1
|
Chen H, Li X, Cheng Q, Shang N, Tong Z, Chu Q, Ye C, Shen X, Zhu QH, Xiao B, Fan L. Single-cell landscape of long and short glandular trichomes in Nicotiana tabacum leaves. iScience 2024; 27:110650. [PMID: 39252954 PMCID: PMC11382123 DOI: 10.1016/j.isci.2024.110650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/06/2024] [Accepted: 07/31/2024] [Indexed: 09/11/2024] Open
Abstract
Glandular trichomes (GTs) play a crucial role in plant defenses and the synthesis of secondary metabolites. Understanding the developmental trajectory of GTs is essential for unraveling their functional significance and potential applications. Here we established a comprehensive single-cell atlas of Nicotiana tabacum leaves, a model plant for GT studies. The atlas included a total of 40,433 cells and successfully captured both long GTs (LGTs) and short GTs (SGTs) from Nicotiana leaves. The developmental trajectories of these trichomes were delineated, revealing potential disparities in epidermal development. Comparative analysis of Arabidopsis and Nicotiana trichome development indicated limited similarity between Arabidopsis epidermal non-glandular trichomes and Nicotiana LGTs and SGTs, implying the essentiality of studying the genes directly involved in the development of Nicotiana GTs for a proper and comprehensive understanding of GT biology. Overall, our results provide profound insights into the developmental intricacies of the specialized GTs.
Collapse
Affiliation(s)
- Hongyu Chen
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
- Beijing Life Science Academy, Changping, Beijing 102209, China
| | - Xiaohan Li
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Qing Cheng
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Nianmin Shang
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Zhijun Tong
- Yunnan Tobacco Agricultural Academy, Kunming 650106, China
| | - Qinjie Chu
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Chuyu Ye
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Xiner Shen
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Bingguang Xiao
- Yunnan Tobacco Agricultural Academy, Kunming 650106, China
| | - Longjiang Fan
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
- Beijing Life Science Academy, Changping, Beijing 102209, China
| |
Collapse
|
2
|
Zhang S, Chen H, Guo S, Wang C, Jiang K, Cui J, Wang B. Artemisia annua ZFP8L regulates glandular trichome development. PHYSIOLOGIA PLANTARUM 2024; 176:e14461. [PMID: 39105262 DOI: 10.1111/ppl.14461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024]
Abstract
Trichomes are known to be important biofactories that contribute to the production of secondary metabolites, such as terpenoids. C2H2-zinc finger proteins (C2H2-ZFPs) are vital transcription factors of plants' trichome development. However, little is known about the function of Artemisia annua C2H2-ZFPs in trichome development. To explore the roles of this gene family in trichome development, two C2H2-ZFP transcription factors, named AaZFP8L and AaGIS3, were identified; both are hormonally regulated in A. annua. Overexpression of AaZFP8L in tobacco led to a significant increase in the density and length of glandular trichomes, and improved terpenoid content. In contrast, AaGIS3 was found to positively regulate non-glandular trichome initiation and elongation, which reduces terpenoid accumulation. In addition, ABA contents significantly increased in AaZFP8L-overexpressing tobacco lines and AaZFP8L also can directly bind the promoter of the ABA biosynthesis genes. This study lays the foundation for further investigating A. annua C2H2-ZFPs in trichome development and terpenoid accumulation.
Collapse
Affiliation(s)
- Shiyang Zhang
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Haixia Chen
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Sheng Guo
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Chen Wang
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Kerui Jiang
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Jiangyuan Cui
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Bo Wang
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Chen M, Li Z, He X, Zhang Z, Wang D, Cui L, Xie M, Zhao Z, Sun Q, Wang D, Dai J, Gong D. Comparative transcriptome analysis reveals genes involved in trichome development and metabolism in tobacco. BMC PLANT BIOLOGY 2024; 24:541. [PMID: 38872084 DOI: 10.1186/s12870-024-05265-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND The glandular trichomes of tobacco (Nicotiana tabacum) can efficiently produce secondary metabolites. They act as natural bioreactors, and their natural products function to protect plants against insect-pests and pathogens and are also components of industrial chemicals. To clarify the molecular mechanisms of tobacco glandular trichome development and secondary metabolic regulation, glandular trichomes and glandless trichomes, as well as other different developmental tissues, were used for RNA sequencing and analysis. RESULTS By comparing glandless and glandular trichomes with other tissues, we obtained differentially expressed genes. They were obviously enriched in KEGG pathways, such as cutin, suberine, and wax biosynthesis, flavonoid and isoflavonoid biosynthesis, terpenoid biosynthesis, and plant-pathogen interaction. In particular, the expression levels of genes related to the terpenoid, flavonoid, and wax biosynthesis pathway mainly showed down-regulation in glandless trichomes, implying that they lack the capability to synthesize certain exudate compounds. Among the differentially expressed genes, 234 transcription factors were found, including AP2-ERFs, MYBs, bHLHs, WRKYs, Homeoboxes (HD-ZIP), and C2H2-ZFs. These transcription factor and genes that highly expressed in trichomes or specially expressed in GT or GLT. Following the overexpression of R2R3-MYB transcription factor Nitab4.5_0011760g0030.1 in tobacco, an increase in the number of branched glandular trichomes was observed. CONCLUSIONS Our data provide comprehensive gene expression information at the transcriptional level and an understanding of the regulatory pathways involved in glandular trichome development and secondary metabolism.
Collapse
Affiliation(s)
- Mingli Chen
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zhiyuan Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xinxi He
- China Tobacco Hunan Industry Co., Ltd, Changsha, China
| | - Zhe Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of the Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dong Wang
- China Tobacco Hunan Industry Co., Ltd, Changsha, China
| | - Luying Cui
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Minmin Xie
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zeyu Zhao
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Quan Sun
- College of Bioinformation, Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Dahai Wang
- Shandong Weifang Tobacco Co., Ltd, Weifang, China
| | - Jiameng Dai
- Yunnan Key Laboratory of Tobacco Chemistry, China , Tobacco Yunnan Industrial Co., Ltd, Kunming, China.
| | - Daping Gong
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China.
| |
Collapse
|
4
|
Huang X, Chen W, Zhao Y, Chen J, Ouyang Y, Li M, Gu Y, Wu Q, Cai S, Guo F, Zhu P, Ao D, You S, Vasseur L, Liu Y. Deep learning-based quantification and transcriptomic profiling reveal a methyl jasmonate-mediated glandular trichome formation pathway in Cannabis sativa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1155-1173. [PMID: 38332528 DOI: 10.1111/tpj.16663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Cannabis glandular trichomes (GTs) are economically and biotechnologically important structures that have a remarkable morphology and capacity to produce, store, and secrete diverse classes of secondary metabolites. However, our understanding of the developmental changes and the underlying molecular processes involved in cannabis GT development is limited. In this study, we developed Cannabis Glandular Trichome Detection Model (CGTDM), a deep learning-based model capable of differentiating and quantifying three types of cannabis GTs with a high degree of efficiency and accuracy. By profiling at eight different time points, we captured dynamic changes in gene expression, phenotypes, and metabolic processes associated with GT development. By integrating weighted gene co-expression network analysis with CGTDM measurements, we established correlations between phenotypic variations in GT traits and the global transcriptome profiles across the developmental gradient. Notably, we identified a module containing methyl jasmonate (MeJA)-responsive genes that significantly correlated with stalked GT density and cannabinoid content during development, suggesting the existence of a MeJA-mediated GT formation pathway. Our findings were further supported by the successful promotion of GT development in cannabis through exogenous MeJA treatment. Importantly, we have identified CsMYC4 as a key transcription factor that positively regulates GT formation via MeJA signaling in cannabis. These findings provide novel tools for GT detection and counting, as well as valuable information for understanding the molecular regulatory mechanism of GT formation, which has the potential to facilitate the molecular breeding, targeted engineering, informed harvest timing, and manipulation of cannabinoid production.
Collapse
Affiliation(s)
- Xiaoqin Huang
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei Chen
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuqing Zhao
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingjing Chen
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuzeng Ouyang
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Minxuan Li
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yu Gu
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qinqin Wu
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Sen Cai
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Foqin Guo
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Panpan Zhu
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Deyong Ao
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shijun You
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liette Vasseur
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Yuanyuan Liu
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
5
|
Shen Y, Mao L, Zhou Y, Sun Y, Lv J, Deng M, Liu Z, Yang B. Transcriptome Analysis Reveals Key Genes Involved in Trichome Formation in Pepper (Capsicum annuum L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:1090. [PMID: 38674502 PMCID: PMC11054266 DOI: 10.3390/plants13081090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
Trichomes are specialized organs located in the plant epidermis that play important defense roles against biotic and abiotic stresses. However, the mechanisms regulating the development of pepper epidermal trichomes and the related regulatory genes at the molecular level are not clear. Therefore, we performed transcriptome analyses of A114 (less trichome) and A115 (more trichome) to dig deeper into the genes involved in the regulatory mechanisms of epidermal trichome development in peppers. In this study, the epidermal trichome density of A115 was found to be higher by phenotypic observation and was highest in the leaves at the flowering stage. A total of 39,261 genes were quantified by RNA-Seq, including 11,939 genes not annotated in the previous genome analysis and 18,833 differentially expressed genes. Based on KEGG functional enrichment, it was found that DEGs were mainly concentrated in three pathways: plant-pathogen interaction, MAPK signaling pathway-plant, and plant hormone signal transduction. We further screened the DEGs associated with the development of epidermal trichomes in peppers, and the expression of the plant signaling genes GID1B-like (Capana03g003488) and PR-6 (Capana09g001847), the transcription factors MYB108 (Capana05g002225) and ABR1-like (Capana04g001261), and the plant resistance genes PGIP-like (Capana09g002077) and At5g49770 (Capana08g001721) in the DEGs were higher at A115 compared to A114, and were highly expressed in leaves at the flowering stage. In addition, based on the WGCNA results and the establishment of co-expression networks showed that the above genes were highly positively correlated with each other. The transcriptomic data and analysis of this study provide a basis for the study of the regulatory mechanisms of pepper epidermal trichomes.
Collapse
Affiliation(s)
- Yiyu Shen
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.M.); (Y.Z.); (Y.S.)
| | - Lianzhen Mao
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.M.); (Y.Z.); (Y.S.)
| | - Yao Zhou
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.M.); (Y.Z.); (Y.S.)
| | - Ying Sun
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.M.); (Y.Z.); (Y.S.)
| | - Junheng Lv
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (M.D.)
| | - Minghua Deng
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (M.D.)
| | - Zhoubin Liu
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.M.); (Y.Z.); (Y.S.)
| | - Bozhi Yang
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.M.); (Y.Z.); (Y.S.)
| |
Collapse
|
6
|
Liu Y, Ma X, Li Y, Yang X, Cheng W. Zinc Finger Protein8 ( GhZFP8) Regulates the Initiation of Trichomes in Arabidopsis and the Development of Fiber in Cotton. PLANTS (BASEL, SWITZERLAND) 2024; 13:492. [PMID: 38498441 PMCID: PMC10892670 DOI: 10.3390/plants13040492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 03/20/2024]
Abstract
Cotton is one of the most important natural fibers used in the textile industry worldwide. It is important to identify the key factors involved in cotton fiber development. In this study, zinc finger protein8 (GhZFP8) encoding a C2H2 transcription factor (TF) was cloned from cotton. qPCR showed that the transcripts of GhZFP8 in cotton were detected in the leaves and fibers at 3, 6, and 30 days post-anthesis (DPA), but not in the roots, stems, or flowers. The overexpression of GhZFP8 increased the trichome number on the siliques, leaves, and inflorescence, but inhibited the growth. The expression of trichome development and cell-elongation-related genes decreased obviously in GhZFP8 overexpressor Arabidopsis. Indole-3-acetic acid (IAA) and 1-Aminocyclopropanecarboxylic acid (ACC) contents were much higher in GhZFP8 overexpressors than that found in the wild type, but the gibberellin (GA) content was lower. The interference of GhZFP8 in cotton caused smaller bolls and shorter fibers than that of the control. The results of DNA affinity purification (DAP)-seq showed that GhZFP8 could bind to the promoter, exon, intron, and intergenic region of the target genes, which are involved in photosynthesis, signal transduction, synthesis of biomass, etc. Our findings implied that GhZFP8 processed multiple biological functions and regulated the development of cotton fiber.
Collapse
Affiliation(s)
- Yongchang Liu
- College of Bioengineering, Jingchu University of Technology, Jingmen 448000, China; (Y.L.); (X.Y.)
| | - Xiaomei Ma
- Cotton Research Institute, Xinjiang Science Academy of Agriculture and Reclaimation, Shihezi 832000, China;
| | - Ying Li
- College of Bioengineering, Jingchu University of Technology, Jingmen 448000, China; (Y.L.); (X.Y.)
| | - Xiaoyu Yang
- College of Bioengineering, Jingchu University of Technology, Jingmen 448000, China; (Y.L.); (X.Y.)
| | - Wenhan Cheng
- College of Bioengineering, Jingchu University of Technology, Jingmen 448000, China; (Y.L.); (X.Y.)
| |
Collapse
|
7
|
Zhang Y, Wang D, Li H, Bai H, Sun M, Shi L. Formation mechanism of glandular trichomes involved in the synthesis and storage of terpenoids in lavender. BMC PLANT BIOLOGY 2023; 23:307. [PMID: 37291504 DOI: 10.1186/s12870-023-04275-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND Lavender (genus Lavandula, family Lamiaceae) is an aromatic plant widely grown as an ornamental plant. The chemical composition of lavender is characterized by monoterpenoids, sesquiterpenoids, and other compounds, which are primarily synthesized and stored in epidermal secretory structures called glandular trichomes (GTs). Volatile organic compounds (VOCs) are responsible for the aroma characteristics of plant oil that drive consumer preference. Aroma is usually regarded as a characteristic trait for the classification of aromatic plants. Interestingly, VOCs are synthesized and stored in GTs. Lamiaceae species such as purple perilla, peppermint, basil, thyme, and oregano usually possess two types of GTs: peltate glandular trichomes (PGTs) and capitate glandular trichomes (CGTs). But the development process of PGTs in lavender has been reported in only a few studies to date. RESULTS In this study, we identified and quantified the VOCs in four lavender cultivars by headspace-solid phase micro extraction-gas chromatography mass spectrometry (HS-SPME-GC-MS). A total of 66 VOCs were identified in these four cultivars, the most prominent of which were linalyl acetate and linalool, and flowers were the main site of accumulation of these VOCs. Here, we examined the developmental process of PGTs, including the formation of their base, body, and apex. The apex cells contained secretory cavities, which produced VOCs. Based on the reference genome sequence of the lavender cultivar 'Jingxun 2', several R2R3-MYB subfamily genes related to GT formation were identified. These results will guide the engineering of GTs and molecular breeding of lavender for improving the VOC content. CONCLUSIONS In this study, we identified the VOCs in four lavender cultivars. We analyzed the formation of GTs, and compared the number and diameter size of PGTs among four lavender cultivars. Additionally, we identified four candidate genes belonging to the R2R3-MYB family.
Collapse
Affiliation(s)
- Yanan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Di Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Hui Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Hongtong Bai
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Meiyu Sun
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| | - Lei Shi
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| |
Collapse
|
8
|
Gan Y, Liu Y, Yang S, Khan AR. TOE1/TOE2 Interacting with GIS to Control Trichome Development in Arabidopsis. Int J Mol Sci 2023; 24:ijms24076698. [PMID: 37047669 PMCID: PMC10095060 DOI: 10.3390/ijms24076698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023] Open
Abstract
Trichomes are common appendages originating and projecting from the epidermal cell layer of most terrestrial plants. They act as a first line of defense and protect plants against different types of adverse environmental factors. GL3/EGL3-GL1-TTG1 transcriptional activator complex and GIS family genes regulate trichome initiation through gibberellin (GA) signaling in Arabidopsis. Here, our novel findings show that TOE1/TOE2, which are involved in developmental timing, control the initiation of the main-stem inflorescence trichome in Arabidopsis. Phenotype analysis showed that the 35S:TOE1 transgenic line increases trichome density of the main-stem inflorescence in Arabidopsis, while 35S:miR172b, toe1, toe2 and toe1toe2 have the opposite phenotypes. Quantitative RT-PCR results showed that TOE1/TOE2 positively regulate the expression of GL3 and GL1. In addition, protein-protein interaction analysis experiments further demonstrated that TOE1/TOE2 interacting with GIS/GIS2/ZFP8 regulate trichome initiation in Arabidopsis. Furthermore, phenotype and expression analysis also demonstrated that TOE1 is involved in GA signaling to control trichome initiation in Arabidopsis. Taken together, our results suggest that TOE1/TOE2 interact with GIS to control trichome development in Arabidopsis. This report could provide valuable information for further study of the interaction of TOE1/TOE2 with GIS in controlling trichome development in plants.
Collapse
Affiliation(s)
- Yinbo Gan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310027, China
| | - Yihua Liu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi 276000, China
| | - Shuaiqi Yang
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310027, China
| | - Ali Raza Khan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
9
|
Sun M, Zhang Y, Zhu L, Liu N, Bai H, Sun G, Zhang J, Shi L. Chromosome-level assembly and analysis of the Thymus genome provide insights into glandular secretory trichome formation and monoterpenoid biosynthesis in thyme. PLANT COMMUNICATIONS 2022; 3:100413. [PMID: 35841150 PMCID: PMC9700128 DOI: 10.1016/j.xplc.2022.100413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/19/2022] [Accepted: 07/11/2022] [Indexed: 06/01/2023]
Abstract
Thyme has medicinal and aromatic value because of its potent antimicrobial and antioxidant properties. However, the absence of a fully sequenced thyme genome limits functional genomic studies of Chinese native thymes. Thymus quinquecostatus Čelak., which contains large amounts of bioactive monoterpenes such as thymol and carvacrol, is an important wild medicinal and aromatic plant in China. Monoterpenoids are abundant in glandular secretory trichomes. Here, high-fidelity and chromatin conformation capture technologies were used to assemble and annotate the T. quinquecostatus genome at the chromosome level. The 13 chromosomes of T. quinquecostatus had a total length of 528.66 Mb, a contig N50 of 8.06 Mb, and a BUSCO score of 97.34%. We found that T. quinquecostatus had experienced two whole-genome duplications, with the most recent event occurring ∼4.34 million years ago. Deep analyses of the genome, in conjunction with comparative genomic, phylogenetic, transcriptomic, and metabonomic studies, uncovered many regulatory factors and genes related to monoterpenoids and glandular secretory trichome development. Genes encoding terpene synthase (TPS), cytochrome P450 monooxygenases (CYPs), short-chain dehydrogenase/reductase (SDR), R2R3-MYB, and homeodomain-leucine zipper (HD-ZIP) IV were among those present in the T. quinquecostatus genome. Notably, Tq02G002290.1 (TqTPS1) was shown to encode the terpene synthase responsible for catalyzing production of the main monoterpene product γ-terpinene from geranyl diphosphate (GPP). Our study provides significant insight into the mechanisms of glandular secretory trichome formation and monoterpenoid biosynthesis in thyme. This work will facilitate the development of molecular breeding tools to enhance the production of bioactive secondary metabolites in Lamiaceae.
Collapse
Affiliation(s)
- Meiyu Sun
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yanan Zhang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Zhu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ningning Liu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongtong Bai
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Guofeng Sun
- Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jinzheng Zhang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Lei Shi
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
10
|
Insight into the effect of low temperature treatment on trichome density and related differentially expressed genes in Chinese cabbage. PLoS One 2022; 17:e0274530. [PMID: 36107960 PMCID: PMC9477275 DOI: 10.1371/journal.pone.0274530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/30/2022] [Indexed: 11/19/2022] Open
Abstract
Trichome is important for help plant resist adversity and external damage. However, it often affects the appearance and taste of vegetables. In the present study, the trichome density of leaves from two Chinese cabbage cultivars with and without trichomes treated at low temperature are analyzed by biological microscope, and the differentially expressed genes related to trichomes formation were screened through transcriptome sequencing. The results showed that the number of leaves trichomes was reduced by 34.7% at low temperature compared with room temperature. A total of 661 differentially expression genes effecting trichomes formation were identified at the CT vs C, LCT vs LC, CT vs LCT. Several differentially expression genes from every comparison group were enriched in plant hormone signal transduction and amino acid biosynthesis pathway. Combined with the central genes obtained by WGCNA analysis, five candidate genes Bra029778, Bra026393, Bra030270, Bra037264 and Bra009655 were screened. qRT-PCR analysis verified that the gene expression differences were in line with the trend of transcriptome data. This study not only found possible new key genes and laid a foundation for revealing the molecular mechanism regulating the formation of trichome in Chinese cabbage, but also provided a new way to study plant surface trichomes.
Collapse
|
11
|
Han G, Li Y, Yang Z, Wang C, Zhang Y, Wang B. Molecular Mechanisms of Plant Trichome Development. FRONTIERS IN PLANT SCIENCE 2022; 13:910228. [PMID: 35720574 PMCID: PMC9198495 DOI: 10.3389/fpls.2022.910228] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/13/2022] [Indexed: 05/25/2023]
Abstract
Plant trichomes, protrusions formed from specialized aboveground epidermal cells, provide protection against various biotic and abiotic stresses. Trichomes can be unicellular, bicellular or multicellular, with multiple branches or no branches at all. Unicellular trichomes are generally not secretory, whereas multicellular trichomes include both secretory and non-secretory hairs. The secretory trichomes release secondary metabolites such as artemisinin, which is valuable as an antimalarial agent. Cotton trichomes, also known as cotton fibers, are an important natural product for the textile industry. In recent years, much progress has been made in unraveling the molecular mechanisms of trichome formation in Arabidopsis thaliana, Gossypium hirsutum, Oryza sativa, Cucumis sativus, Solanum lycopersicum, Nicotiana tabacum, and Artemisia annua. Here, we review current knowledge of the molecular mechanisms underlying fate determination and initiation, elongation, and maturation of unicellular, bicellular and multicellular trichomes in several representative plants. We emphasize the regulatory roles of plant hormones, transcription factors, the cell cycle and epigenetic modifications in different stages of trichome development. Finally, we identify the obstacles and key points for future research on plant trichome development, and speculated the development relationship between the salt glands of halophytes and the trichomes of non-halophytes, which provides a reference for future studying the development of plant epidermal cells.
Collapse
Affiliation(s)
- Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
- Dongying Institute, Shandong Normal University, Dongying, China
| | - Yuxia Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Zongran Yang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Chengfeng Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yuanyuan Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
12
|
Song Z, Wang P, Chen X, Peng Y, Cai B, Song J, Yin G, Jia S, Zhang H. Melatonin alleviates cadmium toxicity and abiotic stress by promoting glandular trichome development and antioxidant capacity in Nicotiana tabacum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113437. [PMID: 35367878 DOI: 10.1016/j.ecoenv.2022.113437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Melatonin is a well-known signaling molecule that mediates a range of physiological activities and various stress reactions in plants. We comprehensively tested the effect of melatonin on the development of root hairs and glandular trichomes and found that melatonin pretreatment of tobacco seeds significantly increased the length of root hairs. Furthermore, melatonin-treated tobacco exhibited significantly higher density of trichomes and larger glandular heads on long-stalk glandular trichomes than untreated plants, which resulted in enhanced secretion in glandular trichomes. Exogenous melatonin enhanced the aphid resistance of plants by facilitating the accumulation of cembranoids in the glandular trichomes and alleviated cadmium toxicity by increasing the Cd-exudation capacity of long glandular trichomes. Metabolic analysis indicated that the contents of 108 metabolites significantly changed upon melatonin treatment, with the contents of those that are directly/indirectly involved in melatonin metabolism changing the most. Further, KEGG pathway analysis suggested that the metabolic pathways of amino acids, reducing sugar, secondary metabolites, indole alkaloid biosynthesis, purine, pyrimidine, and ABC transporters were greatly influenced by exogenous melatonin application. Moreover, metabolisms of melatonin-related antioxidants and pyrimidine nucleoside antibiotics were enhanced after melatonin treatment. Melatonin improved tobacco resistance to high salinity, drought, and extreme temperature stresses, as indicated by improved photosynthetic and antioxidant capacities in treated vs. untreated plants. This study lays a foundation for the comprehensive application of melatonin to increase the stress tolerance of plants.
Collapse
Affiliation(s)
- Zhaopeng Song
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Pei Wang
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaolong Chen
- China Tobacco Henan Industrial Co. Ltd., Zhengzhou 450016, China
| | - Yufu Peng
- China Tobacco Henan Industrial Co. Ltd., Zhengzhou 450016, China
| | - Bin Cai
- Hainan Province Company, China National Tobacco Corporation, Haikou 571100, China
| | - Jiangyu Song
- Fujian Province Nanping Branch Company, China National Tobacco Corporation, Nanping 350003, China
| | - Guangting Yin
- China Tobacco Henan Industrial Co. Ltd., Zhengzhou 450016, China
| | - Shiwei Jia
- China Tobacco Henan Industrial Co. Ltd., Zhengzhou 450016, China
| | - Hongying Zhang
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
13
|
Cui Z, Li M, Han X, Liu H, Li C, Peng H, Liu D, Huang X, Zhang Z. Morphogenesis, ultrastructure, and chemical profiling of trichomes in Artemisia argyi H. Lév. & Vaniot (Asteraceae). PLANTA 2022; 255:102. [PMID: 35412154 DOI: 10.1007/s00425-022-03889-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Glandular trichomes of Artemisia argyi H. Lév. & Vaniot are the key tissues for the production of flavonoid and terpenoid metabolites. Artemisia argyi H. Lév. & Vaniot is an herbaceous perennial plant that has been widely used in traditional medicine for thousands of years. Glandular trichomes (GTs) and nonglandular trichomes (NGTs) have been reported on the leaf surface of A. argyi. The aim of this study was to elucidate the morphogenetic process and to analyze the metabolites of trichomes in A. argyi. The morphogenesis of GTs and NGTs was characterized using light, scanning, and transmission electron microscopy. The constituents of GTs were analyzed using laser microdissection combined with gas and liquid chromatography-mass spectrometry. Five developmental stages of two types of GTs and four developmental stages of one type of NGTs were observed. Two types of mature GT and one type of NGT were composed of 10, 5, and 4-6 cells, respectively. A large storage cavity was detected between the cuticle and cell walls in the first type of mature GT. Large nuclei, nucleoli, and mitochondria were observed in the basal and intermediate cells of the second type of GT. In addition, large vacuoles were observed in the basal and apical cells, and large nuclei were observed in the middle cells of NGTs. One monoterpene and seven flavonoids were identified in GTs of A. argyi. We suggest that GTs are the key tissues for the production of bioactive metabolites in A. argyi. This study provides an important theoretical basis and technical approach for clarifying the regulatory mechanisms for trichome development and bioactive metabolite biosynthesis in A. argyi.
Collapse
Affiliation(s)
- Zhanhu Cui
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mengzhi Li
- Henan Province Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Xiaojing Han
- Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Hongyan Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Chao Li
- Henan Province Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Huasheng Peng
- Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Dahui Liu
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xianzhang Huang
- Henan Province Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, 473004, China.
| | - Zhongyi Zhang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
14
|
He Y, Fu X, Li L, Sun X, Tang K, Zhao J. AaSPL9 affects glandular trichomes initiation by positively regulating expression of AaHD1 in Artemisia annua L. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 317:111172. [PMID: 35193735 DOI: 10.1016/j.plantsci.2021.111172] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/24/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Glandular trichomes can secrete and store a large number of secondary metabolites in plants, some of which are of high medicinal and commercial value. For example, artemisinin, isolated from Artemisia annua L. plants, and its derivatives have great high medicinal value. Previous research indicated that artemisinin was synthesized in the glandular trichomes on the leaves of A. annua. It is an important study direction to improve artemisinin yield by promoting the initiation and development of glandular trichome. In this study, SQUAMOSA promoter-binding protein-like 9 (AaSPL9) was identified. In AaSPL9 overexpression transgenic plants, the glandular trichomes density was increased by 45-60 %, and the content of artemisinin was increased by 33-60 %, indicating that AaSPL9 positively regulate the glandular trichomes initiation. Yeast one-hybrid(Y1H), Dual-luciferase (Dual-Luc), Electrophoretic Mobility Shift Assay (EMSA) demonstrated that AaSPL9 activated the expression of AaHD1 by combining directly the GTAC-box of the AaHD1 promoter. Taken together, we identified AaSPL9, a positive transcription factor, regulating the glandular trichome initiation in A. annua, and revealed a novel molecular mechanism by which a SPL protein to promote glandular trichome initiation.
Collapse
Affiliation(s)
- Yilong He
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueqing Fu
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Design, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ling Li
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaofen Sun
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kexuan Tang
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jingya Zhao
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
15
|
Shao C, Cai F, Bao Z, Zhang Y, Shi G, Zhou Z, Chen X, Li Y, Bao M, Zhang J. PaNAC089 is a membrane-tethered transcription factor (MTTF) that modulates flowering, chlorophyll breakdown and trichome initiation. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:392-404. [PMID: 35209991 DOI: 10.1071/fp21320] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Flowering and senescence are essential developmental stages of green plants, which are governed by complex molecular regulatory networks. However, the connection between flowering regulation and senescence regulation in London plane tree (Platanus acerifolia ) remains unknown. In this study, we identified a gene PaNAC089 from London plane tree, which encodes a membrane-tethered transcription factor (MTTF) belonging to the NAC (NAM, ATAF1/2, CUC2) transcription factor family. We investigated the functions of PaNAC089 in the regulation of flowering and senescence through the analysis of expression profiles and transgenic phenotypes. Heterologous overexpression of ΔPaNAC089 delayed flowering and inhibited chlorophyll breakdown to produce dark green rosette leaves in Arabidopsis . In addition, the trichome density of rosette leaves was decreased in transgenic lines. In ΔPaNAC089 overexpression plants, a series of functional genes with inhibited expression were identified by quantitative real-time polymerase chain reaction (qRT-PCR), including genes that regulate flowering, chlorophyll decomposition, and trichome initiation. Furthermore, Δ PaNAC089 directly binds to the promoter of CONSTANS (CO ) and NON-YELLOWING2 (NYE2 ) in the yeast one-hybrid assay. Consistent with this, luciferase (LUC) transient expression assays also showed that Δ PaNAC089 could inhibit the activity of NYE2 . To summarise, our data suggests that PaNAC089 is an MTTF that modulates flowering, chlorophyll breakdown and trichome initiation.
Collapse
Affiliation(s)
- Changsheng Shao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Fangfang Cai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei, China; and Plant Genomics & Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Zhiru Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yanping Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Gehui Shi
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zheng Zhou
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiyan Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yangyang Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Jiaqi Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
16
|
Zheng F, Cui L, Li C, Xie Q, Ai G, Wang J, Yu H, Wang T, Zhang J, Ye Z, Yang C. Hair interacts with SlZFP8-like to regulate the initiation and elongation of trichomes by modulating SlZFP6 expression in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:228-244. [PMID: 34499170 DOI: 10.1093/jxb/erab417] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Trichomes are specialized glandular or non-glandular structures that provide physical or chemical protection against insect and pathogen attack. Trichomes in Arabidopsis have been extensively studied as typical non-glandular structures. By contrast, the molecular mechanism underlying glandular trichome formation and elongation remains largely unknown. We previously demonstrated that Hair is essential for the formation of type I and type VI trichomes. Here, we found that overexpression of Hair increased the density and length of tomato trichomes. Biochemical assays revealed that Hair physically interacts with its close homolog SlZFP8-like (SlZFP8L), and SlZFP8L also directly interacts with Woolly. SlZFP8L-overexpressing plants showed increased trichome density and length. We further found that the expression of SlZFP6, which encodes a C2H2 zinc finger protein, is positively regulated by Hair. Using chromatin immunoprecipitation, yeast one-hybrid, and dual-luciferase assays we identified that SlZFP6 is a direct target of Hair. Similar to Hair and SlZFP8L, the overexpression of SlZFP6 also increased the density and length of tomato trichomes. Taken together, our results suggest that Hair interacts with SlZFP8-like to regulate the initiation and elongation of trichomes by modulating SlZFP6 expression in tomato.
Collapse
Affiliation(s)
- Fangyan Zheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Long Cui
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Changxing Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Qingmin Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Guo Ai
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Junqiang Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Huiyang Yu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Taotao Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Changxian Yang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
17
|
Patzak J, Henychová A, Matoušek J. Developmental regulation of lupulin gland-associated genes in aromatic and bitter hops (Humulus lupulus L.). BMC PLANT BIOLOGY 2021; 21:534. [PMID: 34773975 PMCID: PMC8590222 DOI: 10.1186/s12870-021-03292-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/22/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Hop (Humulus lupulus L.) bitter acids are valuable metabolites for the brewing industry. They are biosynthesized and accumulate in glandular trichomes of the female inflorescence (hop cone). The content of alpha bitter acids, such as humulones, in hop cones can differentiate aromatic from bitter hop cultivars. These contents are subject to genetic and environmental control but significantly correlate with the number and size of glandular trichomes (lupulin glands). RESULTS We evaluated the expression levels of 37 genes involved in bitter acid biosynthesis and morphological and developmental differentiation of glandular trichomes to identify key regulatory factors involved in bitter acid content differences. For bitter acid biosynthesis genes, upregulation of humulone synthase genes, which are important for the biosynthesis of alpha bitter acids in lupulin glands, could explain the higher accumulation of alpha bitter acids in bitter hops. Several transcription factors, including HlETC1, HlMYB61 and HlMYB5 from the MYB family, as well as HlGLABRA2, HlCYCB2-4, HlZFP8 and HlYABBY1, were also more highly expressed in the bitter hop cultivars; therefore, these factors may be important for the higher density of lupulin glands also seen in the bitter hop cultivars. CONCLUSIONS Gene expression analyses enabled us to investigate the differences between aromatic and bitter hops. This study confirmed that the bitter acid content in glandular trichomes (lupulin glands) is dependent on the last step of alpha bitter acid biosynthesis and glandular trichome density.
Collapse
Affiliation(s)
- Josef Patzak
- Hop Research Institute Co., Ltd., Kadaňská 2525, 438 01, Žatec, Czech Republic.
| | - Alena Henychová
- Hop Research Institute Co., Ltd., Kadaňská 2525, 438 01, Žatec, Czech Republic
| | - Jaroslav Matoušek
- Biology Centre ASCR v.v.i, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005, České Budějovice, Czech Republic
| |
Collapse
|
18
|
Shao C, Cai F, Zhang J, Zhang Y, Bao Z, Bao M. A Class II TCP Transcription Factor PaTCP4 from Platanus acerifolia Regulates Trichome Formation in Arabidopsis. DNA Cell Biol 2021; 40:1235-1250. [PMID: 34558965 DOI: 10.1089/dna.2021.0300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
London plane tree is widely grown as a landscaping and street tree, but the release of its trichomes creates a serious air-borne pollution problem. Identifying the key genes that regulate the development of trichomes is, therefore, an important tool for the molecular breeding of Platanus acerifolia. In this study, a sequence homologous with the Arabidopsis Class II TCP subfamily was identified from London plane, and named PaTCP4. The expression of PaTCP4 was detected in various organs of London plane trees, significantly in the trichomes. Overexpression of PaTCP4 in Arabidopsis reduced the trichome density on the first pair of true leaves, and atypical 5-branched trichomes were also detected on those leaves. The expression of endogenous AtCPC and AtTCL2 was significantly increased in PaTCP4 transgenic lines, and was associated with a decrease in the expression of endogenous AtGL2. Furthermore, the expression of endogenous AtGL3 was significantly increased. In addition, the protein product of PaTCP4 was shown to directly activate AtCPC, AtTCL2, AtGL3, AtGIS, PaGIS, and PaGL3 in yeast one-hybrid assays and in the dual-luciferase reporter system. Taken together, these results identify a role for PaTCP4 in trichome initiation and branching in Arabidopsis. Thus, PaTCP4 represents a strong candidate gene for regulating the development of trichomes in London plane trees.
Collapse
Affiliation(s)
- Changsheng Shao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Fangfang Cai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China.,Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Jiaqi Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yanping Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhiru Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
19
|
Han G, Li Y, Qiao Z, Wang C, Zhao Y, Guo J, Chen M, Wang B. Advances in the Regulation of Epidermal Cell Development by C2H2 Zinc Finger Proteins in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:754512. [PMID: 34630497 PMCID: PMC8497795 DOI: 10.3389/fpls.2021.754512] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/31/2021] [Indexed: 05/31/2023]
Abstract
Plant epidermal cells, such as trichomes, root hairs, salt glands, and stomata, play pivotal roles in the growth, development, and environmental adaptation of terrestrial plants. Cell fate determination, differentiation, and the formation of epidermal structures represent basic developmental processes in multicellular organisms. Increasing evidence indicates that C2H2 zinc finger proteins play important roles in regulating the development of epidermal structures in plants and plant adaptation to unfavorable environments. Here, we systematically summarize the molecular mechanism underlying the roles of C2H2 zinc finger proteins in controlling epidermal cell formation in plants, with an emphasis on trichomes, root hairs, and salt glands and their roles in plant adaptation to environmental stress. In addition, we discuss the possible roles of homologous C2H2 zinc finger proteins in trichome development in non-halophytes and salt gland development in halophytes based on bioinformatic analysis. This review provides a foundation for further study of epidermal cell development and abiotic stress responses in plants.
Collapse
|
20
|
Molina-Hidalgo FJ, Vazquez-Vilar M, D'Andrea L, Demurtas OC, Fraser P, Giuliano G, Bock R, Orzáez D, Goossens A. Engineering Metabolism in Nicotiana Species: A Promising Future. Trends Biotechnol 2021; 39:901-913. [PMID: 33341279 DOI: 10.1016/j.tibtech.2020.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/31/2022]
Abstract
Molecular farming intends to use crop plants as biofactories for high value-added compounds following application of a wide range of biotechnological tools. In particular, the conversion of nonfood crops into efficient biofactories is expected to be a strong asset in the development of a sustainable bioeconomy. The 'nonfood' status combined with the high metabolic versatility and the capacity of high-yield cultivation highlight the plant genus Nicotiana as one of the most appropriate 'chassis' for molecular farming. Nicotiana species are a rich source of valuable industrial, active pharmaceutical ingredients and nutritional compounds, synthesized from highly complex biosynthetic networks. Here, we review and discuss approaches currently used to design enriched Nicotiana species for molecular farming using new plant breeding techniques (NPBTs).
Collapse
Affiliation(s)
- Francisco Javier Molina-Hidalgo
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Marta Vazquez-Vilar
- Instituto de Biología Molecular y Celular de Plantas (IBMCP-UPV-CSIC), Valencia, Spain
| | - Lucio D'Andrea
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Olivia C Demurtas
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Paul Fraser
- School of Biological Sciences, Royal Holloway, University of London, London, UK
| | - Giovanni Giuliano
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Diego Orzáez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP-UPV-CSIC), Valencia, Spain
| | - Alain Goossens
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium.
| |
Collapse
|
21
|
Feng Z, Bartholomew ES, Liu Z, Cui Y, Dong Y, Li S, Wu H, Ren H, Liu X. Glandular trichomes: new focus on horticultural crops. HORTICULTURE RESEARCH 2021; 8:158. [PMID: 34193839 PMCID: PMC8245418 DOI: 10.1038/s41438-021-00592-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/07/2021] [Accepted: 05/10/2021] [Indexed: 05/31/2023]
Abstract
Plant glandular trichomes (GTs) are epidermal outgrowths with the capacity to biosynthesize and secrete specialized metabolites, that are of great scientific and practical significance. Our understanding of the developmental process of GTs is limited, and no single plant species serves as a unique model. Here, we review the genetic mechanisms of GT initiation and development and provide a summary of the biosynthetic pathways of GT-specialized metabolites in nonmodel plant species, especially horticultural crops. We discuss the morphology and classification of GT types. Moreover, we highlight technological advancements in methods employed for investigating GTs. Understanding the molecular basis of GT development and specialized metabolites not only offers useful avenues for research in plant breeding that will lead to the improved production of desirable metabolites, but also provides insights for plant epidermal development research.
Collapse
Affiliation(s)
- Zhongxuan Feng
- Engineering Research Center of the Ministry of Education for Horticultural Crops Breeding and Propagation, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China
| | - Ezra S Bartholomew
- Engineering Research Center of the Ministry of Education for Horticultural Crops Breeding and Propagation, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China
| | - Ziyu Liu
- Library of China Agricultural University, China Agricultural University, 100193, Beijing, P. R. China
| | - Yuanyuan Cui
- Engineering Research Center of the Ministry of Education for Horticultural Crops Breeding and Propagation, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China
| | - Yuming Dong
- Engineering Research Center of the Ministry of Education for Horticultural Crops Breeding and Propagation, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China
| | - Sen Li
- Engineering Research Center of the Ministry of Education for Horticultural Crops Breeding and Propagation, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China
| | - Haoying Wu
- Engineering Research Center of the Ministry of Education for Horticultural Crops Breeding and Propagation, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China
| | - Huazhong Ren
- Engineering Research Center of the Ministry of Education for Horticultural Crops Breeding and Propagation, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China.
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China.
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin, China.
| | - Xingwang Liu
- Engineering Research Center of the Ministry of Education for Horticultural Crops Breeding and Propagation, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China.
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China.
| |
Collapse
|
22
|
Khan RA, Mohammad, Hurrah IM, Muzafar S, Jan S, Abbas N. Transcriptional regulation of trichome development in plants: an overview. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2021. [DOI: 10.1007/s43538-021-00017-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Genome-wide identification of the tea plant bHLH transcription factor family and discovery of candidate regulators of trichome formation. Sci Rep 2021; 11:10764. [PMID: 34031482 PMCID: PMC8144589 DOI: 10.1038/s41598-021-90205-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/07/2021] [Indexed: 02/04/2023] Open
Abstract
Leaf trichomes play vital roles in plant resistance and the quality of tea. Basic helix-loop-helix (bHLH) transcription factors (TFs) play an important role in regulating plant development and growth. In this study, a total of 134 CsbHLH proteins were identified in the Camellia sinensis var. sinensis (CSS) genome. They were divided into 17 subgroups according to the Arabidopsis thaliana classification. Phylogenetic tree analysis indicated that members of subgroups IIIc-I and IIIc-II might be associated with trichome formation. The expression patterns of CsbHLH116, CsbHLH133, CsbHLH060, CsbHLH028, CsbHLH024, CsbHLH112 and CsbHLH053 from clusters 1, 3 and 5 were similar to the trichome distribution in tea plants. CsbHLH024 and CsbHLH133 were located in the cell nucleus and possessed transcriptional activation ability. They could interact with CsTTG1, which is a regulator of tea trichome formation. This study provides useful information for further research on the function of CsbHLHs in trichome formation.
Collapse
|
24
|
Song G, Li X, Munir R, Khan AR, Azhar W, Yasin MU, Jiang Q, Bancroft I, Gan Y. The WRKY6 transcription factor affects seed oil accumulation and alters fatty acid compositions in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2020; 169:612-624. [PMID: 32129896 DOI: 10.1111/ppl.13082] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/13/2020] [Accepted: 02/28/2020] [Indexed: 05/11/2023]
Abstract
In rapeseed, the oil content of the seed not only supplies energy for seed germination and seedling development but also provides essential dietary nutrients for humans and livestock. Recent studies have revealed that many transcription factors (TFs) regulate the accumulation of fatty acids (FAs) during seed development. WRKY6, a WRKY6 family TF, was reported to serve a function in the plant senescence processes, pathogen defense mechanisms and abiotic stress responses. However, the precise role of WRKY6 in influencing FA accumulation in seeds is still unknown. In this study, we demonstrate that WRKY6 has a high expression level in developing seeds and plays an essential role in regulating the accumulation of FAs in developing seeds of Arabidopsis. Mutation of WRKY6 resulted in significant increase in seed size, accompanied by an increase in FA content and changes in FA composition. Ultrastructure analyses showed that the absence of WRKY6 resulted in more and higher percentage of oil body in the cell of mature seeds. Quantitative real-time PCR analysis revealed changes in the expression of several genes related to photosynthesis and FA biosynthesis in wrky6 mutants at 10 or 16 days after pollination. These results reveal a novel function of WRKY6 influencing seed oil content and FAs compositions. This gene could be used as a promising gene resource to improve FA accumulation and seed yield in Brassica napus through genetic manipulation.
Collapse
Affiliation(s)
- Ge Song
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xueping Li
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Raheel Munir
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ali Raza Khan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Wardah Azhar
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Umair Yasin
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Qining Jiang
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ian Bancroft
- Centre for Novel Agricultural Products (CNAP) M119, Department of Biology, University of York, York, YO10 5DD, UK
| | - Yinbo Gan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
25
|
Schuurink R, Tissier A. Glandular trichomes: micro-organs with model status? THE NEW PHYTOLOGIST 2020; 225:2251-2266. [PMID: 31651036 DOI: 10.1111/nph.16283] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/01/2019] [Indexed: 05/19/2023]
Abstract
Glandular trichomes are epidermal outgrowths that are the site of biosynthesis and storage of large quantities of specialized metabolites. Besides their role in the protection of plants against biotic and abiotic stresses, they have attracted interest owing to the importance of the compounds they produce for human use; for example, as pharmaceuticals, flavor and fragrance ingredients, or pesticides. Here, we review what novel concepts investigations on glandular trichomes have brought to the field of specialized metabolism, particularly with respect to chemical and enzymatic diversity. Furthermore, the next challenges in the field are understanding the metabolic network underlying the high productivity of glandular trichomes and the transport and storage of metabolites. Another emerging area is the development of glandular trichomes. Studies in some model species, essentially tomato, tobacco, and Artemisia, are now providing the first molecular clues, but many open questions remain: How is the distribution and density of different trichome types on the leaf surface controlled? When is the decision for an epidermal cell to differentiate into one type of trichome or another taken? Recent advances in gene editing make it now possible to address these questions and promise exciting discoveries in the near future.
Collapse
Affiliation(s)
- Robert Schuurink
- Swammerdam Institute for Life Sciences, Green Life Science Research Cluster, University of Amsterdam, Postbus 1210, 1000 BE, Amsterdam, the Netherlands
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, 06120, Halle (Saale), Germany
| |
Collapse
|
26
|
Fambrini M, Pugliesi C. The Dynamic Genetic-Hormonal Regulatory Network Controlling the Trichome Development in Leaves. PLANTS (BASEL, SWITZERLAND) 2019; 8:E253. [PMID: 31357744 PMCID: PMC6724107 DOI: 10.3390/plants8080253] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 02/05/2023]
Abstract
Plant trichomes are outgrowths developed from an epidermal pavement cells of leaves and other organs. Trichomes (also called 'hairs') play well-recognized roles in defense against insect herbivores, forming a physical barrier that obstructs insect movement and mediating chemical defenses. In addition, trichomes can act as a mechanosensory switch, transducing mechanical stimuli (e.g., insect movement) into physiological signals, helping the plant to respond to insect attacks. Hairs can also modulate plant responses to abiotic stresses, such as water loss, an excess of light and temperature, and reflect light to protect plants against UV radiation. The structure of trichomes is species-specific and this trait is generally related to their function. These outgrowths are easily analyzed and their origin represents an outstanding subject to study epidermal cell fate and patterning in plant organs. In leaves, the developmental control of the trichomatous complement has highlighted a regulatory network based on four fundamental elements: (i) genes that activate and/or modify the normal cell cycle of epidermal pavement cells (i.e., endoreduplication cycles); (ii) transcription factors that create an activator/repressor complex with a central role in determining cell fate, initiation, and differentiation of an epidermal cell in trichomes; (iii) evidence that underlines the interplay of the aforesaid complex with different classes of phytohormones; (iv) epigenetic mechanisms involved in trichome development. Here, we reviewed the role of genes in the development of trichomes, as well as the interaction between genes and hormones. Furthermore, we reported basic studies about the regulation of the cell cycle and the complexity of trichomes. Finally, this review focused on the epigenetic factors involved in the initiation and development of hairs, mainly on leaves.
Collapse
Affiliation(s)
- Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy.
| |
Collapse
|