1
|
Khan A, Cheng J, Kitashova A, Fürtauer L, Nägele T, Picco C, Scholz-Starke J, Keller I, Neuhaus HE, Pommerrenig B. Vacuolar sugar transporter EARLY RESPONSE TO DEHYDRATION6-LIKE4 affects fructose signaling and plant growth. PLANT PHYSIOLOGY 2023; 193:2141-2163. [PMID: 37427783 DOI: 10.1093/plphys/kiad403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/02/2023] [Accepted: 06/11/2023] [Indexed: 07/11/2023]
Abstract
Regulation of intracellular sugar homeostasis is maintained by regulation of activities of sugar import and export proteins residing at the tonoplast. We show here that the EARLY RESPONSE TO DEHYDRATION6-LIKE4 (ERDL4) protein, a member of the monosaccharide transporter family, resides in the vacuolar membrane in Arabidopsis (Arabidopsis thaliana). Gene expression and subcellular fractionation studies indicated that ERDL4 participates in fructose allocation across the tonoplast. Overexpression of ERDL4 increased total sugar levels in leaves due to a concomitantly induced stimulation of TONOPLAST SUGAR TRANSPORTER 2 (TST2) expression, coding for the major vacuolar sugar loader. This conclusion is supported by the finding that tst1-2 knockout lines overexpressing ERDL4 lack increased cellular sugar levels. ERDL4 activity contributing to the coordination of cellular sugar homeostasis is also indicated by 2 further observations. First, ERDL4 and TST genes exhibit an opposite regulation during a diurnal rhythm, and second, the ERDL4 gene is markedly expressed during cold acclimation, representing a situation in which TST activity needs to be upregulated. Moreover, ERDL4-overexpressing plants show larger rosettes and roots, a delayed flowering time, and increased total seed yield. Consistently, erdl4 knockout plants show impaired cold acclimation and freezing tolerance along with reduced plant biomass. In summary, we show that modification of cytosolic fructose levels influences plant organ development and stress tolerance.
Collapse
Affiliation(s)
- Azkia Khan
- Plant Physiology, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 22, D-67653 Kaiserslautern, Germany
| | - Jintao Cheng
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, China
| | - Anastasia Kitashova
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig-Maximilians- Universität München, D-82152 Planegg-Martinsried, Germany
| | - Lisa Fürtauer
- Institute for Biology III, Unit of Plant Molecular Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Thomas Nägele
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig-Maximilians- Universität München, D-82152 Planegg-Martinsried, Germany
| | - Cristiana Picco
- Institute of Biophysics, Consiglio Nazionale delle Ricerche (CNR), Via De Marini 6, I-16149 Genova, Italy
| | - Joachim Scholz-Starke
- Institute of Biophysics, Consiglio Nazionale delle Ricerche (CNR), Via De Marini 6, I-16149 Genova, Italy
| | - Isabel Keller
- Plant Physiology, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 22, D-67653 Kaiserslautern, Germany
| | - H Ekkehard Neuhaus
- Plant Physiology, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 22, D-67653 Kaiserslautern, Germany
| | - Benjamin Pommerrenig
- Plant Physiology, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 22, D-67653 Kaiserslautern, Germany
| |
Collapse
|
2
|
Guo WJ, Pommerrenig B, Neuhaus HE, Keller I. Interaction between sugar transport and plant development. JOURNAL OF PLANT PHYSIOLOGY 2023; 288:154073. [PMID: 37603910 DOI: 10.1016/j.jplph.2023.154073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
Endogenous programs and constant interaction with the environment regulate the development of the plant organism and its individual organs. Sugars are necessary building blocks for plant and organ growth and at the same time act as critical integrators of the metabolic state into the developmental program. There is a growing recognition that the specific type of sugar and its subcellular or tissue distribution is sensed and translated to developmental responses. Therefore, the transport of sugars across membranes is a key process in adapting plant organ properties and overall development to the nutritional state of the plant. In this review, we discuss how plants exploit various sugar transporters to signal growth responses, for example, to control the development of sink organs such as roots or fruits. We highlight which sugar transporters are involved in root and shoot growth and branching, how intracellular sugar allocation can regulate senescence, and, for example, control fruit development. We link the important transport processes to downstream signaling cascades and elucidate the factors responsible for the integration of sugar signaling and plant hormone responses.
Collapse
Affiliation(s)
- Woei-Jiun Guo
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Benjamin Pommerrenig
- Department of Plant Physiology, University of Kaiserslautern, Erwin Schrödinger Str., 67663, Kaiserslautern, Germany
| | - H Ekkehard Neuhaus
- Department of Plant Physiology, University of Kaiserslautern, Erwin Schrödinger Str., 67663, Kaiserslautern, Germany
| | - Isabel Keller
- Department of Plant Physiology, University of Kaiserslautern, Erwin Schrödinger Str., 67663, Kaiserslautern, Germany.
| |
Collapse
|
3
|
Rani R, Raza G, Ashfaq H, Rizwan M, Razzaq MK, Waheed MQ, Shimelis H, Babar AD, Arif M. Genome-wide association study of soybean ( Glycine max [L.] Merr.) germplasm for dissecting the quantitative trait nucleotides and candidate genes underlying yield-related traits. FRONTIERS IN PLANT SCIENCE 2023; 14:1229495. [PMID: 37636105 PMCID: PMC10450938 DOI: 10.3389/fpls.2023.1229495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023]
Abstract
Soybean (Glycine max [L.] Merr.) is one of the most significant crops in the world in terms of oil and protein. Owing to the rising demand for soybean products, there is an increasing need for improved varieties for more productive farming. However, complex correlation patterns among quantitative traits along with genetic interactions pose a challenge for soybean breeding. Association studies play an important role in the identification of accession with useful alleles by locating genomic sites associated with the phenotype in germplasm collections. In the present study, a genome-wide association study was carried out for seven agronomic and yield-related traits. A field experiment was conducted in 2015/2016 at two locations that include 155 diverse soybean germplasm. These germplasms were genotyped using SoySNP50K Illumina Infinium Bead-Chip. A total of 51 markers were identified for node number, plant height, pods per plant, seeds per plant, seed weight per plant, hundred-grain weight, and total yield using a multi-locus linear mixed model (MLMM) in FarmCPU. Among these significant SNPs, 18 were putative novel QTNs, while 33 co-localized with previously reported QTLs. A total of 2,356 genes were found in 250 kb upstream and downstream of significant SNPs, of which 17 genes were functional and the rest were hypothetical proteins. These 17 candidate genes were located in the region of 14 QTNs, of which ss715580365, ss715608427, ss715632502, and ss715620131 are novel QTNs for PH, PPP, SDPP, and TY respectively. Four candidate genes, Glyma.01g199200, Glyma.10g065700, Glyma.18g297900, and Glyma.14g009900, were identified in the vicinity of these novel QTNs, which encode lsd one like 1, Ergosterol biosynthesis ERG4/ERG24 family, HEAT repeat-containing protein, and RbcX2, respectively. Although further experimental validation of these candidate genes is required, several appear to be involved in growth and developmental processes related to the respective agronomic traits when compared with their homologs in Arabidopsis thaliana. This study supports the usefulness of association studies and provides valuable data for functional markers and investigating candidate genes within a diverse germplasm collection in future breeding programs.
Collapse
Affiliation(s)
- Reena Rani
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Ghulam Raza
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Hamza Ashfaq
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Muhammad Rizwan
- Plant Breeding and Genetics Division, Nuclear Institute of Agriculture (NIA), Tando Jam, Pakistan
| | - Muhammad Khuram Razzaq
- Soybean Research Institute, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Qandeel Waheed
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology (NIAB), Constituent College Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Hussein Shimelis
- School of Agricultural, Earth and Environmental Sciences, African Centre for Crop Improvement, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Allah Ditta Babar
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Muhammad Arif
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| |
Collapse
|
4
|
Ibrahim S, Ahmad N, Kuang L, Li K, Tian Z, Sadau SB, Tajo SM, Wang X, Wang H, Dun X. Transcriptome analysis reveals key regulatory genes for root growth related to potassium utilization efficiency in rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1194914. [PMID: 37546248 PMCID: PMC10400329 DOI: 10.3389/fpls.2023.1194914] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023]
Abstract
Root system architecture (RSA) is the primary predictor of nutrient intake and significantly influences potassium utilization efficiency (KUE). Uncertainty persists regarding the genetic factors governing root growth in rapeseed. The root transcriptome analysis reveals the genetic basis driving crop root growth. In this study, RNA-seq was used to profile the overall transcriptome in the root tissue of 20 Brassica napus accessions with high and low KUE. 71,437 genes in the roots displayed variable expression profiles between the two contrasting genotype groups. The 212 genes that had varied expression levels between the high and low KUE lines were found using a pairwise comparison approach. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional classification analysis revealed that the DEGs implicated in hormone and signaling pathways, as well as glucose, lipid, and amino acid metabolism, were all differently regulated in the rapeseed root system. Additionally, we discovered 33 transcription factors (TFs) that control root development were differentially expressed. By combining differential expression analysis, weighted gene co-expression network analysis (WGCNA), and recent genome-wide association study (GWAS) results, four candidate genes were identified as essential hub genes. These potential genes were located fewer than 100 kb from the peak SNPs of QTL clusters, and it was hypothesized that they regulated the formation of the root system. Three of the four hub genes' homologs-BnaC04G0560400ZS, BnaC04G0560400ZS, and BnaA03G0073500ZS-have been shown to control root development in earlier research. The information produced by our transcriptome profiling could be useful in revealing the molecular processes involved in the growth of rapeseed roots in response to KUE.
Collapse
Affiliation(s)
- Sani Ibrahim
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Department of Plant Biology, Faculty of Life Sciences, College of Natural and Pharmaceutical Sciences, Bayero University, Kano, Nigeria
| | - Nazir Ahmad
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Lieqiong Kuang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Keqi Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Ze Tian
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Salisu Bello Sadau
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (Institute of Cotton Research (ICR), CAAS), Anyang, China
| | - Sani Muhammad Tajo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (Institute of Cotton Research (ICR), CAAS), Anyang, China
| | - Xinfa Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Hanzhong Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaoling Dun
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
5
|
Laloum D, Magen S, Soroka Y, Avin-Wittenberg T. Exploring the Contribution of Autophagy to the Excess-Sucrose Response in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms23073891. [PMID: 35409249 PMCID: PMC8999498 DOI: 10.3390/ijms23073891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/13/2022] [Accepted: 03/29/2022] [Indexed: 01/18/2023] Open
Abstract
Autophagy is an essential intracellular eukaryotic recycling mechanism, functioning in, among others, carbon starvation. Surprisingly, although autophagy-deficient plants (atg mutants) are hypersensitive to carbon starvation, metabolic analysis revealed that they accumulate sugars under such conditions. In plants, sugars serve as both an energy source and as signaling molecules, affecting many developmental processes, including root and shoot formation. We thus set out to understand the interplay between autophagy and sucrose excess, comparing wild-type and atg mutant seedlings. The presented work showed that autophagy contributes to primary root elongation arrest under conditions of exogenous sucrose and glucose excess but not during fructose or mannitol treatment. Minor or no alterations in starch and primary metabolites were observed between atg mutants and wild-type plants, indicating that the sucrose response relates to its signaling and not its metabolic role. Extensive proteomic analysis of roots performed to further understand the mechanism found an accumulation of proteins essential for ROS reduction and auxin maintenance, which are necessary for root elongation, in atg plants under sucrose excess. The analysis also suggested mitochondrial and peroxisomal involvement in the autophagy-mediated sucrose response. This research increases our knowledge of the complex interplay between autophagy and sugar signaling in plants.
Collapse
|
6
|
Integrated physiological, proteomic, and metabolomic analyses of pecan cultivar 'Pawnee' adaptation to salt stress. Sci Rep 2022; 12:1841. [PMID: 35115595 PMCID: PMC8814186 DOI: 10.1038/s41598-022-05866-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/13/2022] [Indexed: 12/14/2022] Open
Abstract
The pecan is a salt-alkali-tolerant plant, and its fruit and wood have high economic value. This study aimed to explore the molecular mechanisms responsible for salt stress tolerance in the pecan grown under hydroponic conditions to simulate salt stress. The results showed that the photosynthetic rate (Pn) was reduced in response to salt stress, while the intercellular carbon dioxide concentrations (Ci) increased. The response of the pecan to salt stress was measured using iTRAQ (isobaric tags for relative or absolute quantitation) and LC/MS (liquid chromatography and mass spectrometry) non-targeted metabolomics technology. A total of 198 differentially expressed proteins (65 down-regulated and 133 up-regulated) and 538 differentially expressed metabolites (283 down-regulated and 255 up-regulated) were identified after exposure to salt stress for 48 h. These genes were associated with 21 core pathways, shown by Kyoto Encyclopedia of Genes and Genomes annotation and enrichment, including the metabolic pathways involved in nucleotide sugar and amino sugar metabolism, amino acid biosynthesis, starch and sucrose metabolism, and phenylpropane biosynthesis. In addition, analysis of interactions between the differentially expressed proteins and metabolites showed that two key nodes of the salt stress regulatory network, L-fucose and succinate, were up-regulated and down-regulated, respectively, suggesting that these metabolites may be significant for adaptations to salt stress. Finally, several key proteins were further verified by parallel reaction monitoring. In conclusion, this study used physiological, proteomic, and metabolomic methods to provide an important preliminary foundation for improving the salt tolerance of pecans.
Collapse
|
7
|
De Pascali M, Vergine M, Negro C, Greco D, Vita F, Sabella E, De Bellis L, Luvisi A. Xylella fastidiosa and Drought Stress in Olive Trees: A Complex Relationship Mediated by Soluble Sugars. BIOLOGY 2022; 11:biology11010112. [PMID: 35053110 PMCID: PMC8773346 DOI: 10.3390/biology11010112] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/02/2022] [Accepted: 01/07/2022] [Indexed: 12/19/2022]
Abstract
Simple Summary Carbohydrates play important roles in tolerance to both biotic and abiotic stressors. Xylella fastidiosa, the causal agent of “Olive Quick Decline Syndrome”, is a quarantine pathogen that induces drought stress in the host, aggravated by eventual water shortage, which is a frequent environmental condition in Mediterranean olive groves. At present, the resistance mechanisms shown by few resistant olive cultivars (e.g., cv Leccino) are not completely known; therefore, the aim of this research is to understand whether sugar metabolism is involved in the cross-talk mechanisms of biotic and abiotic responses. The results show that drought stress response induces effects beneficial to resistance of Xylella fastidiosa in cv Leccino. In the current context of global climate change, this study supports the importance of investigating the complex drought–disease interaction to detect resistance traits and thus find ways to counter the threat of this pathogen in the future. Abstract Xylella fastidiosa (Xf) subsp. pauca “De Donno” is the etiological agent of “Olive Quick Decline Syndrome” (OQDS) on olive trees (Olea europaea L.); the presence of the bacterium causes xylem vessel occlusions inducing a drought stress and the development of leaf scorch symptoms, which may be worsened by water shortage in summer. In order to evaluate how the two stress factors overlap each other, the carbohydrate content and the expression patterns of genes related to carbohydrate metabolism have been evaluated in two olive cvs trees (Cellina di Nardò, susceptible to Xf, and Leccino, resistant to Xf) reporting transcriptional dynamics elicited by Xf infection, drought, or combined stress (drought/Xf). In the Xf-susceptible Cellina di Nardò plants, Xf and its combination with drought significantly decrease total sugars compared to control (−27.0% and −25.7%, respectively). In contrast, the Xf-resistant Leccino plants show a more limited reduction in sugar content in Xf-positive conditions (−20.1%) and combined stresses (−11.1%). Furthermore, while the amount of glucose decreases significantly in stressed Cellina di Nardò plants (≈18%), an increase was observed in Leccino plants under drought/Xf combined stresses (+11.2%). An opposite behavior among cvs was also observed for sucrose, as an accumulation of the disaccharide was recorded in stressed Leccino plants (≈37%). The different response to combined stress by Xf-resistant plants was confirmed considering genes coding for the sucrose or monosaccharide transporter (OeSUT1, OeMST2), the cell wall or vacuolar invertase (OeINV-CW, OeINV-V), the granule-bound starch synthase I (OeGBSSI) and sucrose synthase (OeSUSY), with a higher expression than at least one single stress (e.g., ≈1-fold higher or more than Xf for OeMST2, OeINV-CW, OeINV-V, OeGBSSI). It is probable that the pathways involved in drought stress response induce positive effects useful for pathogen resistance in cv Leccino, confirming the importance of investigating the mechanisms of cross-talk of biotic and abiotic responses.
Collapse
Affiliation(s)
- Mariarosaria De Pascali
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (M.D.P.); (C.N.); (D.G.); (E.S.); (L.D.B.); (A.L.)
| | - Marzia Vergine
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (M.D.P.); (C.N.); (D.G.); (E.S.); (L.D.B.); (A.L.)
- Correspondence:
| | - Carmine Negro
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (M.D.P.); (C.N.); (D.G.); (E.S.); (L.D.B.); (A.L.)
| | - Davide Greco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (M.D.P.); (C.N.); (D.G.); (E.S.); (L.D.B.); (A.L.)
| | - Federico Vita
- Department of Biology, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Erika Sabella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (M.D.P.); (C.N.); (D.G.); (E.S.); (L.D.B.); (A.L.)
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (M.D.P.); (C.N.); (D.G.); (E.S.); (L.D.B.); (A.L.)
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (M.D.P.); (C.N.); (D.G.); (E.S.); (L.D.B.); (A.L.)
| |
Collapse
|
8
|
Mishra BS, Sharma M, Laxmi A. Role of sugar and auxin crosstalk in plant growth and development. PHYSIOLOGIA PLANTARUM 2022; 174:e13546. [PMID: 34480799 DOI: 10.1111/ppl.13546] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 05/07/2023]
Abstract
Under the natural environment, nutrient signals interact with phytohormones to coordinate and reprogram plant growth and survival. Sugars are important molecules that control almost all morphological and physiological processes in plants, ranging from seed germination to senescence. In addition to their functions as energy resources, osmoregulation, storage molecules, and structural components, sugars function as signaling molecules and interact with various plant signaling pathways, such as hormones, stress, and light to modulate growth and development according to fluctuating environmental conditions. Auxin, being an important phytohormone, is associated with almost all stages of the plant's life cycle and also plays a vital role in response to the dynamic environment for better growth and survival. In the previous years, substantial progress has been made that showed a range of common responses mediated by sugars and auxin signaling. This review discusses how sugar signaling affects auxin at various levels from its biosynthesis to perception and downstream gene activation. On the same note, the review also highlights the role of auxin signaling in fine-tuning sugar metabolism and carbon partitioning. Furthermore, we discussed the crosstalk between the two signaling machineries in the regulation of various biological processes, such as gene expression, cell cycle, development, root system architecture, and shoot growth. In conclusion, the review emphasized the role of sugar and auxin crosstalk in the regulation of several agriculturally important traits. Thus, engineering of sugar and auxin signaling pathways could potentially provide new avenues to manipulate for agricultural purposes.
Collapse
Affiliation(s)
- Bhuwaneshwar Sharan Mishra
- National Institute of Plant Genome Research, New Delhi, India
- Bhuwaneshwar Sharan Mishra, Ram Gulam Rai P. G. College Banktashiv, Affiliated to Deen Dayal Upadhyaya Gorakhpur University Gorakhpur, Deoria, Uttar Pradesh, India
| | - Mohan Sharma
- National Institute of Plant Genome Research, New Delhi, India
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
9
|
Kaufmann C, Stührwohldt N, Sauter M. Tyrosylprotein sulfotransferase-dependent and -independent regulation of root development and signaling by PSK LRR receptor kinases in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5508-5521. [PMID: 34028532 PMCID: PMC8318253 DOI: 10.1093/jxb/erab233] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/20/2021] [Indexed: 05/13/2023]
Abstract
Tyrosine-sulfated peptides are key regulators of plant growth and development. The disulfated pentapeptide phytosulfokine (PSK) mediates growth via leucine-rich repeat receptor-like kinases, PSKR1 and PSKR2. PSK receptors (PSKRs) are part of a response module at the plasma membrane that mediates short-term growth responses, but downstream signaling of transcriptional regulation remains unexplored. In Arabidopsis, tyrosine sulfation is catalyzed by a single-copy gene (TPST; encoding tyrosylprotein sulfotransferase). We performed a microarray-based transcriptome analysis in the tpst-1 mutant background that lacks sulfated peptides to identify PSK-regulated genes and genes that are regulated by other sulfated peptides. Of the 169 PSK-regulated genes, several had functions in root growth and development, in agreement with shorter roots and a higher lateral root density in tpst-1. Further, tpst-1 roots developed higher numbers of root hairs, and PSK induced expression of WEREWOLF (WER), its paralog MYB DOMAIN PROTEIN 23 (MYB23), and At1g66800 that maintain non-hair cell fate. The tpst-1 pskr1-3 pskr2-1 mutant showed even shorter roots, and higher lateral root and root hair density than tpst-1, revealing unexpected synergistic effects of ligand and PSKR deficiencies. While residual activities may exist, overexpression of PSKR1 in the tpst-1 background induced root growth, suggesting that PSKR1 may be active in the absence of sulfated ligands.
Collapse
Affiliation(s)
- Christine Kaufmann
- Plant Developmental Biology and Physiology, University of Kiel, Kiel, Germany
| | - Nils Stührwohldt
- Plant Developmental Biology and Physiology, University of Kiel, Kiel, Germany
| | - Margret Sauter
- Plant Developmental Biology and Physiology, University of Kiel, Kiel, Germany
- Correspondence:
| |
Collapse
|