1
|
Das AK, Hussain A, Methela NJ, Lee DS, Lee GJ, Woo YJ, Yun BW. Genome-wide characterization of nitric oxide-induced NBS-LRR genes from Arabidopsis thaliana and their association in monocots and dicots. BMC PLANT BIOLOGY 2024; 24:934. [PMID: 39379841 PMCID: PMC11462825 DOI: 10.1186/s12870-024-05587-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Nitric oxide (NO) is pivotal in regulating the activity of NBS-LRR specific R genes, crucial components of the plant's immune system. It is noteworthy that previous research has not included a genome-wide analysis of NO-responsive NBS-LRR genes in plants. RESULTS The current study examined 29 NO-induced NBS-LRR genes from Arabidopsis thaliana, along with two monocots (rice and maize) and two dicots (soybean and tomato) using genome-wide analysis tools. These NBS-LRR genes were subjected to comprehensive characterization, including analysis of their physio-chemical properties, phylogenetic relationships, domain and motif identification, exon/intron structures, cis-elements, protein-protein interactions, prediction of S-Nitrosylation sites, and comparison of transcriptomic and qRT-PCR data. Results showed the diverse distribution of NBS-LRR genes across chromosomes, and variations in amino acid number, exons/introns, molecular weight, and theoretical isoelectric point, and they were found in various cellular locations like the plasma membrane, cytoplasm, and nucleus. These genes predominantly harbor the NB-ARC superfamily, LRR, LRR_8, and TIR domains, as also confirmed by motif analysis. Additionally, they feature species-specific PLN00113 superfamily and RX-CC_like domain in dicots and monocots, respectively, both responsive to defense against pathogen attacks. The NO-induced NBS-LRR genes of Arabidopsis reveal the presence of cis-elements responsive to phytohormones, light, stress, and growth, suggesting a wide range of responses mediated by NO. Protein-protein interactions, coupled with the prediction of S-Nitrosylation sites, offer valuable insights into the regulatory role of NO at the protein level within each respective species. CONCLUSION These above findings aimed to provide a thorough understanding of the impact of NO on NBS-LRR genes and their relationships with key plant species.
Collapse
Affiliation(s)
- Ashim Kumar Das
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Adil Hussain
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea.
- Department of Agriculture, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan.
| | - Nusrat Jahan Methela
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Da-Sol Lee
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Geum-Jin Lee
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Youn-Ji Woo
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Byung-Wook Yun
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
2
|
Rodrigues JCM, Carrijo J, Anjos RM, Cunha NB, Grynberg P, Aragão FJL, Vianna GR. The role of microRNAs in NBS-LRR gene expression and its implications for plant immunity and crop development. Transgenic Res 2024; 33:159-174. [PMID: 38856866 DOI: 10.1007/s11248-024-00387-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
Plants evolved, over millions of years, complex defense systems against pathogens. Once infected, the interaction between pathogen effector molecules and host receptors triggers plant immune responses, which include apoptosis, systemic immune response, among others. An important protein family responsible for pathogen effector recognition is the nucleotide binding site-leucine repeat rich (NBS-LRR) proteins. The NBS-LRR gene family is the largest disease resistance gene class in plants. These proteins are widely distributed in vascular plants and have a complex multigenic cluster distribution in plant genomes. To counteract the genetic load of such a large gene family on fitness cost, plants evolved a mechanism using post transcriptional gene silencing induced by small RNAs, particularly microRNAs. For the NBS-LRR gene family, the small RNAs involved in this silencing mechanism are mainly the microRNA482/2118 superfamily. This suppression mechanism is relieved upon pathogen infection, thus allowing increased NBS-LRR expression and triggering plant immunity. In this review, we will discuss the biogenesis of microRNAs and secondary RNAs involved in this silencing mechanism, biochemical and structural features of NBS-LRR proteins in response to pathogen effectors and the evolution of microRNA-based silencing mechanism with a focus on the miR482/2118 family. Furthermore, the biotechnological manipulation of microRNA expression, using both transgenic or genome editing approaches to improve cultivated plants will be discussed, with a focus on the miR482/2118 family in soybean.
Collapse
Affiliation(s)
- J C M Rodrigues
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil.
| | - J Carrijo
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - R M Anjos
- University of Brasília, Brasília, Brazil
| | - N B Cunha
- University of Brasília, Brasília, Brazil
| | - P Grynberg
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - F J L Aragão
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - G R Vianna
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| |
Collapse
|
3
|
Chekan JR, Mydy LS, Pasquale MA, Kersten RD. Plant peptides - redefining an area of ribosomally synthesized and post-translationally modified peptides. Nat Prod Rep 2024; 41:1020-1059. [PMID: 38411572 PMCID: PMC11253845 DOI: 10.1039/d3np00042g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Indexed: 02/28/2024]
Abstract
Covering 1965 to February 2024Plants are prolific peptide chemists and are known to make thousands of different peptidic molecules. These peptides vary dramatically in their size, chemistry, and bioactivity. Despite their differences, all plant peptides to date are biosynthesized as ribosomally synthesized and post-translationally modified peptides (RiPPs). Decades of research in plant RiPP biosynthesis have extended the definition and scope of RiPPs from microbial sources, establishing paradigms and discovering new families of biosynthetic enzymes. The discovery and elucidation of plant peptide pathways is challenging due to repurposing and evolution of housekeeping genes as both precursor peptides and biosynthetic enzymes and due to the low rates of gene clustering in plants. In this review, we highlight the chemistry, biosynthesis, and function of the known RiPP classes from plants and recommend a nomenclature for the recent addition of BURP-domain-derived RiPPs termed burpitides. Burpitides are an emerging family of cyclic plant RiPPs characterized by macrocyclic crosslinks between tyrosine or tryptophan side chains and other amino acid side chains or their peptide backbone that are formed by copper-dependent BURP-domain-containing proteins termed burpitide cyclases. Finally, we review the discovery of plant RiPPs through bioactivity-guided, structure-guided, and gene-guided approaches.
Collapse
Affiliation(s)
- Jonathan R Chekan
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| | - Lisa S Mydy
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.
| | - Michael A Pasquale
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| | - Roland D Kersten
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Shao W, Shi G, Chu H, Du W, Zhou Z, Wuriyanghan H. Development of an NLR-ID Toolkit and Identification of Novel Disease-Resistance Genes in Soybean. PLANTS (BASEL, SWITZERLAND) 2024; 13:668. [PMID: 38475513 DOI: 10.3390/plants13050668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
The recognition of pathogen effectors through the nucleotide-binding leucine-rich repeat receptor (NLR) family is an important component of plant immunity. In addition to typical domains such as TIR, CC, NBS, and LRR, NLR proteins also contain some atypical integrated domains (IDs), the roles of which are rarely investigated. Here, we carefully screened the soybean (Glycine max) genome and identified the IDs that appeared in the soybean TNL-like proteins. Our results show that multiple IDs (36) are widely present in soybean TNL-like proteins. A total of 27 Gm-TNL-ID genes (soybean TNL-like gene encoding ID) were cloned and their antiviral activity towards the soybean mosaic virus (SMV)/tobacco mosaic virus (TMV) was verified. Two resistance (R) genes, SRA2 (SMV resistance gene contains AAA_22 domain) and SRZ4 (SMV resistance gene contains zf-RVT domain), were identified to possess broad-spectrum resistance characteristics towards six viruses including SMV, TMV, plum pox virus (PPV), cabbage leaf curl virus (CaLCuV), barley stripe mosaic virus (BSMV), and tobacco rattle virus (TRV). The effects of Gm-TNL-IDX (the domain of the Gm-TNL-ID gene after the TN domain) on the antiviral activity of a R protein SRC7TN (we previously reported the TN domain of the soybean broad-spectrum resistance gene SRC7) were validated, and most of Gm-TNL-IDX inhibits antiviral activity mediated by SRC7TN, possibly through intramolecular interactions. Yeast-two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays showed that seven Gm-TNL-IDX interacted with SMV-component proteins. Truncation analysis on a broad-spectrum antiviral protein SRZ4 indicated that SRZ4TIR is sufficient to mediate antiviral activity against SMV. Soybean cDNA library screening on SRZ4 identified 48 interacting proteins. In summary, our results indicate that the integration of IDs in soybean is widespread and frequent. The NLR-ID toolkit we provide is expected to be valuable for elucidating the functions of atypical NLR proteins in the plant immune system and lay the foundation for the development of engineering NLR for plant-disease control in the future.
Collapse
Affiliation(s)
- Wei Shao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Gongfu Shi
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Han Chu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Wenjia Du
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Zikai Zhou
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Hada Wuriyanghan
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
5
|
Mena E, Reboledo G, Stewart S, Montesano M, Ponce de León I. Comparative analysis of soybean transcriptional profiles reveals defense mechanisms involved in resistance against Diaporthe caulivora. Sci Rep 2023; 13:13061. [PMID: 37567886 PMCID: PMC10421924 DOI: 10.1038/s41598-023-39695-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Soybean stem canker (SSC) caused by the fungal pathogen Diaporthe caulivora is an important disease affecting soybean production worldwide. However, limited information related to the molecular mechanisms underlying soybean resistance to Diaporthe species is available. In the present work, we analyzed the defense responses to D. caulivora in the soybean genotypes Williams and Génesis 5601. The results showed that compared to Williams, Génesis 5601 is more resistant to fungal infection evidenced by significantly smaller lesion length, reduced disease severity and pathogen biomass. Transcriptional profiling was performed in untreated plants and in D. caulivora-inoculated and control-treated tissues at 8 and 48 h post inoculation (hpi). In total, 2.322 and 1.855 genes were differentially expressed in Génesis 5601 and Williams, respectively. Interestingly, Génesis 5601 exhibited a significantly higher number of upregulated genes compared to Williams at 8 hpi, 1.028 versus 434 genes. Resistance to D. caulivora was associated with defense activation through transcriptional reprogramming mediating perception of the pathogen by receptors, biosynthesis of phenylpropanoids, hormone signaling, small heat shock proteins and pathogenesis related (PR) genes. These findings provide novel insights into soybean defense mechanisms leading to host resistance against D. caulivora, and generate a foundation for the development of resistant SSC varieties within soybean breeding programs.
Collapse
Affiliation(s)
- Eilyn Mena
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Guillermo Reboledo
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Silvina Stewart
- Programa Nacional de Cultivos de Secano, Instituto Nacional de Investigación Agropecuaria (INIA), La Estanzuela, Colonia, Uruguay
| | - Marcos Montesano
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Laboratorio de Fisiología Vegetal, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Inés Ponce de León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| |
Collapse
|
6
|
Jha UC, Nayyar H, Chattopadhyay A, Beena R, Lone AA, Naik YD, Thudi M, Prasad PVV, Gupta S, Dixit GP, Siddique KHM. Major viral diseases in grain legumes: designing disease resistant legumes from plant breeding and OMICS integration. FRONTIERS IN PLANT SCIENCE 2023; 14:1183505. [PMID: 37229109 PMCID: PMC10204772 DOI: 10.3389/fpls.2023.1183505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/05/2023] [Indexed: 05/27/2023]
Abstract
Grain legumes play a crucial role in human nutrition and as a staple crop for low-income farmers in developing and underdeveloped nations, contributing to overall food security and agroecosystem services. Viral diseases are major biotic stresses that severely challenge global grain legume production. In this review, we discuss how exploring naturally resistant grain legume genotypes within germplasm, landraces, and crop wild relatives could be used as promising, economically viable, and eco-environmentally friendly solution to reduce yield losses. Studies based on Mendelian and classical genetics have enhanced our understanding of key genetic determinants that govern resistance to various viral diseases in grain legumes. Recent advances in molecular marker technology and genomic resources have enabled us to identify genomic regions controlling viral disease resistance in various grain legumes using techniques such as QTL mapping, genome-wide association studies, whole-genome resequencing, pangenome and 'omics' approaches. These comprehensive genomic resources have expedited the adoption of genomics-assisted breeding for developing virus-resistant grain legumes. Concurrently, progress in functional genomics, especially transcriptomics, has helped unravel underlying candidate gene(s) and their roles in viral disease resistance in legumes. This review also examines the progress in genetic engineering-based strategies, including RNA interference, and the potential of synthetic biology techniques, such as synthetic promoters and synthetic transcription factors, for creating viral-resistant grain legumes. It also elaborates on the prospects and limitations of cutting-edge breeding technologies and emerging biotechnological tools (e.g., genomic selection, rapid generation advances, and CRISPR/Cas9-based genome editing tool) in developing virus-disease-resistant grain legumes to ensure global food security.
Collapse
Affiliation(s)
- Uday Chand Jha
- Indian Institute of Pulses Research (IIPR), Indian Council of Agricultural Research (ICAR), Kanpur, Uttar Pradesh, India
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India
| | - Anirudha Chattopadhyay
- Department of Plant Pathology, Pulse Research Station, S.D. Agricultural University SK Nagar, SK Nagar, Gujarat, India
| | - Radha Beena
- Department of Plant Physiology, College of Agriculture, Vellayani, Kerala Agricultural University (KAU), Thiruvananthapuram, Kerala, India
| | - Ajaz A. Lone
- Dryland Agriculture Research Station, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST)-Kashmir, Srinagar, India
| | - Yogesh Dashrath Naik
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University, Samatipur, Bihar, India
| | - Mahendar Thudi
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University, Samatipur, Bihar, India
- Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- Center for Crop Health, University of Southern Queensland, Toowoomba, QLD, Australia
| | | | - Sanjeev Gupta
- Indian Council of Agricultural Research, New Delhi, India
| | - Girish Prasad Dixit
- Indian Institute of Pulses Research (IIPR), Indian Council of Agricultural Research (ICAR), Kanpur, Uttar Pradesh, India
| | - Kadambot H. M. Siddique
- The University of Western Australia (UWA) Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
7
|
Song J, Chen F, Lv B, Guo C, Yang J, Huang L, Guo J, Xiang F. Genome-Wide Identification and Expression Analysis of the TIR-NBS-LRR Gene Family and Its Response to Fungal Disease in Rose ( Rosa chinensis). BIOLOGY 2023; 12:426. [PMID: 36979118 PMCID: PMC10045381 DOI: 10.3390/biology12030426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023]
Abstract
Roses, which are one of the world's most important ornamental plants, are often damaged by pathogens, resulting in serious economic losses. As a subclass of the disease resistance gene family of plant nucleotide-binding oligomerization domain (NOD)-like receptors, TIR-NBS-LRR (TNL) genes play a vital role in identifying pathogen effectors and activating defense responses. However, a systematic analysis of the TNL gene family is rarely reported in roses. Herein, 96 intact TNL genes were identified in Rosa chinensis. Their phylogenies, physicochemical characteristics, gene structures, conserved domains and motifs, promoter cis-elements, microRNA binding sites, and intra- and interspecific collinearity relationships were analyzed. An expression analysis using transcriptome data revealed that RcTNL genes were dominantly expressed in leaves. Some RcTNL genes responded to gibberellin, jasmonic acid, salicylic acid, Botrytis cinerea, Podosphaera pannosa, and Marssonina rosae (M. rosae); the RcTNL23 gene responded significantly to three hormones and three pathogens, and exhibited an upregulated expression. Furthermore, the black spot pathogen was identified as M. rosae. After inoculating rose leaves, an expression pattern analysis of the RcTNL genes suggested that they act during different periods of pathogen infection. The present study lays the foundations for an in-depth investigation of the TNL gene function and the mining of disease resistance genes in roses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fayun Xiang
- Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
| |
Collapse
|
8
|
Yin T, Han P, Xi D, Yu W, Zhu L, Du C, Yang N, Liu X, Zhang H. Genome-wide identification, characterization, and expression profile ofNBS-LRRgene family in sweet orange (Citrussinensis). Gene 2023; 854:147117. [PMID: 36526123 DOI: 10.1016/j.gene.2022.147117] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND The NBS-LRR (nucleotide-binding site-leucine-rich repeat gene) gene family, known as the plant R (resistance) gene family with the most members, plays a significant role in plant resistance to various external adversity stresses. The NBS-LRR gene family has been researched in many plant species. Citrus is one of the most vital global cash crops, the number one fruit group, and the third most traded agricultural product world wild. However, as one of the largest citrus species, a comprehensive study of the NBS-LRR gene family has not been reported on sweet oranges. METHODS In this study, NBS-LRR genes were identified from the Citrus sinensis genome (v3.0), with a comprehensive analysis of this gene family performed, including phylogenetic analysis, gene structure, cis-acting element of a promoter, and chromosomal localization, among others. The expression pattern of NBS-LRR genes was analyzed when sweet orange fruits were infected by Penicillium digitatum, employing experimental data from our research group. It first reported the expression patterns of NBS-LRR genes under abiotic stresses, using three transcript data from NCBI (National Center for Biotechnology Information). RESULTS In this study, 111 NBS-LRR genes were identified in the C. sinensis genome (v3.0) and classified into seven subfamilies according to their N-terminal and C-terminal domains. The phylogenetic tree results indicate that genes containing only the NBS structural domain are more ancient in the sweet orange NBS-LRR gene family. The chromosome localization results showed that 111 NBS-LRR genes were distributed unevenly on nine chromosomes, with the most genes distributed on chromosome 1. In addition, we identified a total of 18 tandem duplication gene pairs in the sweet orange NBS-LRR gene family, and based on the Ka/Ks ratio, all of the tandem duplication genes underwent purifying selection. Transcriptome data analysis showed a significant number of NBS-LRR genes expressed under biotic and abiotic stresses, and some reached significantly different levels of expression. It indicates that the NBS-LRR gene family is vital in resistance to biotic and abiotic stresses in sweet oranges. CONCLUSION Our study provides the first comprehensive framework on the NBS-LRR family of genes, which provides a basis for further in-depth studies on the biological functions of NBS-LRR in growth, development, and response to abiotic stresses in sweet orange.
Collapse
Affiliation(s)
- Tuo Yin
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| | - Peichen Han
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| | - Dengxian Xi
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| | - Wencai Yu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| | - Ling Zhu
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming 650224, China.
| | - Chaojin Du
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming 650224, China.
| | - Na Yang
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming 650224, China.
| | - Xiaozhen Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| | - Hanyao Zhang
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
9
|
Du H, Fang C, Li Y, Kong F, Liu B. Understandings and future challenges in soybean functional genomics and molecular breeding. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:468-495. [PMID: 36511121 DOI: 10.1111/jipb.13433] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Soybean (Glycine max) is a major source of plant protein and oil. Soybean breeding has benefited from advances in functional genomics. In particular, the release of soybean reference genomes has advanced our understanding of soybean adaptation to soil nutrient deficiencies, the molecular mechanism of symbiotic nitrogen (N) fixation, biotic and abiotic stress tolerance, and the roles of flowering time in regional adaptation, plant architecture, and seed yield and quality. Nevertheless, many challenges remain for soybean functional genomics and molecular breeding, mainly related to improving grain yield through high-density planting, maize-soybean intercropping, taking advantage of wild resources, utilization of heterosis, genomic prediction and selection breeding, and precise breeding through genome editing. This review summarizes the current progress in soybean functional genomics and directs future challenges for molecular breeding of soybean.
Collapse
Affiliation(s)
- Haiping Du
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Chao Fang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Yaru Li
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
10
|
Xie Y, Liu B, Gao K, Zhao Y, Li W, Deng L, Zhou Z, Liu Q. Comprehensive Analysis and Functional Verification of the Pinus massoniana NBS-LRR Gene Family Involved in the Resistance to Bursaphelenchus xylophilus. Int J Mol Sci 2023; 24:1812. [PMID: 36768136 PMCID: PMC9915305 DOI: 10.3390/ijms24031812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Pinus massoniana Lamb. is a crucial timber and resin conifer in China, but its plantation industry is threatened by outbreaks of pine wilt disease (PWD) caused by Bursaphelenchus xylophilus (pinewood nematode; PWN). However, as of yet, there is no comprehensive analysis of NBS-LRR genes in P. massoniana involved in its defense against PWN. In this study, 507 NBS genes were identified in the transcriptome of resistant and susceptible P. masoniana inoculated with the PWN. The phylogenetic analysis and expression profiles of resistant and susceptible P. massoniana revealed that the up-regulated PmNBS-LRR97 gene was involved in conferring resistance to PWN. The results of real-time quantitative PCR (qRT-PCR) showed that PmNBS-LRR97 was significantly up-regulated after PWN infection, especially in the stems. Subcellular localization indicated that PmNBS-LRR97 located to the cell membrane. PmNBS-LRR97 significantly activated the expression of reactive oxygen species (ROS)-related genes in P. massoniana. In addition, the overexpression of PmNBS-LRR97 was capable of promoting the production of ROS, aiding in plant growth and development. In summary, PmNBS-LRR97 participates in the defense response to PWN and plays an active role in conferring resistance in P. massoniana. This finding provides new insight into the regulatory mechanism of the R gene in P. massoniana.
Collapse
Affiliation(s)
- Yini Xie
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Faculty of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou 311400, China
| | - Bin Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou 311400, China
| | - Kai Gao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou 311400, China
| | - Yunxiao Zhao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Wenhua Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou 311400, China
| | - Lili Deng
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou 311400, China
| | - Zhichun Zhou
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou 311400, China
| | - Qinghua Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou 311400, China
| |
Collapse
|
11
|
Vuong UT, Iswanto ABB, Nguyen Q, Kang H, Lee J, Moon J, Kim SH. Engineering plant immune circuit: walking to the bright future with a novel toolbox. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:17-45. [PMID: 36036862 PMCID: PMC9829404 DOI: 10.1111/pbi.13916] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Plant pathogens destroy crops and cause severe yield losses, leading to an insufficient food supply to sustain the human population. Apart from relying on natural plant immune systems to combat biological agents or waiting for the appropriate evolutionary steps to occur over time, researchers are currently seeking new breakthrough methods to boost disease resistance in plants through genetic engineering. Here, we summarize the past two decades of research in disease resistance engineering against an assortment of pathogens through modifying the plant immune components (internal and external) with several biotechnological techniques. We also discuss potential strategies and provide perspectives on engineering plant immune systems for enhanced pathogen resistance and plant fitness.
Collapse
Affiliation(s)
- Uyen Thi Vuong
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Arya Bagus Boedi Iswanto
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Quang‐Minh Nguyen
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Hobin Kang
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Jihyun Lee
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Jiyun Moon
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Sang Hee Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
- Division of Life ScienceGyeongsang National UniversityJinjuRepublic of Korea
| |
Collapse
|
12
|
Overexpression of a Cinnamyl Alcohol Dehydrogenase-Coding Gene, GsCAD1, from Wild Soybean Enhances Resistance to Soybean Mosaic Virus. Int J Mol Sci 2022; 23:ijms232315206. [PMID: 36499529 PMCID: PMC9740156 DOI: 10.3390/ijms232315206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Soybean mosaic virus (SMV) is the most prevalent soybean viral disease in the world. As a critical enzyme in the secondary metabolism of plants, especially in lignin synthesis, cinnamyl alcohol dehydrogenase (CAD) is widely involved in plant growth and development, and in defense against pathogen infestation. Here, we performed RNAseq-based transcriptome analyses of a highly SMV-resistant accession (BYO-15) of wild soybean (Glycine soja) and a SMV-susceptible soybean cultivar (Williams 82), also sequenced together with a resistant plant and a susceptible plant of their hybrid descendants at the F3 generation at 7 and 14 days post-inoculation with SMV. We found that the expression of GsCAD1 (from G. soja) was significantly up-regulated in the wild soybean and the resistant F3 plant, while the GmCAD1 from the cultivated soybean (G. max) did not show a significant and persistent induction in the soybean cultivar and the susceptible F3 plant, suggesting that GsCAD1 might play an important role in SMV resistance. We cloned GsCAD1 and overexpressed it in the SMV-susceptible cultivar Williams 82, and we found that two independent GsCAD1-overexpression (OE) lines showed significantly enhanced SMV resistance compared with the non-transformed wild-type (WT) control. Intriguingly, the lignin contents in both OE lines were higher than the WT control. Further liquid chromatography (HPLC) analysis showed that the contents of salicylic acid (SA) were significantly more improved in the OE lines than that of the wild-type (WT), coinciding with the up-regulated expression of an SA marker gene. Finally, we observed that GsCAD1-overexpression affected the accumulation of SMV in leaves. Collectively, our results suggest that GsCAD1 enhances resistance to SMV in soybeans, most likely by affecting the contents of lignin and SA.
Collapse
|
13
|
The Rm1 and Rm2 Resistance Genes to Green Peach Aphid ( Myzus persicae) Encode the Same TNL Proteins in Peach ( Prunus persica L.). Genes (Basel) 2022; 13:genes13081489. [PMID: 36011400 PMCID: PMC9408794 DOI: 10.3390/genes13081489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
The green peach aphid (GPA), Myzus persicae, is an important pest of the peach crop. Three major dominant resistance genes have already been detected, Rm1 in the Weeping Flower Peach (WFP) clone, Rm2 in the Rubira clone, and Rm3 in the Fen Shouxing clone. In this study, after NGS resequencing of WFP and Rubira, we found that their genomic sequences in the Rm1 and Rm2 region were similar but very different from that of the susceptible reference peach Lovell. We constructed a BAC library for the GPA-resistant WFP and screened four BAC clones to sequence the target region. The new sequence was 61.7 Kb longer than Lovell and was annotated with four different TIR_NBS_LRR genes. Among them, the TNL1 gene was very overexpressed in WFP leaves 24 h after GPA infestation. This gene was also present and expressed in the Rubira clone and had the same sequence as the candidate Rm3 gene, supporting the hypothesis that the three genes share the same origin. In addition, we identified a second TNL, TNL2, located at 35.4 Kb from TNL1 and slightly overexpressed after GPA infestation. Kasp and size molecular markers were designed for use in marker-assisted selection and were validated in a peach segregating population.
Collapse
|
14
|
Kiekens R, de Koning R, Toili MEM, Angenon G. The Hidden Potential of High-Throughput RNA-Seq Re-Analysis, a Case Study for DHDPS, Key Enzyme of the Aspartate-Derived Lysine Biosynthesis Pathway and Its Role in Abiotic and Biotic Stress Responses in Soybean. PLANTS 2022; 11:plants11131762. [PMID: 35807714 PMCID: PMC9269547 DOI: 10.3390/plants11131762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022]
Abstract
DHDPS is a key enzyme in the aspartate-derived lysine biosynthesis pathway and an evident object of study for biofortification strategies in plants. DHDPS isoforms with novel regulatory properties in Medicago truncatula were demonstrated earlier and hypothesized to be involved in abiotic and biotic stress responses. Here, we present a phylogenetic analysis of the DHPDS gene family in land plants which establishes the existence of a legume-specific class of DHDPS, termed DHDPS B-type, distinguishable from the DHDPS A-type commonly present in all land plants. The G. max genome comprises two A-type DHDPS genes (Gm.DHDPS-A1; Glyma.09G268200, Gm.DHDPS-A2; Glyma.18G221700) and one B-type (Gm.DHDPS-B; Glyma.03G022300). To further investigate the expression pattern of the G. max DHDPS isozymes in different plant tissues and under various stress conditions, 461 RNA-seq experiments were exploited and re-analyzed covering two expression atlases, 13 abiotic and 5 biotic stress studies. Gm.DHDPS-B is seen almost exclusively expressed in roots and nodules in addition to old cotyledons or senescent leaves while both DHDPS A-types are expressed constitutively in all tissues analyzed with the highest expression in mature seeds. Furthermore, Gm.DHDPS-B expression is significantly upregulated in some but not all stress responses including salt stress, flooding, ethylene or infection with Phytophthora sojae and coincides with downregulation of DHDPS A-types. In conclusion, we demonstrate the potential of an in-depth RNA-seq re-analysis for the guidance of future experiments and to expand on current knowledge.
Collapse
Affiliation(s)
- Raphaël Kiekens
- Research Group Plant Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (R.K.); (R.d.K.); (M.E.M.T.)
| | - Ramon de Koning
- Research Group Plant Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (R.K.); (R.d.K.); (M.E.M.T.)
| | - Mary Esther Muyoka Toili
- Research Group Plant Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (R.K.); (R.d.K.); (M.E.M.T.)
- Department of Horticulture and Food Security, School of Agriculture and Environmental Sciences, College of Agriculture and Natural Resources, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya
| | - Geert Angenon
- Research Group Plant Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (R.K.); (R.d.K.); (M.E.M.T.)
- Correspondence: ; Tel.: +32-2-629-1935
| |
Collapse
|
15
|
Usovsky M, Chen P, Li D, Wang A, Shi A, Zheng C, Shakiba E, Lee D, Canella Vieira C, Lee YC, Wu C, Cervantez I, Dong D. Decades of Genetic Research on Soybean mosaic virus Resistance in Soybean. Viruses 2022; 14:1122. [PMID: 35746594 PMCID: PMC9230979 DOI: 10.3390/v14061122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023] Open
Abstract
This review summarizes the history and current state of the known genetic basis for soybean resistance to Soybean mosaic virus (SMV), and examines how the integration of molecular markers has been utilized in breeding for crop improvement. SVM causes yield loss and seed quality reduction in soybean based on the SMV strain and the host genotype. Understanding the molecular underpinnings of SMV-soybean interactions and the genes conferring resistance to SMV has been a focus of intense research interest for decades. Soybean reactions are classified into three main responses: resistant, necrotic, or susceptible. Significant progress has been achieved that has greatly increased the understanding of soybean germplasm diversity, differential reactions to SMV strains, genotype-strain interactions, genes/alleles conferring specific reactions, and interactions among resistance genes and alleles. Many studies that aimed to uncover the physical position of resistance genes have been published in recent decades, collectively proposing different candidate genes. The studies on SMV resistance loci revealed that the resistance genes are mainly distributed on three chromosomes. Resistance has been pyramided in various combinations for durable resistance to SMV strains. The causative genes are still elusive despite early successes in identifying resistance alleles in soybean; however, a gene at the Rsv4 locus has been well validated.
Collapse
Affiliation(s)
- Mariola Usovsky
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65201, USA;
| | - Pengyin Chen
- Delta Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO 63873, USA; (D.L.); (C.C.V.); (Y.C.L.)
| | - Dexiao Li
- College of Agronomy, Northwest University of Agriculture, Jiangling, Xianyang 712100, China;
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada;
| | - Ainong Shi
- Department of Horticulture, University of Arkansas, Fayetteville, AR 72701, USA;
| | | | - Ehsan Shakiba
- Rice Research and Extension Center, Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Stuttgart, AR 72160, USA;
| | - Dongho Lee
- Delta Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO 63873, USA; (D.L.); (C.C.V.); (Y.C.L.)
| | - Caio Canella Vieira
- Delta Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO 63873, USA; (D.L.); (C.C.V.); (Y.C.L.)
| | - Yi Chen Lee
- Delta Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO 63873, USA; (D.L.); (C.C.V.); (Y.C.L.)
| | - Chengjun Wu
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Innan Cervantez
- Bayer CropScience, Global Soybean Breeding, 1781 Gavin Road, Marion, AR 72364, USA;
| | - Dekun Dong
- Soybean Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| |
Collapse
|
16
|
Yan T, Zhou Z, Wang R, Bao D, Li S, Li A, Yu R, Wuriyanghan H. A cluster of atypical resistance genes in soybean confers broad-spectrum antiviral activity. PLANT PHYSIOLOGY 2022; 188:1277-1293. [PMID: 34730802 PMCID: PMC8825445 DOI: 10.1093/plphys/kiab507] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/02/2021] [Indexed: 06/12/2023]
Abstract
Soybean mosaic virus (SMV) is a severe soybean (Glycine max) pathogen. Here we characterize a soybean SMV resistance cluster (SRC) that comprises five resistance (R) genes. SRC1 encodes a Toll/interleukin-1 receptor and nucleotide-binding site (TIR-NBS [TN]) protein, SRC4 and SRC6 encode TIR proteins with a short EF-hand domain, while SRC7 and SRC8 encode TNX proteins with a noncanonical basic secretory protein (BSP) domain at their C-termini. We mainly studied SRC7, which contains a noncanonical BSP domain and gave full resistance to SMV. SRC7 possessed broad-spectrum antiviral activity toward several plant viruses including SMV, plum pox virus, potato virus Y, and tobacco mosaic virus. The TIR domain alone was both necessary and sufficient for SRC7 immune signaling, while the NBS domain enhanced its activity. Nuclear oligomerization via the interactions of both TIR and NBS domains was essential for SRC7 function. SRC7 expression was transcriptionally inducible by SMV infection and salicylic acid (SA) treatment, and SA was required for SRC7 triggered virus resistance. SRC7 expression was posttranscriptionally regulated by miR1510a and miR2109, and the SRC7-miR1510a/miR2109 regulatory network appeared to contribute to SMV-soybean interactions in both resistant and susceptible soybean cultivars. In summary, we report a soybean R gene cluster centered by SRC7 that is regulated at both transcriptional and posttranscriptional levels, possesses a yet uncharacterized BSP domain, and has broad-spectrum antiviral activities. The SRC cluster is special as it harbors several functional R genes encoding atypical TIR-NBS-LRR (TNL) type R proteins, highlighting its importance in SMV-soybean interaction and plant immunity.
Collapse
Affiliation(s)
- Ting Yan
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Zikai Zhou
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Ru Wang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Duran Bao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Shanshan Li
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Aoga Li
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Ruonan Yu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Hada Wuriyanghan
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| |
Collapse
|
17
|
Zhang M, Liu S, Wang Z, Yuan Y, Zhang Z, Liang Q, Yang X, Duan Z, Liu Y, Kong F, Liu B, Ren B, Tian Z. Progress in soybean functional genomics over the past decade. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:256-282. [PMID: 34388296 PMCID: PMC8753368 DOI: 10.1111/pbi.13682] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 05/24/2023]
Abstract
Soybean is one of the most important oilseed and fodder crops. Benefiting from the efforts of soybean breeders and the development of breeding technology, large number of germplasm has been generated over the last 100 years. Nevertheless, soybean breeding needs to be accelerated to meet the needs of a growing world population, to promote sustainable agriculture and to address future environmental changes. The acceleration is highly reliant on the discoveries in gene functional studies. The release of the reference soybean genome in 2010 has significantly facilitated the advance in soybean functional genomics. Here, we review the research progress in soybean omics (genomics, transcriptomics, epigenomics and proteomics), germplasm development (germplasm resources and databases), gene discovery (genes that are responsible for important soybean traits including yield, flowering and maturity, seed quality, stress resistance, nodulation and domestication) and transformation technology during the past decade. At the end, we also briefly discuss current challenges and future directions.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Zhao Wang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yaqin Yuan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhifang Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qianjin Liang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xia Yang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zongbiao Duan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Baohui Liu
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Bo Ren
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
18
|
Xu H, Guo Y, Qiu L, Ran Y. Progress in Soybean Genetic Transformation Over the Last Decade. FRONTIERS IN PLANT SCIENCE 2022; 13:900318. [PMID: 35755694 PMCID: PMC9231586 DOI: 10.3389/fpls.2022.900318] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/11/2022] [Indexed: 05/13/2023]
Abstract
Soybean is one of the important food, feed, and biofuel crops in the world. Soybean genome modification by genetic transformation has been carried out for trait improvement for more than 4 decades. However, compared to other major crops such as rice, soybean is still recalcitrant to genetic transformation, and transgenic soybean production has been hampered by limitations such as low transformation efficiency and genotype specificity, and prolonged and tedious protocols. The primary goal in soybean transformation over the last decade is to achieve high efficiency and genotype flexibility. Soybean transformation has been improved by modifying tissue culture conditions such as selection of explant types, adjustment of culture medium components and choice of selection reagents, as well as better understanding the transformation mechanisms of specific approaches such as Agrobacterium infection. Transgenesis-based breeding of soybean varieties with new traits is now possible by development of improved protocols. In this review, we summarize the developments in soybean genetic transformation to date, especially focusing on the progress made using Agrobacterium-mediated methods and biolistic methods over the past decade. We also discuss current challenges and future directions.
Collapse
Affiliation(s)
- Hu Xu
- Tianjin Genovo Biotechnology Co., Ltd., Tianjin, China
| | - Yong Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lijuan Qiu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Lijuan Qiu,
| | - Yidong Ran
- Tianjin Genovo Biotechnology Co., Ltd., Tianjin, China
- Yidong Ran,
| |
Collapse
|
19
|
Mydy LS, Chigumba DN, Kersten RD. Plant Copper Metalloenzymes As Prospects for New Metabolism Involving Aromatic Compounds. FRONTIERS IN PLANT SCIENCE 2021; 12:692108. [PMID: 34925392 PMCID: PMC8672867 DOI: 10.3389/fpls.2021.692108] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/11/2021] [Indexed: 06/14/2023]
Abstract
Copper is an important transition metal cofactor in plant metabolism, which enables diverse biocatalysis in aerobic environments. Multiple classes of plant metalloenzymes evolved and underwent genetic expansions during the evolution of terrestrial plants and, to date, several representatives of these copper enzyme classes have characterized mechanisms. In this review, we give an updated overview of chemistry, structure, mechanism, function and phylogenetic distribution of plant copper metalloenzymes with an emphasis on biosynthesis of aromatic compounds such as phenylpropanoids (lignin, lignan, flavonoids) and cyclic peptides with macrocyclizations via aromatic amino acids. We also review a recent addition to plant copper enzymology in a copper-dependent peptide cyclase called the BURP domain. Given growing plant genetic resources, a large pool of copper biocatalysts remains to be characterized from plants as plant genomes contain on average more than 70 copper enzyme genes. A major challenge in characterization of copper biocatalysts from plant genomes is the identification of endogenous substrates and catalyzed reactions. We highlight some recent and future trends in filling these knowledge gaps in plant metabolism and the potential for genomic discovery of copper-based enzymology from plants.
Collapse
Affiliation(s)
| | | | - Roland D. Kersten
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
20
|
Kavas M, Yıldırım K, Seçgin Z, Abdulla MF, Gökdemir G. Genome-wide identification of the BURP domain-containing genes in Phaseolus vulgaris. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1885-1902. [PMID: 34629769 PMCID: PMC8484419 DOI: 10.1007/s12298-021-01052-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/29/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Plant-specific BURP domain-containing proteins have an essential role in the plant's development and stress responses. Although BURP domain-containing proteins have been identified in several plant species, genome-wide analysis of the BURP gene family has not been investigated in the common bean. In the present study, we identified 11 BURP family members in the common bean (Phaseolus vulgaris) genome with a comprehensive in silico analysis. Pairwise alignment and phylogenetic analyses grouped PvBURP members into four subfamilies [RD-22 like (3), PG1β-like (4), BNM2-like (3), and USP-like (1)] according to their amino acid motifs, protein domains and intron-exon structure. The physical and biochemical characteristics of amino acids, motif and intron-exon structure, and cis-regulatory elements of BURPs members were determined. Promoter regions of BURP members included stress, light, and hormone response-related cis-elements. Therefore, expression profiles of PvBURP genes were identified with in silico tools and qRT-PCR analyses under stress (salt and drought) and hormone treatment (ABA, IAA) in the current study. While significant activity changes were not observed in BURP genes in RNA-seq data sets related to salt stress, it was determined that some BURP genes were expressed differently in those with drought stress. We identified 12 different miRNA, including miRNA395, miRNA156, miRNA169, miRNA171, miRNA319, and miRNA390, targeting the nine PvBURP genes using two different in silico tools based on perfect or near-perfect complementarity to their targets. Here we present the first study to identify and characterize the BURP genes in common bean using whole-genome analysis, and the findings may serve as a reference for future functional research in common bean. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01052-9.
Collapse
Affiliation(s)
- Musa Kavas
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, Turkey
| | - Kubilay Yıldırım
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, Turkey
| | - Zafer Seçgin
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, Turkey
| | - Mohamed Farah Abdulla
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, Turkey
| | - Gökhan Gökdemir
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
21
|
Genome-wide approaches for the identification of markers and genes associated with sugarcane yellow leaf virus resistance. Sci Rep 2021; 11:15730. [PMID: 34344928 PMCID: PMC8333424 DOI: 10.1038/s41598-021-95116-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/19/2021] [Indexed: 11/10/2022] Open
Abstract
Sugarcane yellow leaf (SCYL), caused by the sugarcane yellow leaf virus (SCYLV) is a major disease affecting sugarcane, a leading sugar and energy crop. Despite damages caused by SCYLV, the genetic base of resistance to this virus remains largely unknown. Several methodologies have arisen to identify molecular markers associated with SCYLV resistance, which are crucial for marker-assisted selection and understanding response mechanisms to this virus. We investigated the genetic base of SCYLV resistance using dominant and codominant markers and genotypes of interest for sugarcane breeding. A sugarcane panel inoculated with SCYLV was analyzed for SCYL symptoms, and viral titer was estimated by RT-qPCR. This panel was genotyped with 662 dominant markers and 70,888 SNPs and indels with allele proportion information. We used polyploid-adapted genome-wide association analyses and machine-learning algorithms coupled with feature selection methods to establish marker-trait associations. While each approach identified unique marker sets associated with phenotypes, convergences were observed between them and demonstrated their complementarity. Lastly, we annotated these markers, identifying genes encoding emblematic participants in virus resistance mechanisms and previously unreported candidates involved in viral responses. Our approach could accelerate sugarcane breeding targeting SCYLV resistance and facilitate studies on biological processes leading to this trait.
Collapse
|
22
|
Hu Y, Tao F, Su C, Zhang Y, Li J, Wang J, Xu X, Chen X, Shang H, Hu X. NBS-LRR Gene TaRPS2 is Positively Associated with the High-Temperature Seedling Plant Resistance of Wheat Against Puccinia striiformis f. sp. tritici. PHYTOPATHOLOGY 2021; 111:1449-1458. [PMID: 33342265 DOI: 10.1094/phyto-03-20-0063-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Xiaoyan6 (XY6) is a wheat (Triticum aestivum) cultivar possessing nonrace-specific high-temperature seedling plant (HTSP) resistance against stripe rust, caused by Puccinia striiformis f. sp. tritici. Previously, we identified one particular gene, TaRPS2, for its involvement in the HTSP resistance. To elucidate the role of TaRPS2 in the HTSP resistance, we cloned the full length of TaRPS2 from XY6. The transcriptional expression of TaRPS2 was rapidly upregulated (19.11-fold) under the normal-high-normal temperature treatment that induces the HTSP resistance. The expression level of TaRPS2 in leaves was higher than that in the stems and roots. Quantification of the endogenous hormones in wheat leaves after P. striiformis f. sp. tritici inoculation showed that 1-aminocyclopropane-1-carboxylic acid, salicylic acid (SA), and jasmonic acid were involved in the HTSP resistance. In addition, detection of hydrogen peroxide (H2O2) accumulation indicated that reactive oxygen species burst was also associated with the HTSP resistance. Two hours after exogenous H2O2 treatment or 0.5 h after SA treatment, the expression level of TaRPS2 was increased by 2.66 and 2.35 times, respectively. The subcellular localization of enhanced green fluorescent protein-TaRPS2 fusion protein was in the nuclei and plasma membranes. Virus-induced gene silencing of TaRPS2 reduced the level of HTSP resistance in XY6. Compared with the nonsilenced leaves, the TaRPS2-silenced leaves had the reduction of necrotic cells but a greater number of uredinia. These results indicated that TaRPS2 positively regulates the HTSP resistance of XY6 against P. striiformis f. sp. tritici and is related to the SA and H2O2 signaling pathways.
Collapse
Affiliation(s)
- Yangshan Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Tao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Chang Su
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yue Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Juan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiahui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiangming Xu
- Pest & Pathogen Ecology, NIAB EMR, East Malling, West Malling, Kent ME19 6BJ, U.K
| | - Xianming Chen
- Agricultural Research Service, United States Department of Agriculture and Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, U.S.A
| | - Hongsheng Shang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoping Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
23
|
Hong Y, Meng J, He X, Zhang Y, Liu Y, Zhang C, Qi H, Luan Y. Editing miR482b and miR482c Simultaneously by CRISPR/Cas9 Enhanced Tomato Resistance to Phytophthora infestans. PHYTOPATHOLOGY 2021; 111:1008-1016. [PMID: 33258411 DOI: 10.1094/phyto-08-20-0360-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Late blight, caused by Phytophthora infestans, is severely damaging to the global tomato industry. Micro-RNAs (miRNAs) have been widely demonstrated to play vital roles in plant resistance by repressing their target genes. Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) method has been continuously improved and extensively applied to edit plant genomes. However, editing multiplex miRNAs by CRISPR/Cas9 in tomato has not been studied yet. We knocked out miR482b and miR482c simultaneously in tomato through the multiplex CRISPR/Cas9 system. Two transgenic plants with silenced miR482b and miR482c simultaneously and one transgenic line with silenced miR482b alone were obtained. Compared with wild-type plants, the disease symptoms of three transgenic plants upon infection were reduced, accompanied by increased expression of their common target nucleotide binding site-leucine-rich repeat genes and decreased levels of reactive oxygen species. Furthermore, silencing miR482b and miR482c simultaneously was more resistant than silencing miR482b alone in tomato. More importantly, we found that knocking out miR482b and miR482c can elicit expression perturbation of other miRNAs, suggesting cross-regulation between miRNAs. Our study demonstrated that editing miR482b and miR482c simultaneously with CRISPR/Cas9 is an efficient strategy for generating pathogen-resistant tomatoes, and cross-regulation between miRNAs may reveal the novel mechanism in tomato-P. infestans interactions.
Collapse
Affiliation(s)
- Yuhui Hong
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaoli He
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yuanyuan Zhang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yarong Liu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Chengwei Zhang
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100000, China
| | - Hongyan Qi
- College of Horticulture, Shenyang Agricultural University/Key Laboratory of Protected Horticulture, Ministry of Education/Northern National & Local Joint Engineering Research Center of Horticultural Facilities Design and Application Technology (Liaoning), Shenyang 110866, China
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
24
|
Zhang M, Liu Y, Li Z, She Z, Chai M, Aslam M, He Q, Huang Y, Chen F, Chen H, Song S, Wang B, Cai H, Qin Y. The bZIP transcription factor GmbZIP15 facilitates resistance against Sclerotinia sclerotiorum and Phytophthora sojae infection in soybean. iScience 2021; 24:102642. [PMID: 34151234 PMCID: PMC8188564 DOI: 10.1016/j.isci.2021.102642] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/07/2021] [Accepted: 05/20/2021] [Indexed: 01/22/2023] Open
Abstract
Soybean, one of the most valuable oilseed crops, is under constant pressure from pathogens. bZIP transcription factors (TFs) composing one of the largest TF families in plants have diverse functions. Biochemical and physiological analyses were performed to characterize the regulatory roles of soybean bZIP TF GmbZIP15 in response to pathogens. We found that transgenic soybean plants overexpressing GmbZIP15 has increased resistance against Sclerotinia sclerotiorum and Phytophthora sojae. Besides, GmbZIP15 regulates pathogen response by modulating the antioxidant defense system and phytohormone signaling. In addition, we performed chromatin immunoprecipitation sequencing to identify the downstream genes of GmbZIP15 in response to S. sclerotiorum and found that GmbZIP15 can activate or repress the expression of defense-related genes through direct promoter binding. Taken together, these results indicate that GmbZIP15 plays a positive role in pathogen resistance in soybean, and this activity may be dependent on phytohormone signaling. GmbZIP15 improves resistance against pathogen GmbZIP15 modulates the antioxidant defense system GmbZIP15 regulates phytohormone signaling GmbZIP15 can direct bind to G-box
Collapse
Affiliation(s)
- Man Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Yanhui Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Zixian Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Zeyuan She
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Mengnan Chai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Mohammad Aslam
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Qing He
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Youmei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Fangqian Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Huihuang Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Shikui Song
- Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Bingrui Wang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanyang Cai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Yuan Qin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| |
Collapse
|
25
|
Mani SD, Pandey S, Govindan M, Muthamilarasan M, Nagarathnam R. Transcriptome dynamics underlying elicitor-induced defense responses against Septoria leaf spot disease of tomato ( Solanum lycopersicum L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:873-888. [PMID: 33967469 PMCID: PMC8055812 DOI: 10.1007/s12298-021-00970-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
UNLABELLED Elicitor-induced defense response against potential plant pathogens has been widely reported in several crop plants; however, transcriptome dynamics underlying such defense response remains elusive. Our previous study identified and characterized a novel elicitor, κ-carrageenan, from Kappaphycus alvarezii, a marine red seaweed. Our preliminary studies have shown that the elicitor-treatment enhances the tolerance of a susceptible tomato cultivar to Septoria lycopersici (causative agent of leaf spot disease). To gain further insights into the genes regulated during elicitor treatment followed by pathogen infection, we have performed RNA-Seq experiments under different treatments, namely, control (untreated and uninfected), elicitor treatment, pathogen infection alone, and elicitor treatment followed by pathogen infection. To validate the results, forty-three genes belonging to five different classes, namely, ROS activating and detoxifying enzyme encoding genes, DEAD-box RNA helicase genes, autophagy-related genes, cysteine proteases, and pathogenesis-related genes, were chosen. Expression profiling of each gene was performed using qRT-PCR, and the data was correlated with the RNA-seq data. Altogether, the study has pinpointed a repertoire of genes that could be potential candidates for further functional characterization to provide insights into novel elicitor-induced fungal defense and develop transgenic lines resistant to foliar diseases. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-00970-y.
Collapse
Affiliation(s)
- Sumithra Devi Mani
- Unit of Plant Pathology, Center for Advanced Studies in Botany, University of Madras, Tamil Nadu, Guindy Campus, Chennai, 600 025 India
| | - Saurabh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110 067 India
| | - Muthukumar Govindan
- Unit of Plant Pathology, Center for Advanced Studies in Botany, University of Madras, Tamil Nadu, Guindy Campus, Chennai, 600 025 India
| | - Mehanathan Muthamilarasan
- Repository of Tomato Genomics Resources, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046 Telangana India
| | - Radhakrishnan Nagarathnam
- Unit of Plant Pathology, Center for Advanced Studies in Botany, University of Madras, Tamil Nadu, Guindy Campus, Chennai, 600 025 India
| |
Collapse
|
26
|
Chen S, Zhang N, Zhou G, Hussain S, Ahmed S, Tian H, Wang S. Knockout of the entire family of AITR genes in Arabidopsis leads to enhanced drought and salinity tolerance without fitness costs. BMC PLANT BIOLOGY 2021; 21:137. [PMID: 33726681 PMCID: PMC7967987 DOI: 10.1186/s12870-021-02907-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 03/01/2021] [Indexed: 05/18/2023]
Abstract
BACKGORUND Environmental stresses including abiotic stresses and biotic stresses limit yield of plants. Stress-tolerant breeding is an efficient way to improve plant yield under stress conditions. Genome editing by CRISPR/Cas9 can be used in molecular breeding to improve agronomic traits in crops, but in most cases, with fitness costs. The plant hormone ABA regulates plant responses to abiotic stresses via signaling transduction. We previously identified AITRs as a family of novel transcription factors that play a role in regulating plant responses to ABA and abiotic stresses. We found that abiotic stress tolerance was increased in the single, double and triple aitr mutants. However, it is unclear if the increased abiotic stress tolerance in the mutants may have fitness costs. RESULTS We report here the characterization of AITRs as suitable candidate genes for CRISPR/Cas9 editing to improve plant stress tolerance. By using CRISPR/Cas9 to target AITR3 and AITR4 simultaneously in the aitr256 triple and aitr1256 quadruple mutants respectively, we generated Cas9-free aitr23456 quintuple and aitr123456 sextuple mutants. We found that reduced sensitivities to ABA and enhanced tolerance to drought and salt were observed in these mutants. Most importantly, plant growth and development was not affected even in the aitr123456 sextuple mutants, in whom the entire AITR family genes have been knocked out, and the aitr123456 sextuple mutants also showed a wild type response to the pathogen infection. CONCLUSIONS Our results suggest that knockout of the AITR family genes in Arabidopsis enhanced abiotic stress tolerance without fitness costs. Considering that knock-out a few AITRs will lead to enhanced abiotic stress tolerance, that AITRs are widely distributed in angiosperms with multiple encoding genes, AITRs may be targeted for molecular breeding to improve abiotic stress tolerance in plants including crops.
Collapse
Affiliation(s)
- Siyu Chen
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, 276000, Linyi, China
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, 130024, Changchun, China
| | - Na Zhang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, 130024, Changchun, China
| | - Ganghua Zhou
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, 130024, Changchun, China
| | - Saddam Hussain
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, 130024, Changchun, China
| | - Sajjad Ahmed
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, 130024, Changchun, China
| | - Hainan Tian
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, 130024, Changchun, China.
| | - Shucai Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, 276000, Linyi, China.
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, 130024, Changchun, China.
| |
Collapse
|
27
|
Degradome sequencing-based identification of phasiRNAs biogenesis pathways in Oryza sativa. BMC Genomics 2021; 22:93. [PMID: 33516199 PMCID: PMC7847607 DOI: 10.1186/s12864-021-07406-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/25/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The microRNAs(miRNA)-derived secondary phased small interfering RNAs (phasiRNAs) participate in post-transcriptional gene silencing and play important roles in various bio-processes in plants. In rice, two miRNAs, miR2118 and miR2275, were mainly responsible for triggering of 21-nt and 24-nt phasiRNAs biogenesis, respectively. However, relative fewer phasiRNA biogenesis pathways have been discovered in rice compared to other plant species, which limits the comprehensive understanding of phasiRNA biogenesis and the miRNA-derived regulatory network. RESULTS In this study, we performed a systematical searching for phasiRNA biogenesis pathways in rice. As a result, five novel 21-nt phasiRNA biogenesis pathways and five novel 24-nt phasiRNA biogenesis pathways were identified. Further investigation of their regulatory function revealed that eleven novel phasiRNAs in 21-nt length recognized forty-one target genes. Most of these genes were involved in the growth and development of rice. In addition, five novel 24-nt phasiRNAs targeted to the promoter of an OsCKI1 gene and thereafter resulted in higher level of methylation in panicle, which implied their regulatory function in transcription of OsCKI1,which acted as a regulator of rice development. CONCLUSIONS These results substantially extended the information of phasiRNA biogenesis pathways and their regulatory function in rice.
Collapse
|
28
|
Ma G, Song Q, Li X, Qi L. High-Density Mapping and Candidate Gene Analysis of Pl18 and Pl20 in Sunflower by Whole-Genome Resequencing. Int J Mol Sci 2020; 21:E9571. [PMID: 33339111 PMCID: PMC7765508 DOI: 10.3390/ijms21249571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022] Open
Abstract
Downy mildew (DM) is one of the severe biotic threats to sunflower production worldwide. The inciting pathogen, Plasmopara halstedii, could overwinter in the field for years, creating a persistent threat to sunflower. The dominant genes Pl18 and Pl20 conferring resistance to known DM races have been previously mapped to 1.5 and 1.8 cM intervals on sunflower chromosomes 2 and 8, respectively. Utilizing a whole-genome resequencing strategy combined with reference sequence-based chromosome walking and high-density mapping in the present study, Pl18 was placed in a 0.7 cM interval on chromosome 2. A candidate gene HanXRQChr02g0048181 for Pl18 was identified from the XRQ reference genome and predicted to encode a protein with typical NLR domains for disease resistance. The Pl20 gene was placed in a 0.2 cM interval on chromosome 8. The putative gene with the NLR domain for Pl20, HanXRQChr08g0210051, was identified within the Pl20 interval. SNP markers closely linked to Pl18 and Pl20 were evaluated with 96 diverse sunflower lines, and a total of 13 diagnostic markers for Pl18 and four for Pl20 were identified. These markers will facilitate to transfer these new genes to elite sunflower lines and to pyramid these genes with broad-spectrum DM resistance in sunflower breeding.
Collapse
Affiliation(s)
- Guojia Ma
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA; (G.M.); (X.L.)
| | - Qijian Song
- USDA-Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705-2350, USA;
| | - Xuehui Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA; (G.M.); (X.L.)
| | - Lili Qi
- USDA-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102-2765, USA
| |
Collapse
|
29
|
Chai L, Zhang J, Li H, Zheng B, Jiang J, Cui C, Jiang L. Investigation for a multi-silique trait in Brassica napus by alternative splicing analysis. PeerJ 2020; 8:e10135. [PMID: 33083151 PMCID: PMC7548069 DOI: 10.7717/peerj.10135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 09/18/2020] [Indexed: 12/13/2022] Open
Abstract
Background Flower and fruit development are vital stages of the angiosperm lifecycle. We previously investigated the multi-silique trait in the rapeseed (Brassica napus) line zws-ms on a genomic and transcriptomic level, leading to the identification of two genomic regions and several candidate genes associated with this trait. However, some events on the transcriptome level, like alternative splicing, were poorly understood. Methods Plants from zws-ms and its near-isogenic line (NIL) zws-217 were both grown in Xindu with normal conditions and a colder area Ma'erkang. Buds from the two lines were sampled and RNA was isolated to perform the transcriptomic sequencing. The numbers and types of alternative splicing (AS) events from the two lines were counted and classified. Genes with AS events and expressed differentially between the two lines, as well as genes with AS events which occurred in only one line were emphasized. Their annotations were further studied. Results From the plants in Xindu District, an average of 205,496 AS events, which could be sorted into five AS types, were identified. zws-ms and zws-217 shared highly similar ratios of each AS type: The alternative 5' and 3' splice site types were the most common, while the exon skipping type was observed least often. Eleven differentially expressed AS genes were identified, of which four were upregulated and seven were downregulated in zws-ms. Their annotations implied that five of these genes were directly associated with the multi-silique trait. While samples from colder area Ma'erkang generated generally reduced number of each type of AS events except for Intron Retention; but the number of differentially expressed AS genes increased significantly. Further analysis found that among the 11 differentially expressed AS genes from Xindu, three of them maintained the same expression models, while the other eight genes did not show significant difference between the two lines in expression level. Additionally, the 205 line-specific expressed AS genes were analyzed, of which 187 could be annotated, and two were considered to be important. Discussion This study provides new insights into the molecular mechanism of the agronomically important multi-silique trait in rapeseed on the transcriptome level and screens out some environment-responding candidate genes.
Collapse
Affiliation(s)
- Liang Chai
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan Province, China
| | - Jinfang Zhang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan Province, China
| | - Haojie Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan Province, China
| | - Benchuan Zheng
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan Province, China
| | - Jun Jiang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan Province, China
| | - Cheng Cui
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan Province, China
| | - Liangcai Jiang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan Province, China
| |
Collapse
|
30
|
He Q, Cai H, Bai M, Zhang M, Chen F, Huang Y, Priyadarshani SVGN, Chai M, Liu L, Liu Y, Chen H, Qin Y. A Soybean bZIP Transcription Factor GmbZIP19 Confers Multiple Biotic and Abiotic Stress Responses in Plant. Int J Mol Sci 2020; 21:E4701. [PMID: 32630201 PMCID: PMC7369738 DOI: 10.3390/ijms21134701] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/22/2020] [Accepted: 06/29/2020] [Indexed: 01/29/2023] Open
Abstract
The basic leucine zipper (bZIP) is a plant-specific transcription factor family that plays crucial roles in response to biotic and abiotic stresses. However, little is known about the function of bZIP genes in soybean. In this study, we isolated a bZIP gene, GmbZIP19, from soybean. A subcellular localization study of GmbZIP19 revealed its nucleus localization. We showed that GmbZIP19 expression was significantly induced by ABA (abscisic acid), JA (jasmonic acid) and SA (salicylic acid), but reduced under salt and drought stress conditions. Further, GmbZIP19 overexpression Arabidopsis lines showed increased resistance to S. sclerotiorum and Pseudomonas syringae associated with upregulated ABA-, JA-, ETH- (ethephon-)and SA-induced marker genes expression, but exhibited sensitivity to salt and drought stresses in association with destroyed stomatal closure and downregulated the salt and drought stresses marker genes' expression. We generated a soybean transient GmbZIP19 overexpression line, performed a Chromatin immunoprecipitation assay and found that GmbZIP19 bound to promoters of ABA-, JA-, ETH-, and SA-induced marker genes in soybean. The yeast one-hybrid verified the combination. The current study suggested that GmbZIP19 is a positive regulator of pathogen resistance and a negative regulator of salt and drought stress tolerance.
Collapse
Affiliation(s)
- Qing He
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.H.); (H.C.); (M.Z.); (F.C.); (Y.H.); (S.V.G.N.P.); (M.C.); (H.C.)
| | - Hanyang Cai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.H.); (H.C.); (M.Z.); (F.C.); (Y.H.); (S.V.G.N.P.); (M.C.); (H.C.)
| | - Mengyan Bai
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.B.); (L.L.); (Y.L.)
| | - Man Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.H.); (H.C.); (M.Z.); (F.C.); (Y.H.); (S.V.G.N.P.); (M.C.); (H.C.)
| | - Fangqian Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.H.); (H.C.); (M.Z.); (F.C.); (Y.H.); (S.V.G.N.P.); (M.C.); (H.C.)
| | - Youmei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.H.); (H.C.); (M.Z.); (F.C.); (Y.H.); (S.V.G.N.P.); (M.C.); (H.C.)
| | - S. V. G. N. Priyadarshani
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.H.); (H.C.); (M.Z.); (F.C.); (Y.H.); (S.V.G.N.P.); (M.C.); (H.C.)
| | - Mengnan Chai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.H.); (H.C.); (M.Z.); (F.C.); (Y.H.); (S.V.G.N.P.); (M.C.); (H.C.)
| | - Liping Liu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.B.); (L.L.); (Y.L.)
| | - Yanhui Liu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.B.); (L.L.); (Y.L.)
| | - Huihuang Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.H.); (H.C.); (M.Z.); (F.C.); (Y.H.); (S.V.G.N.P.); (M.C.); (H.C.)
| | - Yuan Qin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.H.); (H.C.); (M.Z.); (F.C.); (Y.H.); (S.V.G.N.P.); (M.C.); (H.C.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
31
|
Xu M, Liu CL, Fu Y, Liao ZW, Guo PY, Xiong R, Cheng Y, Wei SS, Huang JQ, Tang H. Molecular characterization and expression analysis of pitaya (Hylocereus polyrhizus) HpLRR genes in response to Neoscytalidium dimidiatum infection. BMC PLANT BIOLOGY 2020; 20:160. [PMID: 32293269 PMCID: PMC7161156 DOI: 10.1186/s12870-020-02368-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Canker disease caused by Neoscytalidium dimidiatum is a devastating disease resulting in a major loss to the pitaya industry. However, resistance proteins in plants play crucial roles to against pathogen infection. Among resistance proteins, the leucine-rich repeat (LRR) protein is a major family that plays crucial roles in plant growth, development, and biotic and abiotic stress responses, especially in disease defense. RESULTS In the present study, a transcriptomics analysis identified a total of 272 LRR genes, 233 of which had coding sequences (CDSs), in the plant pitaya (Hylocereus polyrhizus) in response to fungal Neoscytalidium dimidiatum infection. These genes were divided into various subgroups based on specific domains and phylogenetic analysis. Molecular characterization, functional annotation of proteins, and an expression analysis of the LRR genes were conducted. Additionally, four LRR genes (CL445.Contig4_All, Unigene28_All, CL28.Contig2_All, and Unigene2712_All, which were selected because they had the four longest CDSs were further assessed using quantitative reverse transcription PCR (qRT-PCR) at different fungal infection stages in different pitaya species (Hylocereus polyrhizus and Hylocereus undatus), in different pitaya tissues, and after treatment with salicylic acid (SA), methyl jasmonate (MeJA), and abscisic acid (ABA) hormones. The associated protein functions and roles in signaling pathways were identified. CONCLUSIONS This study provides a comprehensive overview of the HpLRR family genes at transcriptional level in pitaya in response to N. dimidiatum infection, it will be helpful to understand the molecular mechanism of pitaya canker disease, and lay a strong foundation for further research.
Collapse
Affiliation(s)
- Min Xu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, No.58 Renmin Avenue, Haikou, 570228 Hainan People’s Republic of China
| | - Cheng-Li Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, No.58 Renmin Avenue, Haikou, 570228 Hainan People’s Republic of China
| | - Yu Fu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, No.58 Renmin Avenue, Haikou, 570228 Hainan People’s Republic of China
| | - Zhi-Wen Liao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, No.58 Renmin Avenue, Haikou, 570228 Hainan People’s Republic of China
| | - Pan-Yang Guo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, No.58 Renmin Avenue, Haikou, 570228 Hainan People’s Republic of China
| | - Rui Xiong
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, No.58 Renmin Avenue, Haikou, 570228 Hainan People’s Republic of China
| | - Yu Cheng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, No.58 Renmin Avenue, Haikou, 570228 Hainan People’s Republic of China
| | - Shuang-Shuang Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, No.58 Renmin Avenue, Haikou, 570228 Hainan People’s Republic of China
| | - Jia-Quan Huang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, No.58 Renmin Avenue, Haikou, 570228 Hainan People’s Republic of China
| | - Hua Tang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, No.58 Renmin Avenue, Haikou, 570228 Hainan People’s Republic of China
| |
Collapse
|
32
|
Soybean Resistance to Soybean Mosaic Virus. PLANTS 2020; 9:plants9020219. [PMID: 32046350 PMCID: PMC7076706 DOI: 10.3390/plants9020219] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/18/2020] [Accepted: 02/06/2020] [Indexed: 11/26/2022]
Abstract
Soybean mosaic virus (SMV) occurs in all soybean-growing areas in the world and causes huge losses in soybean yields and seed quality. During early viral infection, molecular interactions between SMV effector proteins and the soybean resistance (R) protein, if present, determine the development of resistance/disease in soybean plants. Depending on the interacting strain and cultivar, R-protein in resistant soybean perceives a specific SMV effector, which triggers either the extreme silent resistance or the typical resistance manifested by hypersensitive responses and induction of salicylic acid and reactive oxygen species. In this review, we consider the major advances that have been made in understanding the soybean–SMV arms race. We also focus on dissecting mechanisms SMV employs to establish infection and how soybean perceives and then responds to SMV attack. In addition, progress on soybean R-genes studies, as well as those addressing independent resistance genes, are also addressed.
Collapse
|
33
|
Kumar G, Dasgupta I. Comprehensive molecular insights into the stress response dynamics of rice (Oryza sativa L.) during rice tungro disease by RNA-seq-based comparative whole transcriptome analysis. J Biosci 2020. [DOI: 10.1007/s12038-020-9996-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Deforges J, Reis RS, Jacquet P, Vuarambon DJ, Poirier Y. Prediction of regulatory long intergenic non-coding RNAs acting in trans through base-pairing interactions. BMC Genomics 2019; 20:601. [PMID: 31331261 PMCID: PMC6647327 DOI: 10.1186/s12864-019-5946-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/30/2019] [Indexed: 12/13/2022] Open
Abstract
Background Long intergenic non-coding RNAs (lincRNAs) can act as regulators of expression of protein-coding genes. Trans-natural antisense transcripts (trans-NATs) are a type of lincRNAs that contain sequence complementary to mRNA from other loci. The regulatory potential of trans-NATs has been poorly studied in eukaryotes and no example of trans-NATs regulating gene expression in plants are reported. The goal of this study was to identify lincRNAs, and particularly trans-NATs, in Arabidopsis thaliana that have a potential to regulate expression of target genes in trans at the transcriptional or translational level. Results We identified 1001 lincRNAs using an RNAseq dataset from total polyA+ and polysome-associated RNA of seedlings grown under high and low phosphate, or shoots and roots treated with different phytohormones, of which 550 were differentially regulated. Approximately 30% of lincRNAs showed conservation amongst Brassicaceae and 25% harbored transposon element (TE) sequences. Gene co-expression network analysis highlighted a group of lincRNAs associated with the response of roots to low phosphate. A total of 129 trans-NATs were predicted, of which 88 were significantly differentially expressed under at least one pairwise comparison. Five trans-NATs showed a positive correlation between their expression and target mRNA steady-state levels, and three showed a negative correlation. Expression of four trans-NATs positively correlated with a change in target mRNA polysome association. The regulatory potential of these trans-NATs did not implicate miRNA mimics nor siRNAs. We also looked for lincRNAs that could regulate gene expression in trans by Watson-Crick DNA:RNA base pairing with target protein-encoding loci. We identified 100 and 81 with a positive or negative correlation, respectively, with steady-state level of their predicted target. The regulatory potential of one such candidate lincRNA harboring a SINE TE sequence was validated in a protoplast assay on three distinct genes containing homologous TE sequence in their promoters. Construction of networks highlighted other putative lincRNAs with multiple predicted target loci for which expression was positively correlated with target gene expression. Conclusions This study identified lincRNAs in Arabidopsis with potential in regulating target gene expression in trans by both RNA:RNA and RNA:DNA base pairing and highlights lincRNAs harboring TE sequences in such activity. Electronic supplementary material The online version of this article (10.1186/s12864-019-5946-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jules Deforges
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| | - Rodrigo S Reis
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| | - Philippe Jacquet
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| | - Dominique Jacques Vuarambon
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| | - Yves Poirier
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland.
| |
Collapse
|