Huangkui' and an albino tea plant 'Huangshan Baicha' than that in normal green tea plants. The expression levels of CsHO1 were negatively correlated with theanine contents in these green, etiolated and albino shoots. Moreover, CsHO1 expression levels in various organs and different time points were also negatively correlated with theanine accumulation. The hy1-100 was hypersensitive to high levels of theanine and accumulated more theanine under theanine feeding, and these phenotypes were rescued by the expression of CsHO1 in this mutant. Transient knockdown CsHO1 expression in the new shoots of tea plant using antisense oligonucleotides (asODN) increased theanine accumulation. Collectively, these results demonstrated CsHO1 negatively regulates theanine accumulation in tea plants, and that low expression CsHO1 likely contributes to the theanine accumulation in etiolated/albino tea plants.
Collapse
Affiliation(s)
| | | | - Tingting Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Mengxue Han
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Tianyuan Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Shilai Bao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhougao Shen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | | |
Collapse
|
9
|
Popek R, Mahawar L, Shekhawat GS, Przybysz A. Phyto-cleaning of particulate matter from polluted air by woody plant species in the near-desert city of Jodhpur (India) and the role of heme oxygenase in their response to PM stress conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70228-70241. [PMID: 35585451 DOI: 10.1007/s11356-022-20769-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Particulate matter (PM) is one of the most dangerous pollutants in the air. Urban vegetation, especially trees and shrubs, accumulates PM and reduces its concentration in ambient air. The aim of this study was to examine 10 tree and shrub species common for the Indian city of Jodhpur (Rajasthan) located on the edge of the Thar Desert and determine (1) the accumulation of surface and in-wax PM (both in three different size fractions), (2) the amount of epicuticular waxes on foliage, (3) the concentrations of heavy metals (Cd and Cu) on/in the leaves of the examined species, and (4) the level of heme oxygenase enzyme in leaves that accumulate PM and heavy metals. Among the investigated species, Ficus religiosa L. and Cordia myxa L. accumulated the greatest amount of total PM. F. religiosa is a tall tree with a lush, large crown and leaves with wavy edge, convex veins, and long petioles, while C. myxa have hairy leaves with convex veins. The lowest PM accumulation was recorded for drought-resistant Salvadora persica L. and Azadirachta indica A. Juss., which is probably due to their adaptation to growing conditions. Heavy metals (Cu and Cd) were found in the leaves of almost every examined species. The accumulation of heavy metals (especially Cu) was positively correlated with the amount of PM deposited on the foliage. A new finding of this study indicated a potentially important role of HO in the plants' response to PM-induced stress. The correlation between HO and PM was stronger than that between HO and HMs. The results obtained in this study emphasise the role of plants in cleaning polluted air in conditions where there are very high concentrations of PM.
Collapse
Affiliation(s)
- Robert Popek
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences - SGGW (WULS-SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland.
| | - Lovely Mahawar
- Plant Biotechnology and Molecular Biology Laboratory, Department of Botany, Jai Narain Vyas University, Jodhpur, 342001, India
| | - Gyan Singh Shekhawat
- Plant Biotechnology and Molecular Biology Laboratory, Department of Botany, Jai Narain Vyas University, Jodhpur, 342001, India
| | - Arkadiusz Przybysz
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences - SGGW (WULS-SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| |
Collapse
|
10
|
Ye S, Yang J, Huang Y, Liu J, Ma X, Zhao L, Ma C, Tu J, Shen J, Fu T, Wen J. Bulk segregant analysis-sequencing and RNA-Seq analyses reveal candidate genes associated with albino phenotype in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:994616. [PMID: 36119587 PMCID: PMC9478516 DOI: 10.3389/fpls.2022.994616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Inheritable albino mutants are excellent models for exploring the mechanism of chloroplast biogenesis and development. However, only a few non-lethal albino mutations have been reported to date in Brassica species. Here, we describe a resynthesized Brassica napus mutant, whose leaf, stem, and silique tissues showed an inheritable albino phenotype under field conditions after the bud stage but green phenotype in the greenhouse during the whole growing season, indicating that the albino phenotype depends on environmental conditions. Compared with the green leaves of the field-grown wild-type (GL) and greenhouse-grown mutant (WGL) plants, white leaves of the field-grown mutant (WL) showed significantly lower chlorophyll contents and structural defects in chloroplasts. Genetic analysis revealed that the albino phenotype of WL is recessive and is controlled by multiple genes. Bulk segregant analysis-sequencing (BSA-Seq) indicated that the candidate regions responsible for the albino phenotype spanned a total physical distance of approximately 49.68 Mb on chromosomes A03, A07, A08, C03, C04, C06, and C07. To gain insights into the molecular mechanisms that control chloroplast development in B. napus, we performed transcriptome (RNA-Seq) analysis of GL, WGL, and WL samples. GO and KEGG enrichment analyses suggested that differentially expressed genes (DEGs) associated with leaf color were significantly enriched in photosynthesis, ribosome biogenesis and chlorophyll metabolism. Further analysis indicated that DEGs involved in chloroplast development and chlorophyll metabolism were likely the main factors responsible for the albino phenotype in B. napus. A total of 59 DEGs were screened in the candidate regions, and four DEGs (BnaC03G0522600NO, BnaC07G0481600NO, BnaC07G0497800NO, and BnaA08G0016300NO) were identified as the most likely candidates responsible for the albino phenotype. Altogether, this study provides clues for elucidating the molecular mechanisms underlying chloroplast development in B. napus.
Collapse
|
11
|
Fine Mapping and Characterization of a Major Gene Responsible for Chlorophyll Biosynthesis in Brassica napus L. Biomolecules 2022; 12:biom12030402. [PMID: 35327594 PMCID: PMC8945836 DOI: 10.3390/biom12030402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
Rapeseed (Brassica napus L.) is mainly used for oil production and industrial purposes. A high photosynthetic efficiency is the premise of a high yield capable of meeting people’s various demands. Chlorophyll-deficient mutants are ideal materials for studying chlorophyll biosynthesis and photosynthesis. In a previous study, we obtained the mutant yl1 for leaf yellowing throughout the growth period by ethyl methanesulfonate mutagenesis of B. napus. A genetic analysis showed that the yl1 chlorophyll-deficient phenotype was controlled by one incompletely dominant gene, which was mapped on chromosome A03 by a quantitative trait loci sequencing analysis and designated as BnA03.Chd in this study. We constructed an F2 population containing 5256 individuals to clone BnA03.Chd. Finally, BnA03.Chd was fine-mapped to a 304.7 kb interval of the B. napus ‘ZS11’ genome containing 58 annotated genes. Functional annotation, transcriptome, and sequence variation analyses confirmed that BnaA03g0054400ZS, a homolog of AT5G13630, was the most likely candidate gene. BnaA03g0054400ZS encodes the H subunit of Mg-chelatase. A sequence analysis revealed a single-nucleotide polymorphism (SNP), causing an amino-acid substitution from glutamic acid to lysine (Glu1349Lys). In addition, the molecular marker BnaYL1 was developed based on the SNP of BnA03.Chd, which perfectly cosegregated with the chlorophyll-deficient phenotype in two different F2 populations. Our results provide insight into the molecular mechanism underlying chlorophyll synthesis in B. napus.
Collapse
|
12
|
Hu D, Jing J, Snowdon RJ, Mason AS, Shen J, Meng J, Zou J. Exploring the gene pool of Brassica napus by genomics-based approaches. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1693-1712. [PMID: 34031989 PMCID: PMC8428838 DOI: 10.1111/pbi.13636] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 05/08/2023]
Abstract
De novo allopolyploidization in Brassica provides a very successful model for reconstructing polyploid genomes using progenitor species and relatives to broaden crop gene pools and understand genome evolution after polyploidy, interspecific hybridization and exotic introgression. B. napus (AACC), the major cultivated rapeseed species and the third largest oilseed crop in the world, is a young Brassica species with a limited genetic base resulting from its short history of domestication, cultivation, and intensive selection during breeding for target economic traits. However, the gene pool of B. napus has been significantly enriched in recent decades that has been benefit from worldwide effects by the successful introduction of abundant subgenomic variation and novel genomic variation via intraspecific, interspecific and intergeneric crosses. An important question in this respect is how to utilize such variation to breed crops adapted to the changing global climate. Here, we review the genetic diversity, genome structure, and population-level differentiation of the B. napus gene pool in relation to known exotic introgressions from various species of the Brassicaceae, especially those elucidated by recent genome-sequencing projects. We also summarize progress in gene cloning, trait-marker associations, gene editing, molecular marker-assisted selection and genome-wide prediction, and describe the challenges and opportunities of these techniques as molecular platforms to exploit novel genomic variation and their value in the rapeseed gene pool. Future progress will accelerate the creation and manipulation of genetic diversity with genomic-based improvement, as well as provide novel insights into the neo-domestication of polyploid crops with novel genetic diversity from reconstructed genomes.
Collapse
Affiliation(s)
- Dandan Hu
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jinjie Jing
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Rod J. Snowdon
- Department of Plant BreedingIFZ Research Centre for Biosystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
| | - Annaliese S. Mason
- Department of Plant BreedingIFZ Research Centre for Biosystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
- Plant Breeding DepartmentINRESThe University of BonnBonnGermany
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jinling Meng
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jun Zou
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
13
|
Hu L, Liu P, Jin Z, Sun J, Weng Y, Chen P, Du S, Wei A, Li Y. A mutation in CsHY2 encoding a phytochromobilin (PΦB) synthase leads to an elongated hypocotyl 1(elh1) phenotype in cucumber (Cucumis sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2639-2652. [PMID: 34091695 DOI: 10.1007/s00122-021-03849-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
The elongated hypocotyl1 (elh1) mutant in cucumber is due to a mutation in CsHY2, which is a homolog of the Arabidopsis HY2 encoding the phytochromobilin (PΦB) synthase for phytochrome biosynthesis Hypocotyl length is a critical determinant in establishing high quality seedlings for successful cucumber production, but knowledge on the molecular regulation of hypocotyl growth in cucumber is very limited. Here, we reported identification and characterization of a cucumber elongated hypocotyl 1 (elh1) mutant. We found that the longer hypocotyl in elh1 was due to longitudinal growth of hypocotyl cells. With fine mapping, the elh1 locus was delimited to a 20.9-kb region containing three annotated genes; only one polymorphism was identified in this region between two parental lines, which was a non-synonymous SNP (G28153633A) in the third exon of CsHY2 (CsGy1G030000) that encodes a phytochromobilin (PΦB) synthase. Uniqueness of the mutant allele at CsHY2 was verified in natural cucumber populations. Ectopic expression of CsHY2 in Arabidopsis hy2-1 long-hypocotyl mutant led to reduced hypocotyl length. The PΦB protein was targeted to the chloroplast. The expression levels of CsHY2 and five phytochrome genes CsPHYA1, CsPHYA2, CsPHYB, CsPHYC and CsPHYE were all significantly down-regulated while several cell elongation related genes were up-regulated in elh1 mutant compared to wild-type cucumber, which are correlated with dynamic hypocotyl elongation in the mutant. RNA-seq analysis in the WT and mutant revealed differentially expressed genes involved in porphyrin and chlorophyll metabolisms, cell elongation and plant hormone signal transduction pathways. This is the first report to characterize and clone the CsHY2 gene in cucumber. This work reveals the important of CsHY2 in regulating hypocotyl length and extends our understanding of the roles of CsHY2 in cucumber.
Collapse
Affiliation(s)
- Liangliang Hu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Peng Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhuoshuai Jin
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jing Sun
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yiqun Weng
- Horticulture Department, USDA-ARS Vegetable Crops Research Unit, University of Wisconsin, Madison, WI, 53706, USA
| | - Peng Chen
- College of Life Science, Northwest A & F University, Yangling, 712100, Shaanxi,, China
| | - Shengli Du
- Tianjin Vegetable Research Center, Tianjin, 300192, China
- National Key Laboratory of Vegetable Germplasm Innovation, Tianjin, 300192, China
| | - Aimin Wei
- Tianjin Vegetable Research Center, Tianjin, 300192, China.
- National Key Laboratory of Vegetable Germplasm Innovation, Tianjin, 300192, China.
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
14
|
Shkliarevskyi MA, Kolupaev YE, Yastreb TO, Karpets YV, Dmitriev AP. The effect of CO donor hemin on the antioxidant and osmoprotective systems state in Arabidopsis of a wild-type and mutants defective in jasmonate signaling under salt stress. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.03.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
15
|
Nie L, Zheng Y, Zhang L, Wu Y, Zhu S, Hou J, Chen G, Tang X, Wang C, Yuan L. Characterization and transcriptomic analysis of a novel yellow-green leaf wucai (Brassica campestris L.) germplasm. BMC Genomics 2021; 22:258. [PMID: 33845769 PMCID: PMC8040211 DOI: 10.1186/s12864-021-07573-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/25/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Leaf color mutants are the ideal materials to explore the pathways of chlorophyll (Chl) metabolism, chloroplast development, and photosynthesis system. In this study, a spontaneous yellow-green leaf wucai (Brassica campestris L.) mutant "WY16-13" was identified, which exhibited yellow-green leaf color during its entire growth period. However, current understanding of the molecular mechanism underlying Chl metabolism and chloroplast development of "WY16-13" is limited. RESULTS Total Chl and carotenoid content in WY16-13 was reduced by 60.92 and 58.82%, respectively, as compared with its wild type parental line W16-13. Electron microscopic investigation revealed fewer chloroplasts per cell and looser stroma lamellae in WY16-13 than in W16-13. A comparative transcriptome profiling was performed using leaves from the yellow-green leaf type (WY16-13) and normal green-leaf type (W16-13). A total of 54.12 million (M) (WY16-13) and 56.17 M (W16-13) reads were generated. A total of 40,578 genes were identified from the mapped libraries. We identified 3882 differentially expressed genes (DEGs) in WY16-13 compared with W16-13 (i.e., 1603 upregulated genes and 2279 downregulated genes). According to the Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, these DEGs are involved in porphyrin and Chl metabolism [i.e., chlorophyllase (CLH), heme oxygenase (HO), chlorophyll (ide) b reductase (NYC), and protochlorophyllide oxidoreductase (POR) genes], carbohydrate metabolism, photosynthesis, and carbon fixation in photosynthetic organisms. Moreover, deficiency in Chl biosynthetic intermediates in WY16-13 revealed that the formation of the yellow-green phenotype was related to the disorder of heme metabolism. CONCLUSIONS Our results provide valuable insights into Chl deficiency in the yellow-green leaf mutant and a bioinformatics resource for further functional identification of key allelic genes responsible for differences in Chl content.
Collapse
Affiliation(s)
- Libing Nie
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
| | - Yushan Zheng
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
| | - Liting Zhang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
| | - Ying Wu
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
| | - Shidong Zhu
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China
| | - Jinfeng Hou
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China
| | - Guohu Chen
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
| | - Xiaoyan Tang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
| | - Chenggang Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China.
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China.
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China.
| | - Lingyun Yuan
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China.
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China.
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China.
| |
Collapse
|
16
|
Mahawar L, Popek R, Shekhawat GS, Alyemeni MN, Ahmad P. Exogenous hemin improves Cd 2+ tolerance and remediation potential in Vigna radiata by intensifying the HO-1 mediated antioxidant defence system. Sci Rep 2021; 11:2811. [PMID: 33531561 PMCID: PMC7854669 DOI: 10.1038/s41598-021-82391-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/11/2021] [Indexed: 12/24/2022] Open
Abstract
The present study evaluated the effects of exogenous hemin on cadmium toxicity in terms of metal accretion and stress resilience in Vigna radiata L. (Wilczek). One-week-old seedlings were treated with CdCl2 (50 μM) alone and in combination with hemin (0.5 mM) in half-strength Hoagland medium for 96 h. The optimum concentrations of Cd and hemin were determined on the basis of haem oxygenase-1 activity. The results demonstrated that under Cd stress, plants accumulated a considerable amount of metal in their tissues, and the accumulation was higher in roots than in leaves, which significantly reduced the plant biomass and chlorophyll content by increasing the oxidative stress (MDA and H2O2 content). However, hemin supplementation under Cd,-stress improved plant growth by enhancing the harvestable biomass and photosynthetic pigments, increasing antioxidant activities (SOD, APX, POD, HO-1 and proline), lowering oxidative damage and increasing Cd tolerance in plants. Furthermore, the application of hemin enhances the removal efficiency of Cd in V. radiata by increasing the uptake of Cd via roots and its translocation from roots to foliar tissues. Thus, the study suggests that hemin has the potential to improve the stress tolerance and phytoremediation ability of heavy metal-tolerant plants so that they can be used instead of hyperaccumulators for remediation of Cd-contaminated environments.
Collapse
Affiliation(s)
- Lovely Mahawar
- Plant Biotechnology and Molecular Biology Laboratory, Department of Botany, Centre for Advanced Studies, Jai Narain Vyas University, Jodhpur, Rajasthan, 342001, India
| | - Robert Popek
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Gyan Singh Shekhawat
- Plant Biotechnology and Molecular Biology Laboratory, Department of Botany, Centre for Advanced Studies, Jai Narain Vyas University, Jodhpur, Rajasthan, 342001, India.
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
17
|
Characterization and Fine Mapping of a Yellow-Virescent Gene Regulating Chlorophyll Biosynthesis and Early Stage Chloroplast Development in Brassica napus. G3-GENES GENOMES GENETICS 2020; 10:3201-3211. [PMID: 32646913 PMCID: PMC7466985 DOI: 10.1534/g3.120.401460] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chlorophyll biosynthesis and chloroplast development are crucial to photosynthesis and plant growth, but their regulatory mechanism remains elusive in many crop species. We isolated a Brassica napus yellow-virescent leaf (yvl) mutant, which exhibited yellow-younger-leaf and virescent-older-leaf with decreased chlorophyll accumulation and delayed chloroplast development. We mapped yvl locus to a 70-kb interval between molecular markers yvl-O10 and InDel-O6 on chromosome A03 in BC2F2 population using whole genome re-sequencing and bulked segregant analysis. The mutant had a ‘C’ to ‘T’ substitution in the coding sequence of BnaA03.CHLH, which encodes putative H subunit of Mg-protoporphyrin IX chelatase (CHLH). The mutation resulted in an imperfect protein structure and reduced activity of CHLH. It also hampered the plastid encoded RNA polymerase which transcribes regulatory genes of photosystem II and I. Consequently, the chlorophyll a/b and carotenoid contents were reduced and the chloroplast ultrastructure was degraded in yvl mutant. These results explain that a single nucleotide mutation in BnaA03.CHLH impairs PEP activity to disrupt chloroplast development and chlorophyll biosynthesis in B. napus.
Collapse
|
18
|
Zhao X, Hu K, Yan M, Yi B, Wen J, Ma C, Shen J, Fu T, Tu J. Disruption of carotene biosynthesis leads to abnormal plastids and variegated leaves in Brassica napus. Mol Genet Genomics 2020; 295:981-999. [PMID: 32306107 PMCID: PMC7297816 DOI: 10.1007/s00438-020-01674-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/02/2020] [Indexed: 12/12/2022]
Abstract
Leaf color is an important characteristic of normal chloroplast development. Variegated plants have green- and white-sectored leaves, which can be used to identify important pathways and molecular mechanisms of chloroplast development. We studied two Brassica napus variegation mutants from same one variegated ancestor, designated ZY-4 and ZY-8, which have different degrees of variegation. When grown in identical conditions, the ratio of white sectors in ZY-4 leaves is higher than in ZY-8. In both mutants, the cells in green sectors contain normal chloroplasts; while, the cells in white sectors contain abnormal plastids. Seedling chloroplasts ultrastructure of both mutants showed that the biogenesis of chloroplasts was blocked in early stages; delayed development and structual damage in ZY-4 were more serious than in ZY-8. Employing bulked segregant analysis(BSA), two bulks (BY142 and BY137) from BC2F1 lines derived from ZY-4 and ZS11, and one bulk (BY56) from BC2F1 lines derived from ZY-8 and ZS11, and screening by Brassica 60K SNP BeadChip Array, showed the candidate regions localized in chromosome A08 (BY142), C04 (BY137), and A08 (BY56), respectively. Transcriptome analysis of five seedling development stages of ZY-4, ZY-8, and ZS11 showed that photosynthesis, energy metabolism-related pathways and translation-related pathways were important for chloroplast biogenesis. The number of down- or up-regulated genes related to immune system process in ZY-4 was more than in ZY-8. The retrograde signaling pathway was mis-regulated in both mutants. DEG analysis indicated that both mutants showed photooxidative damages. By coupling transcriptome and BSA CHIP analyses, some candidate genes were identified. The gene expression pattern of carotene biosynthesis pathway was disrupted in both mutants. However, histochemical analysis of ROS revealed that there was no excessive accumulation of ROS in ZY-4 and ZY-8. Taken together, our data indicate that the disruption of carotene biosynthetic pathways leads to the variegation phenotypes of ZY-4 and ZY-8 and there are some functions that can compensate for the disruption of carotene biosynthesis in ZY-4 and ZY-8 to reduce ROS and prevent seedling mortality.
Collapse
Affiliation(s)
- Xiaobin Zhao
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Kaining Hu
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Mengjiao Yan
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, People's Republic of China.
| |
Collapse
|
19
|
Lin Z, Xiong Y, Xue Y, Mao M, Xiang Y, He Y, Rafique F, Hu H, Liu J, Li X, Sun L, Huang Z, Ma J. Screening and characterization of long noncoding RNAs involved in the albinism of Ananas comosus var. bracteatus leaves. PLoS One 2019; 14:e0225602. [PMID: 31756232 PMCID: PMC6874346 DOI: 10.1371/journal.pone.0225602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/08/2019] [Indexed: 12/19/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been reported to play key regulatory roles in plant growth, development, and biotic and abiotic stress physiology. Revealing the mechanism of lncRNA regulation in the albino portions of leaves is important for understanding the development of chimeric leaves in Ananas comosus var. bracteatus. In this study, a total of 3,543 candidate lncRNAs were identified, among which 1,451 were differentially expressed between completely green (CGr) and completely white (CWh) leaves. LncRNAs tend to have shorter transcripts, lower expression levels, and greater expression specificity than protein-coding genes. Predicted lncRNA targets were functionally annotated by the Gene Ontology (GO), Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. A lncRNA-mRNA interaction network was constructed, and 36 target mRNAs related to chlorophyll metabolism were predicted to interact with 86 lncRNAs. Among these, 25 significantly differentially expressed lncRNAs putatively interacted with 16 target mRNAs. Based on an expression pattern analysis of the lncRNAs and their target mRNAs, the lncRNAs targeting magnesium chelatase subunit H (ChlH), protochlorophyllide oxidoreductase (POR), and heme o synthase (COX10) were suggested as key regulators of chlorophyll metabolism. This study provides the first lncRNA database for A. comosus var. bracteatus and contributes greatly to understanding the mechanism of epigenetic regulation of leaf albinism.
Collapse
Affiliation(s)
- Zhen Lin
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yingyuan Xiong
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yanbin Xue
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Meiqin Mao
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yixuan Xiang
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yehua He
- Horticultural Biotechnology College of South China Agricultural University, Guangzhou, Guangdong, China
| | - Fatima Rafique
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hao Hu
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiawen Liu
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xi Li
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lingxia Sun
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhuo Huang
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jun Ma
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
- * E-mail:
| |
Collapse
|
20
|
Comparative transcriptome and metabolite profiling of four tissues from Alisma orientale (Sam.) Juzep reveals its inflorescence developmental and medicinal characteristics. Sci Rep 2019; 9:12310. [PMID: 31444376 PMCID: PMC6707231 DOI: 10.1038/s41598-019-48806-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 08/13/2019] [Indexed: 12/11/2022] Open
Abstract
Alisma orientale (Sam.) Juzep (A. orientale) is an important medicinal plant in traditional Chinese medicine. In this study, de novo RNA-seq of A. orientale was performed based on the cDNA libraries from four different tissues, roots, leaves, scapes and inflorescences. A total of 41,685 unigenes were assembled, 25,024 unigene functional annotations were obtained by searching against the five public sequence databases, and 3,411 simple sequence repeats in A. orientale were reported for the first time. 15,402 differentially expressed genes were analysed. The morphological characteristics showed that compared to the other tissues, the leaves had more chlorophyll, the scapes had more vascular bundles, and the inflorescences contained more starch granules and protein. In addition, the metabolic profiles of eight kinds of alisols metabolite profiling, which were measured by ultra-Performance liquid chromatography-triple quadrupole-mass spectrometry showed that alisol B 23-acetate and alisol B were the major components of the four tissues at amounts of 0.068~0.350 mg/g and 0.046~0.587 mg/g, respectively. In addition, qRT-PCR validated that farnesyl pyrophosphate synthase and 3-hydroxy-3-methylglutaryl-CoA reductase should be considered the critical candidate genes involved in alisol biosynthesis. These transcriptome and metabolic profiles of A. orientale may help clarify the molecular mechanisms underlying the medicinal characteristics of A. orientale.
Collapse
|
21
|
Li X, Huang S, Liu Z, Hou L, Feng H. Mutation in EMB1923 gene promoter is associated with chlorophyll deficiency in Chinese cabbage (Brassica campestris ssp. pekinensis). PHYSIOLOGIA PLANTARUM 2019; 166:909-920. [PMID: 31058333 DOI: 10.1111/ppl.12979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/07/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
Leaf color mutants are widespread in higher plants and can be used as markers in crop breeding or as important material in understanding the regulatory mechanisms of chlorophyll biosynthesis and chloroplast development. A stably inherited plant etiolated mutation (pem) was obtained from its wild-type 'FT' (a doubled haploid line of the Chinese cabbage variety 'Fukuda 50') by combining 60 Co-γ radiation and isolated microspore culture in Chinese cabbage. Compared to the wild-type 'FT', the chlorophyll content in the pem mutant was decreased, the photosynthetic capacity was reduced and the chloroplast development was retarded. These physiological changes may lead to a reduction in growth and yield in the pem mutant line. Genetic analysis showed that the mutant phenotype was controlled by the single recessive nuclear pem gene. The pem gene was mapped to a 25.88 kb region on the A03 chromosome. Cloning and sequencing results showed that there was only one DNA sequence variation in this region, which was a 30 bp deletion on the promoter of Bra024218. Its homologous gene encodes EMBRYO DEFECTIVE 1923 (EMB1923) in Arabidopsis thaliana. We therefore predicted that Bra024218 was the mutated gene associated with etiolated leaves in Chinese cabbage. The pem mutant is a useful line for researching chloroplast development and the mechanism of leaf color mutation in Chinese cabbage.
Collapse
Affiliation(s)
- Xiang Li
- Department of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Shengnan Huang
- Department of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zhiyong Liu
- Department of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Li Hou
- Department of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Hui Feng
- Department of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
22
|
Mahawar L, Shekhawat GS. EsHO 1 mediated mitigation of NaCl induced oxidative stress and correlation between ROS, antioxidants and HO 1 in seedlings of Eruca sativa: underutilized oil yielding crop of arid region. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:895-904. [PMID: 31402816 PMCID: PMC6656849 DOI: 10.1007/s12298-019-00663-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/12/2019] [Accepted: 03/29/2019] [Indexed: 05/29/2023]
Abstract
Study have focused on NaCl induced HO 1 production and its co-relation to ROS and antioxidant regulation in Eruca sativa. Seedlings were subjected to NaCl stress ranges from 10 to 150 mM. After 96 h of treatment, plants samples were harvested to evaluate the cellular equilibrium and salt tolerance mechanisms through morphological, stress parameters, non enzymatic and antioxidant enzymes. The HO 1 activity was found to be highest at 75 mM NaCl in leaves and roots which were 2.49 and 2.02 folds respectively. The expression of EsHO 1 was also observed and the higher expression was recorded in roots than leaves. The overall activity of other antioxidants (APX and proline) was also found to be higher at 75 mM concentration. The highest HO 1 activity with other antioxidants indicates the decline in LPX and ROS at 75 mM NaCl. The present study concluded that HO 1 helps in amelioration of NaCl stress by working within a group of antioxidants that create the defense machinery in seedlings of E. sativa by manipulating various physiological processes of plants. These findings for the first time suggest the protective role of HO 1 in scavenging ROS in E. sativa under salinity stress.
Collapse
Affiliation(s)
- Lovely Mahawar
- Department of Botany, Centre for Advanced Studies, Jai Narain Vyas University, Jodhpur, Rajasthan 342001 India
| | - Gyan Singh Shekhawat
- Department of Botany, Centre for Advanced Studies, Jai Narain Vyas University, Jodhpur, Rajasthan 342001 India
| |
Collapse
|
23
|
Chlorophyll degradation and carotenoid biosynthetic pathways: Gene expression and pigment content in broccoli during yellowing. Food Chem 2019; 297:124964. [PMID: 31253313 DOI: 10.1016/j.foodchem.2019.124964] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/29/2019] [Accepted: 06/07/2019] [Indexed: 11/23/2022]
Abstract
Broccoli undergoes yellowing in unfavorable conditions, thereby diminishing the sensory quality and commodity value. This study aimed to investigate systematically cellular and/or biomolecular changes involved in broccoli yellowing by analyzing changes in microstructural integrity, pigment content, and gene expression. On day-5 of storage at 20 °C, the buds turned yellow without blooming and showed structural damage; ultrastructural analysis revealed plastid transformation and abnormal chloroplast development. Genes regulating pigment content and chloroplast structure directly were identified. More specifically, BoCAO and BoNYC1 regulated chlorophyll turnover, affecting chlorophyll a and b contents. Changes in the β-cryptoxanthin content were influenced by the combined action of up- (BoHYD) and downstream (BoZEP) genes. BoZEP and BoVDE were activated after cold-temperature induction. High BoHO1 expression delayed yellowing at low temperature, inducing BoZEP expression. Color intensity correlated significantly with the chlorophyll b, β-cryptoxanthin, and β-carotene contents, which were associated with increased yellowing of plant tissues.
Collapse
|
24
|
Luo F, Cai JH, Kong XM, Zhou Q, Zhou X, Zhao YB, Ji SJ. Transcriptome profiling reveals the roles of pigment mechanisms in postharvest broccoli yellowing. HORTICULTURE RESEARCH 2019; 6:74. [PMID: 31231532 PMCID: PMC6544632 DOI: 10.1038/s41438-019-0155-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/06/2019] [Accepted: 04/12/2019] [Indexed: 05/08/2023]
Abstract
Postharvest broccoli is prone to yellowing during storage, which is the key factor leading to a reduction in value. To explore appropriate control methods, it is important to understand the mechanisms of yellowing. We analyzed the genes related to the metabolism of chlorophyll, carotenoids, and flavonoids and the transcription factors (TFs) involved in broccoli yellowing using transcriptome sequencing profiling. Broccoli stored at 10 °C showed slight yellowing on postharvest day 5 and serious symptoms on day 12. There were significant changes in chlorophyll fluorescence kinetics, mainly manifesting as a decrease in the Fv/Fm value and an increase in nonphotochemical quenching, during the yellowing process. Transcriptome sequencing profiles from samples of fresh broccoli and broccoli with slight and severe yellowing revealed 6, 5, and 4 differentially expressed genes involved in chlorophyll metabolism, carotenoid biosynthesis, and flavonoid biosynthesis, respectively. The transcription factor gene ontology categories showed that the MYB, bHLH, and bZip gene families were involved in chlorophyll metabolism. In addition, the transcription factor families included NACs and ethylene response factors (ERFs) that regulated carotenoid biosynthesis. Reverse transcription polymerase chain reaction further confirmed that bHLH66, PIF4, LOB13, NAC92, and APL were vital transcription factors that potentially regulated the CAO and HYD genes and were involved in chlorophyll metabolism and the carotenoid biosynthetic process. The flavonoid biosynthetic pathway was mainly regulated by MYBs, NACs, WRKYs, MADSs, and bZips. The results of the differentially expressed gene (DEG) and pigment content analyses indicated that the transcriptome data were accurately and positively associated with broccoli yellowing.
Collapse
Affiliation(s)
- Feng Luo
- Department of Food Science, Shenyang Agricultural University, 110866 Shenyang, PR China
| | - Jia-Hui Cai
- Department of Food Science, Shenyang Agricultural University, 110866 Shenyang, PR China
| | - Xi-Man Kong
- Department of Food Science, Shenyang Agricultural University, 110866 Shenyang, PR China
| | - Qian Zhou
- Department of Food Science, Shenyang Agricultural University, 110866 Shenyang, PR China
| | - Xin Zhou
- Department of Food Science, Shenyang Agricultural University, 110866 Shenyang, PR China
| | - Ying-Bo Zhao
- Department of Food Science, Shenyang Agricultural University, 110866 Shenyang, PR China
| | - Shu-Juan Ji
- Department of Food Science, Shenyang Agricultural University, 110866 Shenyang, PR China
| |
Collapse
|
25
|
Chlorophyll-Mediated Changes in the Redox Status of Pancreatic Cancer Cells Are Associated with Its Anticancer Effects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4069167. [PMID: 30057678 PMCID: PMC6051000 DOI: 10.1155/2018/4069167] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/24/2018] [Accepted: 04/19/2018] [Indexed: 02/07/2023]
Abstract
Nutritional factors which exhibit antioxidant properties, such as those contained in green plants, may be protective against cancer. Chlorophyll and other tetrapyrrolic compounds which are structurally related to heme and bilirubin (a bile pigment with antioxidant activity) are among those molecules which are purportedly responsible for these effects. Therefore, the aim of our study was to assess both the antiproliferative and antioxidative effects of chlorophylls (chlorophyll a/b, chlorophyllin, and pheophytin a) in experimental pancreatic cancer. Chlorophylls have been shown to produce antiproliferative effects in pancreatic cancer cell lines (PaTu-8902, MiaPaCa-2, and BxPC-3) in a dose-dependent manner (10–125 μmol/L). Chlorophylls also have been observed to inhibit heme oxygenase (HMOX) mRNA expression and HMOX enzymatic activity, substantially affecting the redox environment of pancreatic cancer cells, including the production of mitochondrial/whole-cell reactive oxygen species, and alter the ratio of reduced-to-oxidized glutathione. Importantly, chlorophyll-mediated suppression of pancreatic cancer cell viability has been replicated in in vivo experiments, where the administration of chlorophyll a resulted in the significant reduction of pancreatic tumor size in xenotransplanted nude mice. In conclusion, this data suggests that chlorophyll-mediated changes on the redox status of pancreatic cancer cells might be responsible for their antiproliferative and anticancer effects and thus contribute to the decreased incidence of cancer among individuals who consume green vegetables.
Collapse
|
26
|
Mahawar L, Shekhawat GS. Haem oxygenase: A functionally diverse enzyme of photosynthetic organisms and its role in phytochrome chromophore biosynthesis, cellular signalling and defence mechanisms. PLANT, CELL & ENVIRONMENT 2018; 41:483-500. [PMID: 29220548 DOI: 10.1111/pce.13116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/26/2017] [Accepted: 11/23/2017] [Indexed: 05/08/2023]
Abstract
Haem oxygenase (HO) is a universal enzyme that catalyses stereospecific cleavage of haem to BV IX α and liberates Fe+2 ion and CO as by-product. Beside haem degradation, it has important functions in plants that include cellular defence, stomatal regulation, iron mobilization, phytochrome chromophore synthesis, and lateral root formation. Phytochromes are an extended family of photoreceptors with a molecular mass of 250 kDa and occur as a dimer made up of 2 equivalent subunits of 125 kDa each. Each subunit is made of two components: the chromophore, a light-capturing pigment molecule and the apoprotein. Biosynthesis of phytochrome (phy) chromophore includes the oxidative splitting of haem to biliverdin IX by an enzyme HO, which is the decisive step in the biosynthesis. In photosynthetic organisms, BVα is reduced to 3Z PΦB by a ferredoxin-dependent PΦB synthase that finally isomerised to PΦB. The synthesized PΦB assembles with the phytochrome apoprotein in the cytoplasm to generate holophytochrome. Thus, necessary for photomorphogenesis in plants, which has confirmed from the genetic studies, conducted on Arabidopsis thaliana and pea. Besides the phytochrome chromophore synthesis, the review also emphasises on the current advances conducted in plant HO implying its developmental and defensive role.
Collapse
Affiliation(s)
- Lovely Mahawar
- Department of Botany, Jai Narain Vyas University, Jodhpur, 342001, India
| | | |
Collapse
|
27
|
Mahawar L, Kumar R, Shekhawat GS. Evaluation of heme oxygenase 1 (HO 1) in Cd and Ni induced cytotoxicity and crosstalk with ROS quenching enzymes in two to four leaf stage seedlings of Vigna radiata. PROTOPLASMA 2018; 255:527-545. [PMID: 28924722 DOI: 10.1007/s00709-017-1166-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 09/04/2017] [Indexed: 05/08/2023]
Abstract
Research on heme oxygenase in plants has received consideration in recent years due to its several roles in development, defense, and metabolism during various environmental stresses. In the current investigation, the role of heme oxygenase (HO) 1 was evaluated in reducing heavy metal (Cd and Ni) uptake and alleviating Cd and Ni toxicity effects in the hydroponically grown seedlings of Vigna radiata var. PDM 54. Seedlings were subjected to Cd- and Ni-induced oxidative stress independently at different concentrations ranging from 10 to 100 μM. After 96 h (fourth day) of treatment, the stressed plants were harvested to study the cellular homeostasis and detoxification mechanism by examining the growth, stress parameters (LPX, H2O2 content), and non-enzymatic and enzymatic parameters (ascorbate peroxidase (APX), guaicol peroxidase (GPX), and catalase (CAT)) including HO 1. At 50 μM CdCl2 and 60 μM NiSO4, HO 1 activity was found to be highest in leaves which were 1.39 and 1.16-fold, respectively. The greatest HO 1 activity was reflected from the reduction of H2O2 content at these metal concentrations (50 μM CdCl2 and 60 μM NiSO4) which is correlated with the increasing activity of other antioxidant enzymes (CAT, APX). Thus, HO 1 works within a group that generates the defense machinery for the plant's survival by scavenging ROS which is confirmed by a time-dependent study. Hence, it is concluded that seedlings of V. radiata were more tolerant towards metal-induced oxidative stress in which HO 1 is localized in its residential area (plastids).
Collapse
Affiliation(s)
- Lovely Mahawar
- Department of Botany, Jai Narain Vyas University, Jodhpur, Rajasthan, 342001, India
| | - Rajesh Kumar
- Water Quality Management Group Defense Laboratory, Jodhpur, 342001, India
| | - Gyan Singh Shekhawat
- Department of Botany, Jai Narain Vyas University, Jodhpur, Rajasthan, 342001, India.
| |
Collapse
|