1
|
Song Q, Du C, Xu Y, Wang J, Lin M, Zuo K. Transcriptional regulation of phospholipid transport in cotton fiber elongation by GhMYB30D04-GhHD1 interaction complex. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024. [PMID: 39287338 DOI: 10.1111/jipb.13776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/22/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024]
Abstract
Cotton fiber length is basically determined by well-coordinated gene expression and phosphatidylinositol phosphates (PIPs) accumulation during fiber elongation but the regulatory mechanism governing PIPs transport remains unknown. Here, we report a MYB transcription factor GhMYB30D04 in Gossypium hirsutum that promotes fiber elongation through modulating the expression of PIP transporter gene GhLTPG1. Knockout of GhMYB30D04 gene in cotton (KO) results in a reduction of GhLTPG1 transcripts with lower accumulation of PIPs, leading to shorter fibers and lower fiber yield. Conversely, GhMYB30D04 overexpression (GhMYB30D04-OE) causes richer PIPs and longer cotton fibers, mimicking the effects of exogenously applying PIPs on the ovules of GhMYB30D04-KO and wild type. Furthermore, GhMYB30D04 interacts with GhHD1, the crucial transcription factor of fiber initiation, to form an activation complex stabilized by PIPs, both of which upregulate GhLTPG1 expression. Comparative omics-analysis revealed that higher and extended expressions of LTPG1 in fiber elongation mainly correlate with the variations of the GhMYB30D04 gene between two cotton allotetraploids, contributing to longer fiber in G. babardense. Our work clarifies a mechanism by which GhHD1-GhMYB30D04 form a regulatory module of fiber elongation to tightly control PIP accumulation. Our work still has an implication that GhMYB30D04-GhHD1 associates with development transition from fiber initiation to elongation.
Collapse
Affiliation(s)
- Qingwei Song
- Single Cell Research Center, College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chuanhui Du
- Single Cell Research Center, College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yiyang Xu
- Single Cell Research Center, College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jin Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Min Lin
- College of Agriculture, Henan University, Kaifeng, 450046, China
| | - Kaijing Zuo
- Single Cell Research Center, College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
2
|
Xu W, Peng X, Li Y, Zeng X, Yan W, Wang C, Wang CR, Chen S, Xu C, Tang X. OsSNDP4, a Sec14-nodulin Domain Protein, is Required for Pollen Development in Rice. RICE (NEW YORK, N.Y.) 2024; 17:54. [PMID: 39207611 PMCID: PMC11362464 DOI: 10.1186/s12284-024-00730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Pollen is encased in a robust wall that shields the male gametophyte from various stresses and aids in pollination. The pollen wall consists of gametophyte-derived intine and sporophyte-derived exine. The exine is mainly composed of sporopollenin, which is biopolymers of aliphatic lipids and phenolics. The process of exine formation has been the subject of extensive research, yet the underlying molecular mechanisms remain elusive. In this study, we identified a rice mutant of the OsSNDP4 gene that is impaired in pollen development. We demonstrated that OsSNDP4, a putative Sec14-nodulin domain protein, exhibits a preference for binding to phosphatidylinositol (3)-phosphate [PI(3)P], a lipid primarily found in endosomal and vacuolar membranes. The OsSNDP4 protein was detected in association with the endoplasmic reticulum (ER), vacuolar membranes, and the nucleus. OsSNDP4 expression was detected in all tested organs but was notably higher in anthers during exine development. Loss of OsSNDP4 function led to abnormal vacuole dynamics, inhibition in Ubisch body development, and premature degradation of cellular contents and organelles in the tapetal cells. Microspores from the ossndp4 mutant plant displayed abnormal exine formation, abnormal vacuole enlargement, and ultimately, pollen abortion. RNA-seq assay revealed that genes involved in the biosynthesis of fatty acid and secondary metabolites, the biosynthesis of lipid polymers, and exosome formation were enriched among the down-regulated genes in the mutant anthers, which correlated with the morphological defects observed in the mutant anthers. Base on these findings, we propose that OsSNDP4 regulates pollen development by binding to PI(3)P and influencing the dynamics of membrane systems. The involvement of membrane systems in the regulation of sporopollenin biosynthesis, Ubisch body formation, and exine formation provides a novel mechanism regulating pollen wall development.
Collapse
Affiliation(s)
- Weitao Xu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiaoqun Peng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yiqi Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xinhuang Zeng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wei Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China
| | - Changjian Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Cheng Rui Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shunquan Chen
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China
| | - Chunjue Xu
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China.
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China.
| |
Collapse
|
3
|
Afonnikova SD, Kiseleva AA, Fedyaeva AV, Komyshev EG, Koval VS, Afonnikov DA, Salina EA. Identification of Novel Loci Precisely Modulating Pre-Harvest Sprouting Resistance and Red Color Components of the Seed Coat in T. aestivum L. PLANTS (BASEL, SWITZERLAND) 2024; 13:1309. [PMID: 38794380 PMCID: PMC11126043 DOI: 10.3390/plants13101309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
The association between pre-harvest sprouting (PHS) and seed coat color has long been recognized. Red-grained wheats generally exhibit greater PHS resistance compared to white-grained wheat, although variability in PHS resistance exists within red-grained varieties. Here, we conducted a genome-wide association study on a panel consisting of red-grained wheat varieties, aimed at uncovering genes that modulate PHS resistance and red color components of seed coat using digital image processing. Twelve loci associated with PHS traits were identified, nine of which were described for the first time. Genetic loci marked by SNPs AX-95172164 (chromosome 1B) and AX-158544327 (chromosome 7D) explained approximately 25% of germination index variance, highlighting their value for breeding PHS-resistant varieties. The most promising candidate gene for PHS resistance was TraesCS6B02G147900, encoding a protein involved in aleurone layer morphogenesis. Twenty-six SNPs were significantly associated with grain color, independently of the known Tamyb10 gene. Most of them were related to multiple color characteristics. Prioritization of genes within the revealed loci identified TraesCS1D03G0758600 and TraesCS7B03G1296800, involved in the regulation of pigment biosynthesis and in controlling pigment accumulation. In conclusion, our study identifies new loci associated with grain color and germination index, providing insights into the genetic mechanisms underlying these traits.
Collapse
Affiliation(s)
- Svetlana D. Afonnikova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Antonina A. Kiseleva
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Anna V. Fedyaeva
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Evgenii G. Komyshev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Vasily S. Koval
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Dmitry A. Afonnikov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Elena A. Salina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
4
|
Fang C, Jiang N, Teresi SJ, Platts AE, Agarwal G, Niederhuth C, Edger PP, Jiang J. Dynamics of accessible chromatin regions and subgenome dominance in octoploid strawberry. Nat Commun 2024; 15:2491. [PMID: 38509076 PMCID: PMC10954716 DOI: 10.1038/s41467-024-46861-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/12/2024] [Indexed: 03/22/2024] Open
Abstract
Subgenome dominance has been reported in diverse allopolyploid species, where genes from one subgenome are preferentially retained and are more highly expressed than those from other subgenome(s). However, the molecular mechanisms responsible for subgenome dominance remain poorly understood. Here, we develop genome-wide map of accessible chromatin regions (ACRs) in cultivated strawberry (2n = 8x = 56, with A, B, C, D subgenomes). Each ACR is identified as an MNase hypersensitive site (MHS). We discover that the dominant subgenome A contains a greater number of total MHSs and MHS per gene than the submissive B/C/D subgenomes. Subgenome A suffers fewer losses of MHS-related DNA sequences and fewer MHS fragmentations caused by insertions of transposable elements. We also discover that genes and MHSs related to stress response have been preferentially retained in subgenome A. We conclude that preservation of genes and their cognate ACRs, especially those related to stress responses, play a major role in the establishment of subgenome dominance in octoploid strawberry.
Collapse
Affiliation(s)
- Chao Fang
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Ning Jiang
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Michigan State University AgBioResearch, East Lansing, MI, 48824, USA
- Genetics and Genome Sciences Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Scott J Teresi
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Genetics and Genome Sciences Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Adrian E Platts
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Gaurav Agarwal
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Chad Niederhuth
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Michigan State University AgBioResearch, East Lansing, MI, 48824, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.
- Michigan State University AgBioResearch, East Lansing, MI, 48824, USA.
- Genetics and Genome Sciences Program, Michigan State University, East Lansing, MI, 48824, USA.
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.
- Michigan State University AgBioResearch, East Lansing, MI, 48824, USA.
| |
Collapse
|
5
|
Yan ZW, Chen FY, Zhang X, Cai WJ, Chen CY, Liu J, Wu MN, Liu NJ, Ma B, Wang MY, Chao DY, Gao CJ, Mao YB. Endocytosis-mediated entry of a caterpillar effector into plants is countered by Jasmonate. Nat Commun 2023; 14:6551. [PMID: 37848424 PMCID: PMC10582130 DOI: 10.1038/s41467-023-42226-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023] Open
Abstract
Insects and pathogens release effectors into plant cells to weaken the host defense or immune response. While the imports of some bacterial and fungal effectors into plants have been previously characterized, the mechanisms of how caterpillar effectors enter plant cells remain a mystery. Using live cell imaging and real-time protein tracking, we show that HARP1, an effector from the oral secretions of cotton bollworm (Helicoverpa armigera), enters plant cells via protein-mediated endocytosis. The entry of HARP1 into a plant cell depends on its interaction with vesicle trafficking components including CTL1, PATL2, and TET8. The plant defense hormone jasmonate (JA) restricts HARP1 import by inhibiting endocytosis and HARP1 loading into endosomes. Combined with the previous report that HARP1 inhibits JA signaling output in host plants, it unveils that the effector and JA establish a defense and counter-defense loop reflecting the robust arms race between plants and insects.
Collapse
Affiliation(s)
- Zi-Wei Yan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of CAS, Shanghai, China
| | - Fang-Yan Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of CAS, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics, CEMPS/SIPPE, CAS, Shanghai, China
| | - Xian Zhang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of CAS, Shanghai, China
| | - Wen-Juan Cai
- Core Facility Center of CEMPS/SIPPE, CAS, Shanghai, China
| | - Chun-Yu Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of CAS, Shanghai, China
| | - Jie Liu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Man-Ni Wu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of CAS, Shanghai, China
| | - Ning-Jing Liu
- National Key Laboratory of Plant Molecular Genetics, CEMPS/SIPPE, CAS, Shanghai, China
| | - Bin Ma
- National Key Laboratory of Plant Molecular Genetics, CEMPS/SIPPE, CAS, Shanghai, China
| | - Mu-Yang Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics, CEMPS/SIPPE, CAS, Shanghai, China
| | - Cai-Ji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, China
| | - Ying-Bo Mao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.
| |
Collapse
|
6
|
Montag K, Ivanov R, Bauer P. Role of SEC14-like phosphatidylinositol transfer proteins in membrane identity and dynamics. FRONTIERS IN PLANT SCIENCE 2023; 14:1181031. [PMID: 37255567 PMCID: PMC10225987 DOI: 10.3389/fpls.2023.1181031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/05/2023] [Indexed: 06/01/2023]
Abstract
Membrane identity and dynamic processes, that act at membrane sites, provide important cues for regulating transport, signal transduction and communication across membranes. There are still numerous open questions as to how membrane identity changes and the dynamic processes acting at the surface of membranes are regulated in diverse eukaryotes in particular plants and which roles are being played by protein interaction complexes composed of peripheral and integral membrane proteins. One class of peripheral membrane proteins conserved across eukaryotes comprises the SEC14-like phosphatidylinositol transfer proteins (SEC14L-PITPs). These proteins share a SEC14 domain that contributes to membrane identity and fulfills regulatory functions in membrane trafficking by its ability to sense, bind, transport and exchange lipophilic substances between membranes, such as phosphoinositides and diverse other lipophilic substances. SEC14L-PITPs can occur as single-domain SEC14-only proteins in all investigated organisms or with a modular domain structure as multi-domain proteins in animals and streptophytes (comprising charales and land plants). Here, we present an overview on the functional roles of SEC14L-PITPs, with a special focus on the multi-domain SEC14L-PITPs of the SEC14-nodulin and SEC14-GOLD group (PATELLINs, PATLs in plants). This indicates that SEC14L-PITPs play diverse roles from membrane trafficking to organism fitness in plants. We concentrate on the structure of SEC14L-PITPs, their ability to not only bind phospholipids but also other lipophilic ligands, and their ability to regulate complex cellular responses through interacting with proteins at membrane sites.
Collapse
Affiliation(s)
- Karolin Montag
- Institute of Botany, Heinrich Heine University, Düsseldorf, Germany
| | - Rumen Ivanov
- Institute of Botany, Heinrich Heine University, Düsseldorf, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, Düsseldorf, Germany
- Center of Excellence on Plant Sciences (CEPLAS), Germany
| |
Collapse
|
7
|
Hornbergs J, Montag K, Loschwitz J, Mohr I, Poschmann G, Schnake A, Gratz R, Brumbarova T, Eutebach M, Angrand K, Fink-Straube C, Stühler K, Zeier J, Hartmann L, Strodel B, Ivanov R, Bauer P. SEC14-GOLD protein PATELLIN2 binds IRON-REGULATED TRANSPORTER1 linking root iron uptake to vitamin E. PLANT PHYSIOLOGY 2023; 192:504-526. [PMID: 36493393 PMCID: PMC10152663 DOI: 10.1093/plphys/kiac563] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/23/2022] [Accepted: 12/07/2022] [Indexed: 05/03/2023]
Abstract
Organisms require micronutrients, and Arabidopsis (Arabidopsis thaliana) IRON-REGULATED TRANSPORTER1 (IRT1) is essential for iron (Fe2+) acquisition into root cells. Uptake of reactive Fe2+ exposes cells to the risk of membrane lipid peroxidation. Surprisingly little is known about how this is avoided. IRT1 activity is controlled by an intracellular variable region (IRT1vr) that acts as a regulatory protein interaction platform. Here, we describe that IRT1vr interacted with peripheral plasma membrane SEC14-Golgi dynamics (SEC14-GOLD) protein PATELLIN2 (PATL2). SEC14 proteins bind lipophilic substrates and transport or present them at the membrane. To date, no direct roles have been attributed to SEC14 proteins in Fe import. PATL2 affected root Fe acquisition responses, interacted with ROS response proteins in roots, and alleviated root lipid peroxidation. PATL2 had high affinity in vitro for the major lipophilic antioxidant vitamin E compound α-tocopherol. Molecular dynamics simulations provided insight into energetic constraints and the orientation and stability of the PATL2-ligand interaction in atomic detail. Hence, this work highlights a compelling mechanism connecting vitamin E with root metal ion transport at the plasma membrane with the participation of an IRT1-interacting and α-tocopherol-binding SEC14 protein.
Collapse
Affiliation(s)
- Jannik Hornbergs
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Karolin Montag
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Jennifer Loschwitz
- Institute of Theoretical Chemistry and Computer Chemistry, Heinrich Heine University, Düsseldorf 40225, Germany
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Inga Mohr
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Anika Schnake
- Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Regina Gratz
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany
| | | | - Monique Eutebach
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Kalina Angrand
- Department of Biosciences-Plant Biology, Saarland University, Campus A2.4, D-66123 Saarbrücken, Germany
| | | | - Kai Stühler
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Molecular Proteomics Laboratory, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf 40225, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf 40225, Germany
| | - Laura Hartmann
- Institute of Macromolecular Chemistry, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Birgit Strodel
- Institute of Theoretical Chemistry and Computer Chemistry, Heinrich Heine University, Düsseldorf 40225, Germany
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rumen Ivanov
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf 40225, Germany
| |
Collapse
|
8
|
Wege S, Ugalde JM. Metal health: PATELLIN2 reduces iron-induced toxicity in Arabidopsis. PLANT PHYSIOLOGY 2023; 192:15-16. [PMID: 36789501 PMCID: PMC10152643 DOI: 10.1093/plphys/kiad090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 05/03/2023]
Affiliation(s)
- Stefanie Wege
- Plant Physiology, American Society of Plant Biologists, Rockville, MD, USA
| | - José Manuel Ugalde
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53115 Bonn, Germany
- Institute of Crop Science and Resource Conservation (INRES)-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
| |
Collapse
|
9
|
Ergon Å, Milvang ØW, Skøt L, Ruttink T. Identification of loci controlling timing of stem elongation in red clover using genotyping by sequencing of pooled phenotypic extremes. Mol Genet Genomics 2022; 297:1587-1600. [PMID: 36001174 DOI: 10.1007/s00438-022-01942-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022]
Abstract
MAIN CONCLUSION Through selective genotyping of pooled phenotypic extremes, we identified a number of loci and candidate genes putatively controlling timing of stem elongation in red clover. We have identified candidate genes controlling the timing of stem elongation prior to flowering in red clover (Trifolium pratense L.). This trait is of ecological and agronomic significance, as it affects fitness, competitivity, climate adaptation, forage and seed yield, and forage quality. We genotyped replicate pools of phenotypically extreme individuals (early and late-elongating) within cultivar Lea using genotyping-by-sequencing in pools (pool-GBS). After calling and filtering SNPs and GBS locus haplotype polymorphisms, we estimated allele frequencies and searched for markers with significantly different allele frequencies in the two phenotypic groups using BayeScan, an FST-based test utilizing replicate pools, and a test based on error variance of replicate pools. Of the three methods, BayeScan was the least stringent, and the error variance-based test the most stringent. Fifteen significant markers were identified in common by all three tests. The candidate genes flanking the markers include genes with potential roles in the vernalization, autonomous, and photoperiod regulation of floral transition, hormonal regulation of stem elongation, and cell growth. These results provide a first insight into the potential genes and mechanisms controlling transition to stem elongation in a perennial legume, which lays a foundation for further functional studies of the genetic determinants regulating this important trait.
Collapse
Affiliation(s)
- Åshild Ergon
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway.
| | - Øystein W Milvang
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
| | - Leif Skøt
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Tom Ruttink
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Caritasstraat 39, B-9090 Melle, Belgium
| |
Collapse
|
10
|
Kim E, Poudyal RS, Lee K, Yu H, Gi E, Kim HU. Chloroplast-localized PITP7 is essential for plant growth and photosynthetic function in Arabidopsis. PHYSIOLOGIA PLANTARUM 2022; 174:e13760. [PMID: 36004734 PMCID: PMC9546280 DOI: 10.1111/ppl.13760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/21/2022] [Accepted: 08/02/2022] [Indexed: 06/02/2023]
Abstract
Recent studies of chloroplast-localized Sec14-like protein (CPSFL1, also known as phosphatidylinositol transfer protein 7, PITP7) showed that CPSFL1 is necessary for photoautotropic growth and chloroplast vesicle formation in Arabidopsis (Arabidopsis thaliana). Here, we investigated the functional roles of CPSFL1/PITP7 using two A. thaliana mutants carrying a putative null allele (pitp7-1) and a weak allele (pitp7-2), respectively. PITP7 transcripts were undetectable in pitp7-1 and less abundant in pitp7-2 than in the wild-type (WT). The severity of mutant phenotypes, such as plant developmental abnormalities, levels of plastoquinone-9 (PQ-9) and chlorophylls, photosynthetic protein complexes, and photosynthetic performance, were well related to PITP7 transcript levels. The pitp7-1 mutation was seedling lethal and was associated with significantly lower levels of PQ-9 and major photosynthetic proteins. pitp7-2 plants showed greater susceptibility to high-intensity light stress than the WT, attributable to defects in nonphotochemical quenching and photosynthetic electron transport. PITP7 is specifically bound to phosphatidylinositol phosphates (PIPs) in lipid-binding assays in vitro, and the point mutations R82, H125, E162, or K233 reduced the binding affinity of PITP7 to PIPs. Further, constitutive expression of PITP7H125Q or PITP7E162K in pitp7-1 homozygous plants restored autotrophic growth in soil but without fully complementing the mutant phenotypes. Consistent with a previous study, our results demonstrate that PITP7 is essential for plant development, particularly the accumulation of PQ-9 and photosynthetic complexes. We propose a possible role for PITP7 in membrane trafficking of hydrophobic ligands such as PQ-9 and carotenoids through chloroplast vesicle formation or direct binding involving PIPs.
Collapse
Affiliation(s)
- Eun‐Ha Kim
- Department of Agricultural BiotechnologyNational Institute of Agricultural Sciences, Rural Development AdministrationJeonjuRepublic of Korea
| | - Roshan Sharma Poudyal
- Department of Agricultural BiotechnologyNational Institute of Agricultural Sciences, Rural Development AdministrationJeonjuRepublic of Korea
| | - Kyeong‐Ryeol Lee
- Department of Agricultural BiotechnologyNational Institute of Agricultural Sciences, Rural Development AdministrationJeonjuRepublic of Korea
| | - Hami Yu
- Department of Agricultural BiotechnologyNational Institute of Agricultural Sciences, Rural Development AdministrationJeonjuRepublic of Korea
| | - Eunji Gi
- Department of Agricultural BiotechnologyNational Institute of Agricultural Sciences, Rural Development AdministrationJeonjuRepublic of Korea
| | - Hyun Uk Kim
- Department of Bioindustry and Bioresource EngineeringPlant Engineering Research Institute, Sejong UniversitySeoulRepublic of Korea
| |
Collapse
|
11
|
Mendes LFS, Costa-Filho AJ. A gold revision of the Golgi Dynamics (GOLD) domain structure and associated cell functionalities. FEBS Lett 2022; 596:973-990. [PMID: 35099811 DOI: 10.1002/1873-3468.14300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/04/2022] [Accepted: 01/20/2022] [Indexed: 11/06/2022]
Abstract
The classical secretory pathway is the key membrane-based delivery system in eukaryotic cells. Several families of proteins involved in the secretory pathway, with functionalities going from cargo sorting receptors to the maintenance and dynamics of secretory organelles, share soluble globular domains predicted to mediate protein-protein interactions. One of them is "Golgi Dynamics" (GOLD) domain, named after its strong association with the Golgi apparatus. There are many GOLD-containing protein families, such as the Transmembrane emp24 domain-containing proteins (TMED/p24 family), animal SEC14-like proteins, Human Golgi resident protein ACBD3, a splice variant of TICAM2 called TRAM with GOLD domain and FYCO1. Here, we critically review the state-of-the-art knowledge of the structures and functions of the main representatives of GOLD-containing proteins in vertebrates. We provide the first unified description of the GOLD domain structure across different families since the first high-resolution structure was determined. With a brand-new update on the definition of the GOLD domain, we also discuss how its tertiary structure fits the β-sandwich-like fold map and give exciting new directions for forthcoming studies.
Collapse
Affiliation(s)
- Luis Felipe S Mendes
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - Antonio J Costa-Filho
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| |
Collapse
|
12
|
Nayar S, Thangavel G. CsubMADS1, a lag phase transcription factor, controls development of polar eukaryotic microalga Coccomyxa subellipsoidea C-169. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1228-1242. [PMID: 34160095 DOI: 10.1111/tpj.15380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/30/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
MADS-box transcription factors (TFs) have not been functionally delineated in microalgae. In this study, the role of CsubMADS1 from microalga Coccomyxa subellipsoidea C-169 has been explored. Unlike Type II MADS-box proteins of seed plants with MADS, Intervening, K-box, and C domains, CsubMADS1 only has MADS and Intervening domains. It forms a group with MADS TFs from algae in the phylogenetic tree within the Type II MIKCC clade. CsubMADS1 is expressed strongly in the lag phase of growth. The CsubMADS1 monomer does not have a specific localization in the nucleus, and it forms homodimers to localize exclusively in the nucleus. The monomer has two nuclear localization signals (NLSs): an N-terminal NLS and an internal NLS. The internal NLS is functional, and the homodimer requires two NLSs for specific nuclear localization. Overexpression (OX) of CsubMADS1 slows down the growth of the culture and leads to the creation of giant polyploid multinucleate cells, resembling autospore mother cells. This implies that the release of autospores from autospore mother cells may be delayed. Thus, in wild-type (WT) cells, CsubMADS1 may play a crucial role in slowing down growth during the lag phase. Due to starvation in 2-month-old colonies on solid media, the WT colonies produce mucilage, whereas OX colonies produce significantly less mucilage. Thus, CsubMADS1 also negatively regulates stress-induced mucilage production and probably plays a role in stress tolerance during the lag phase. Taken together, our results reveal that CsubMADS1 is a key TF involved in the development and stress tolerance of this polar microalga.
Collapse
Affiliation(s)
- Saraswati Nayar
- Division of Plant Molecular Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, India
| | - Gokilavani Thangavel
- Division of Plant Molecular Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, India
| |
Collapse
|
13
|
Xu R, Guo Y, Peng S, Liu J, Li P, Jia W, Zhao J. Molecular Targets and Biological Functions of cAMP Signaling in Arabidopsis. Biomolecules 2021; 11:biom11050688. [PMID: 34063698 PMCID: PMC8147800 DOI: 10.3390/biom11050688] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 01/11/2023] Open
Abstract
Cyclic AMP (cAMP) is a pivotal signaling molecule existing in almost all living organisms. However, the mechanism of cAMP signaling in plants remains very poorly understood. Here, we employ the engineered activity of soluble adenylate cyclase to induce cellular cAMP elevation in Arabidopsis thaliana plants and identify 427 cAMP-responsive genes (CRGs) through RNA-seq analysis. Induction of cellular cAMP elevation inhibits seed germination, disturbs phytohormone contents, promotes leaf senescence, impairs ethylene response, and compromises salt stress tolerance and pathogen resistance. A set of 62 transcription factors are among the CRGs, supporting a prominent role of cAMP in transcriptional regulation. The CRGs are significantly overrepresented in the pathways of plant hormone signal transduction, MAPK signaling, and diterpenoid biosynthesis, but they are also implicated in lipid, sugar, K+, nitrate signaling, and beyond. Our results provide a basic framework of cAMP signaling for the community to explore. The regulatory roles of cAMP signaling in plant plasticity are discussed.
Collapse
Affiliation(s)
- Ruqiang Xu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: ; Tel.: +86-0371-6778-5095
| | - Yanhui Guo
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| | - Song Peng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| | - Jinrui Liu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| | - Panyu Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| | - Wenjing Jia
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| | - Junheng Zhao
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| |
Collapse
|
14
|
de Jong F, Munnik T. Attracted to membranes: lipid-binding domains in plants. PLANT PHYSIOLOGY 2021; 185:707-723. [PMID: 33793907 PMCID: PMC8133573 DOI: 10.1093/plphys/kiaa100] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/11/2020] [Indexed: 05/18/2023]
Abstract
Membranes are essential for cells and organelles to function. As membranes are impermeable to most polar and charged molecules, they provide electrochemical energy to transport molecules across and create compartmentalized microenvironments for specific enzymatic and cellular processes. Membranes are also responsible for guided transport of cargoes between organelles and during endo- and exocytosis. In addition, membranes play key roles in cell signaling by hosting receptors and signal transducers and as substrates and products of lipid second messengers. Anionic lipids and their specific interaction with target proteins play an essential role in these processes, which are facilitated by specific lipid-binding domains. Protein crystallography, lipid-binding studies, subcellular localization analyses, and computer modeling have greatly advanced our knowledge over the years of how these domains achieve precision binding and what their function is in signaling and membrane trafficking, as well as in plant development and stress acclimation.
Collapse
Affiliation(s)
- Femke de Jong
- Cluster Green Life Sciences, Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Teun Munnik
- Cluster Green Life Sciences, Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|