1
|
Khurshaid N, Shabir N, Pala AH, Yadav AK, Singh D, Ashraf N. Transcriptome wide analysis of MADS box genes in Crocus sativus and interplay of CstMADS19-CstMADS26 in orchestrating apocarotenoid biosynthesis. Gene 2025; 932:148893. [PMID: 39197797 DOI: 10.1016/j.gene.2024.148893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/09/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
Flowers of Crocus sativus L. are immensely important not only for arrangement of floral whorls but more because each floral organ is dominated by a different class of specialized compounds. Dried stigmas of C. sativus flowers form commercial saffron, and are known to accumulate unique apocarotenoids like crocin, picrocrocin and safranal. Inspite of being a high value crop, the molecular mechanism regulating flower development in Crocus remains largely unknown. Moreover, it would be very interesting to explore any co-regulatory mechanism which controls floral architecture and secondary metabolic pathways which exist in specific floral organs. Here we report transcriptome wide identification of MADS box genes in Crocus. A total of 39 full length MADS box genes were identified among which three belonged to type I and 36 to type II class. Phylogeny classified them into 11 sub-clusters. Expression pattern revealed some stigma up-regulated genes among which CstMADS19 encoding an AGAMOUS gene showed high expression. Transient over-expression of CstMADS19 in stigmas of Crocus resulted in increased crocin by enhancing expression of pathway genes. Yeast one hybrid assay demonstrated that CstMADS19 binds to promoters of phytoene synthase and carotenoid cleavage dioxygenase 2 genes. Yeast two hybrid and BiFC assays confirmed interaction of CstMADS19 with CstMADS26 which codes for a SEPALATA gene. Co-overexpression of CstMADS19 and CstMADS26 in Crocus stigmas enhanced crocin content more than was observed when genes were expressed individually. Collectively, these findings indicate that CstMADS19 functions as a positive regulator of stigma based apocarotenoid biosynthesis in Crocus.
Collapse
Affiliation(s)
- Nargis Khurshaid
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine (IIIM), Sanat Nagar, Srinagar, Jammu and Kashmir 190005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, UP, India
| | - Najwa Shabir
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine (IIIM), Sanat Nagar, Srinagar, Jammu and Kashmir 190005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, UP, India
| | - Aamir Hussain Pala
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine (IIIM), Sanat Nagar, Srinagar, Jammu and Kashmir 190005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, UP, India
| | - Arvind Kumar Yadav
- Quality Control & Quality Assurance Lab, Quality, Management & Instrumentation Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India
| | - Deepika Singh
- Quality Control & Quality Assurance Lab, Quality, Management & Instrumentation Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India
| | - Nasheeman Ashraf
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine (IIIM), Sanat Nagar, Srinagar, Jammu and Kashmir 190005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, UP, India.
| |
Collapse
|
2
|
Mir JA, Yadav AK, Singh D, Ashraf N. A novel mutation in non-constitutive lycopene beta cyclase (CstLcyB2a) from Crocus sativus modulates carotenoid/apocarotenoid content, biomass and stress tolerance in plants. PLANTA 2024; 260:80. [PMID: 39192071 DOI: 10.1007/s00425-024-04515-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
MAIN CONCLUSION Mutation at A126 in lycopene-β-cyclase of Crocus (CstLcyB2a) sterically hinders its binding of δ-carotene without affecting lycopene binding, thereby diverting metabolic flux towards β-carotene and apocarotenoid biosynthesis. Crocus sativus, commonly known as saffron, has emerged as an important crop for research because of its ability to synthesize unique apocarotenoids such as crocin, picrocrocin and safranal. Metabolic engineering of the carotenoid pathway can prove a beneficial strategy for enhancing the quality of saffron and making it resilient to changing climatic conditions. Here, we demonstrate that introducing a novel mutation at A126 in stigma-specific lycopene-β-cyclase of Crocus (CstLcyB2a) sterically hinders its binding of δ-carotene, but does not affect lycopene binding, thereby diverting metabolic flux towards β-carotene formation. Thus, A126L-CstLcyB2a expression in lycopene-accumulating bacterial strains resulted in enhanced production of β-carotene. Transient expression of A126L-CstLcyB2a in C. sativus stigmas enhanced biosynthesis of crocin. Its stable expression in Nicotiana tabacum enhanced β-branch carotenoids and phyto-hormones such as abscisic acid (ABA) and gibberellic acids (GA's). N. tabacum transgenic lines showed better growth performance and photosynthetic parameters including maximum quantum efficiency (Fv/Fm) and light-saturated capacity of linear electron transport. Exogenous application of hormones and their inhibitors demonstrated that a higher ratio of GA4/ABA has positive effects on biomass of wild-type and transgenic plants. Thus, these findings provide a platform for the development of new-generation crops with improved productivity, quality and stress tolerance.
Collapse
Affiliation(s)
- Javid Ahmad Mir
- Plant Molecular Biology and Biotechnology Division, CSIR Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, Jammu and Kashmir, 190005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Arvind Kumar Yadav
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- Quality Control & Quality Assurance Lab, Quality, Management & Instrumentation Division, CSIR Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India
| | - Deepika Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
- Quality Control & Quality Assurance Lab, Quality, Management & Instrumentation Division, CSIR Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India.
| | - Nasheeman Ashraf
- Plant Molecular Biology and Biotechnology Division, CSIR Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, Jammu and Kashmir, 190005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
3
|
Eshaghi M, Rashidi-Monfared S. Co-regulatory network analysis of the main secondary metabolite (SM) biosynthesis in Crocus sativus L. Sci Rep 2024; 14:15839. [PMID: 38982154 PMCID: PMC11233700 DOI: 10.1038/s41598-024-65870-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/25/2024] [Indexed: 07/11/2024] Open
Abstract
Saffron (Crocus sativus L.) is being embraced as the most important medicinal plant and the commercial source of saffron spice. Despite the beneficial economic and medicinal properties of saffron, the regulatory mechanism of the correlation of TFs and genes related to the biosynthesis of the apocarotenoids pathway is less obvious. Realizing these regulatory hierarchies of gene expression networks related to secondary metabolites production events is the main challenge owing to the complex and extensive interactions between the genetic behaviors. Recently, high throughput expression data have been highly feasible for constructing co-regulation networks to reveal the regulated processes and identifying novel candidate hub genes in response to complex processes of the biosynthesis of secondary metabolites. Herein, we performed Weighted Gene Co-expression Network Analysis (WGCNA), a systems biology method, to identify 11 regulated modules and hub TFs related to secondary metabolites. Three specialized modules were found in the apocarotenoids pathway. Several hub TFs were identified in notable modules, including MADS, C2H2, ERF, bZIP, HD-ZIP, and zinc finger protein MYB and HB, which were potentially associated with apocarotenoid biosynthesis. Furthermore, the expression levels of six hub TFs and six co-regulated genes of apocarotenoids were validated with RT-qPCR. The results confirmed that hub TFs specially MADS, C2H2, and ERF had a high correlation (P < 0.05) and a positive effect on genes under their control in apocarotenoid biosynthesis (CCD2, GLT2, and ADH) among different C. sativus ecotypes in which the metabolite contents were assayed. Promoter analysis of the co-expressed genes of the modules involved in apocarotenoids biosynthesis pathway suggested that not only are the genes co-expressed, but also share common regulatory motifs specially related to hub TFs of each module and that they may describe their common regulation. The result can be used to engineer valuable secondary metabolites of C. sativus by manipulating the hub regulatory TFs.
Collapse
Affiliation(s)
- Mahsa Eshaghi
- Department of Plant Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Sajad Rashidi-Monfared
- Department of Plant Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
4
|
Tian S, Yang Y, Fang B, Uddin S, Liu X. The CrMYB33 transcription factor positively coordinate the regulation of both carotenoid accumulation and chlorophyll degradation in the peel of citrus fruit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 209:108540. [PMID: 38518398 DOI: 10.1016/j.plaphy.2024.108540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/28/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024]
Abstract
Citrus, cultivated extensively across the globe, possesses considerable economic importance and nutritional value. With the degradation of chlorophyll and accumulation of carotenoids, mature citrus fruits develop an orange-yellow peel, enhancing fruit value and consumer preference. MYB transcription factors (TFs) exert a significant role in diverse plant developmental processes and investigating their involvement in fruit coloration is crucial for developing new cultivars. This work aimed to characterize a citrus TF, CrMYB33, whose expression was found to be positively correlated with carotenoid biosynthesis during fruit ripening. The interference of CrMYB33 expression in citrus fruit resulted in inhibition of carotenoid accumulation, down-regulation of carotenoid biosynthetic genes, and a slower rate of chlorophyll degradation. Conversely, overexpression of CrMYB33 in tomato (Solanum lycopersicum) enhanced chlorophyll degradation and carotenoid biosynthesis, resulting in a deeper red coloration of the fruits. Furthermore, the transcription of associated genes was upregulated in CrMYB33-overexpressing tomato fruits. Additional assays reveal that CrMYB33 exhibits direct links and activation of the promoters of lycopene β-cyclase 2 (CrLCYb2), and β-carotene hydroxylases 2 (CrBCH2), both crucial genes in the carotenoid biosynthetic pathway. Additionally, it was found to inhibit chlorophyllase (CrCLH), a gene essential in chlorophyll degradation. These findings provide insight into the observed changes in LCYb2, BCH2, and CLH expression in the transgenic lines under investigation. In conclusion, our study revealed that CrMYB33 modulates carotenoid accumulation and chlorophyll degradation in citrus fruits through transcriptionally activating genes involved in metabolic pathways.
Collapse
Affiliation(s)
- Shulin Tian
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, 400715, China
| | - Yuyan Yang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Bo Fang
- Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Saleem Uddin
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Xiaogang Liu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, 400715, China.
| |
Collapse
|
5
|
Malik AH, Khurshaid N, Shabir N, Ashraf N. Transcriptome wide identification, characterization and expression analysis of PHD gene family in Crocus sativus. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:81-91. [PMID: 38435850 PMCID: PMC10902251 DOI: 10.1007/s12298-024-01410-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 03/05/2024]
Abstract
Crocus sativus L., of the Iridaceae family, yields world's most prized spice, saffron. Saffron is well known for its distinctive aroma, odour and colour, which are imputed to the presence of some specific glycosylated apocarotenoids. Even though the main biosynthetic pathway and most of the enzymes leading to apocarotenoid production have been identified, the regulatory mechanisms that govern the developmental stage and tissue specific production of apocarotenoids in Crocus remain comparatively unravelled. Towards this, we report identification, and characterization of plant homeodomain (PHD) finger transcription factor family in Crocus sativus. We also report cloning and characterisation of CstPHD27 from C. sativus. CstPHD27 recorded highest expression in stigma throughout flower development. CstPHD27 exhibited expression pattern which corresponded to the apocarotenoid accumulation in Crocus stigmas. CstPHD27 is nuclear localized and transcriptionally active in yeast Y187 strain. Over-expression of CstPHD27 in Crocus stigmas enhanced apocarotenoid content by upregulating the biosynthetic pathway genes. This report on PHD finger transcription factor family from C. sativus may offer a basis for elucidating role of this gene family in this traditionally and industrially prized crop. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01410-3.
Collapse
Affiliation(s)
- Aubid Hussain Malik
- Plant Molecular Biology and Biotechnology Division, CSIR—Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, Jammu and Kashmir 190005 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - Nargis Khurshaid
- Plant Molecular Biology and Biotechnology Division, CSIR—Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, Jammu and Kashmir 190005 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - Najwa Shabir
- Plant Molecular Biology and Biotechnology Division, CSIR—Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, Jammu and Kashmir 190005 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - Nasheeman Ashraf
- Plant Molecular Biology and Biotechnology Division, CSIR—Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, Jammu and Kashmir 190005 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| |
Collapse
|
6
|
Bhat ZY, Mir JA, Yadav AK, Singh D, Ashraf N. CstMYB1R1, a REVEILLE-8-like transcription factor, regulates diurnal clock-specific anthocyanin biosynthesis and response to abiotic stress in Crocus sativus L. PLANT CELL REPORTS 2023; 43:20. [PMID: 38150028 DOI: 10.1007/s00299-023-03082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/07/2023] [Indexed: 12/28/2023]
Abstract
KEY MESSAGE CstMYB1R1 acts as a positive regulator of Crocus anthocyanin biosynthesis and abiotic stress tolerance which was experimentally demonstrated through molecular analysis and over-expression studies in Crocus and Nicotiana. Regulatory mechanics of flavonoid/anthocyanin biosynthesis in Crocus floral tissues along the diurnal clock has not been studied to date. MYB proteins represent the most dominant, functionally diverse and versatile type of plant transcription factors which regulate key metabolic and physiological processes in planta. Transcriptome analysis revealed that MYB family is the most dominant transcription factor family in C. sativus. Considering this, a MYB-related REVEILLE-8 type transcription factor, CstMYB1R1, was explored for its possible role in regulating Crocus flavonoid and anthocyanin biosynthetic pathway. CstMYB1R1 was highly expressed in Crocus floral tissues, particularly tepals and its expression was shown to peak at dawn and dusk time points. Anthocyanin accumulation also peaked at dawn and dusk and was minimum at night. Moreover, the diurnal expression pattern of CstMYB1R1 was shown to highly correlate with Crocus ANS/LDOX gene expression among the late anthocyanin pathway genes. CstMYB1R1 was shown to be nuclear localized and transcriptionally active. CstMYB1R1 over-expression in Crocus tepals enhanced anthocyanin levels and upregulated transcripts of Crocus flavonoid and anthocyanin biosynthetic pathway genes. Yeast one hybrid (Y1H) and GUS reporter assay confirmed that CstMYB1R1 interacts with the promoter of Crocus LDOX gene to directly regulate its transcription. In addition, the expression of CstMYB1R1 in Nicotiana plants significantly enhanced flavonoid and anthocyanin levels and improved their abiotic stress tolerance. The present study, thus, confirmed positive role of CstMYB1R1 in regulating Crocus anthocyanin biosynthetic pathway in a diurnal clock-specific fashion together with its involvement in the regulation of abiotic stress response.
Collapse
Affiliation(s)
- Zahid Yaqoob Bhat
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine (IIIM), Sanat Nagar190005, Srinagar, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| | - Javid Ahmad Mir
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine (IIIM), Sanat Nagar190005, Srinagar, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| | - Arvind Kumar Yadav
- Quality Control and Quality Assurance Lab, Quality, Management and Instrumentation Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India
| | - Deepika Singh
- Quality Control and Quality Assurance Lab, Quality, Management and Instrumentation Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India
| | - Nasheeman Ashraf
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine (IIIM), Sanat Nagar190005, Srinagar, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India.
| |
Collapse
|
7
|
Liang MH, Li XY. Involvement of Transcription Factors and Regulatory Proteins in the Regulation of Carotenoid Accumulation in Plants and Algae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18660-18673. [PMID: 38053506 DOI: 10.1021/acs.jafc.3c05662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Carotenoids are essential for photosynthesis and photoprotection in photosynthetic organisms, which are widely used in food coloring, feed additives, nutraceuticals, cosmetics, and pharmaceuticals. Carotenoid biofortification in crop plants or algae has been considered as a sustainable strategy to improve human nutrition and health. However, the regulatory mechanisms of carotenoid accumulation are still not systematic and particularly scarce in algae. This article focuses on the regulatory mechanisms of carotenoid accumulation in plants and algae through regulatory factors (transcription factors and regulatory proteins), demonstrating the complexity of homeostasis regulation of carotenoids, mainly including transcriptional regulation as the primary mechanism, subsequent post-translational regulation, and cross-linking with other metabolic processes. Different organs of plants and different plant/algal species usually have specific regulatory mechanisms for the biosynthesis, storage, and degradation of carotenoids in response to the environmental and developmental signals. In plants and algae, regulators such as MYB, bHLH, MADS, bZIP, AP2/ERF, WRKY, and orange proteins can be involved in the regulation of carotenoid metabolism. And many more regulators, regulatory networks, and mechanisms need to be explored. Our paper will provide a basis for multitarget or multipathway engineering for carotenoid biofortification in plants and algae.
Collapse
Affiliation(s)
- Ming-Hua Liang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Ecological Science, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xian-Yi Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Ecological Science, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
8
|
Hussain K, Bhat ZY, Yadav AK, Singh D, Ashraf N. CstPIF4 Integrates Temperature and Circadian Signals and Interacts with CstMYB16 to Repress Anthocyanins in Crocus. PLANT & CELL PHYSIOLOGY 2023; 64:1407-1418. [PMID: 37705247 DOI: 10.1093/pcp/pcad108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
Crocus sativus has emerged as an important crop because it is the only commercial source of saffron that contains unique apocarotenoids. Saffron is composed of dried stigmas of Crocus flower and constitutes the most priced spice of the world. Crocus floral organs are dominated by different classes of metabolites. While stigmas are characterized by the presence of apocarotenoids, tepals are rich in flavonoids and anthocyanins. Therefore, an intricate regulatory network might play a role in allowing different compounds to dominate in different organs. Work so far done on Crocus is focussed on apocarotenoid metabolism and its regulation. There are no reports describing the regulation of flavonoids and anthocyanins in Crocus tepals. In this context, we identified an R2R3 transcription factor, CstMYB16, which resembles subgroup 4 (SG4) repressors of Arabidopsis. CstMYB16 is nuclear localized and acts as a repressor. Overexpression of CstMYB16 in Crocus downregulated anthocyanin biosynthesis. The C2/EAR motif was responsible for the repressor activity of CstMYB16. CstMYB16 binds to the promoter of the anthocyanin biosynthetic pathway gene (LDOX) and reduces its expression. CstMYB16 also physically interacts with CstPIF4, which in turn is regulated by temperature and circadian clock. Thus, CstPIF4 integrates these signals and forms a repressor complex with CstMYB16, which is involved in the negative regulation of anthocyanin biosynthesis in Crocus. Independent of CstPIF4, CstMYB16 also represses CstPAP1 expression, which is a component of the MYB-bHLH-WD40 (MBW) complex and positively controls anthocyanin biosynthesis. This is the first report on identifying and describing regulators of anthocyanin biosynthesis in Crocus.
Collapse
Affiliation(s)
- Khadim Hussain
- Plant Molecular Biology and Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, Jammu and Kashmir 190005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Zahid Yaqoob Bhat
- Plant Molecular Biology and Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, Jammu and Kashmir 190005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Arvind Kumar Yadav
- Quality Control & Quality Assurance Lab, Quality, Management & Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi 180001, India
| | - Deepika Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Quality Control & Quality Assurance Lab, Quality, Management & Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi 180001, India
| | - Nasheeman Ashraf
- Plant Molecular Biology and Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, Jammu and Kashmir 190005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
9
|
Varghese R, Buragohain T, Banerjee I, Mukherjee R, Penshanwar SN, Agasti S, Ramamoorthy S. The apocarotenoid production in microbial biofactories: An overview. J Biotechnol 2023; 374:5-16. [PMID: 37499877 DOI: 10.1016/j.jbiotec.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/29/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Carotenoids are a vast group of natural pigments that come in a variety of colors ranging from red to orange. Apocarotenoids are derived from these carotenoids, which are hormones, pigments, retinoids, and volatiles employed in the textiles, cosmetics, pharmaceutical, and food industries. Due to the high commercial value and poor natural host abundance, they are significantly undersupplied. Microbes like Saccharomyces cerevisiae and Escherichia coli act as heterologous hosts for apocarotenoid production. This article briefly reviews categories of apocarotenoids, their biosynthetic pathway commencing from the MVA and MEP, its significance, the tool enzymes for apocarotenoid biosynthesis like CCDs, their biotechnological production in microbial factories, and future perspectives.
Collapse
Affiliation(s)
- Ressin Varghese
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Tinamoni Buragohain
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Ishani Banerjee
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Rishyani Mukherjee
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Shraddha Naresh Penshanwar
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Swapna Agasti
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
10
|
Hurrah IM, Kumar A, Abbas N. Synergistic interaction of two bHLH transcription factors positively regulates artemisinin biosynthetic pathway in Artemisia annua L. PHYSIOLOGIA PLANTARUM 2023; 175:e13849. [PMID: 36636815 DOI: 10.1111/ppl.13849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/07/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The wonder drug artemisinin, a sesquiterpene lactone endoperoxide from Artemisia annua is the million-dollar molecule required to curb the deadliest disease, Malaria. One of the major challenges even today is to increase the concentration of artemisinin within plants. The transcription factors are important regulators of plant secondary metabolites and have the potential to regulate key steps or the whole biosynthetic pathway. In this study, we have identified and characterised two bHLH transcription factors (Aa6119 and Aa7162) from A. annua. Both the transcription factors turned out to be transcriptionally active and nuclear-localised typical bHLH proteins. In our study, we found that Aa6119 specifically binds to the E-box element present on the promoter of artemisinin biosynthetic gene, AMORPHA-4,11-DIENE SYNTHASE (ADS). The protein-DNA interaction confirmed by Yeast one-hybrid assay was specific as Aa6119 was unable to bind to the mutated E-boxes of ADS. Further, Aa6119 interacted physically with Aa7162, which was confirmed in vitro by Yeast two-hybrid assay and in vivo by Bimolecular Fluorescent complementation assay. Our quantitative expression studies have confirmed that Aa6119 and Aa7162 act synergistically in the regulation of artemisinin biosynthetic and trichome developmental genes. The higher accumulation of artemisinin content in the transient co-transformed transgenic plants than in the individual over-expression transgenic plants has further validated that Aa6119 and Aa7162 act positively and synergistically to regulate artemisinin accumulation.
Collapse
Affiliation(s)
- Ishfaq Majid Hurrah
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Srinagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Amit Kumar
- Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Nazia Abbas
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Srinagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
11
|
Hussain K, Kumar A, Fayaz M, Misra P, Ashraf N. CstMYB14 links ROS signaling, apocarotenoid metabolism, and stress response in Crocus sativus L. PHYSIOLOGIA PLANTARUM 2022; 174:e13712. [PMID: 35561087 DOI: 10.1111/ppl.13712] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Reactive oxygen species (ROS) behave as signaling molecules and induce biosynthesis of many secondary metabolites, including apocarotenoids, which play critical roles in stress tolerance through radical scavenging. However, the mechanism that regulates ROS responsive apocarotenoid metabolism and subsequent stress response is unknown. In this study, an R2R3-MYB transcription factor (CstMYB14) was identified from Crocus sativus L., which acts as a regulator of apocarotenoid biosynthesis. CstMYB14 expression increases in response to H2 O2 in a concentration and time-dependent manner. CstMYB14 localizes to the nucleus and acts as a transcriptional activator. Over-expression of CstMYB14 in Crocus stigmas enhanced apocarotenoid biosynthesis. Yeast-one-hybrid demonstrated binding of CstMYB14 to promoters of two apocarotenoid pathway genes (phytoene synthase and carotenoid cleavage dioxygenase 2). Nicotiana benthamiana plants overexpressing CstMYB14 showed better growth and higher stress tolerance than wild type plants. Higher antioxidant activity in CstMYB14-Ox plants indicated that stress tolerance might be due to ROS scavenging. These results establish a molecular link between ROS signaling, apocarotenoid metabolism and stress tolerance. Further, CstMYB14 is shown to act as a key regulator which modulates ROS responsive biosynthesis of apocarotenoids which in turn impart stress tolerance through ROS scavenging.
Collapse
Affiliation(s)
- Khadim Hussain
- Plant Molecular Biology and Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Srinagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Amit Kumar
- Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, India
| | - Mohd Fayaz
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, India
| | - Prashant Misra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, India
| | - Nasheeman Ashraf
- Plant Molecular Biology and Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Srinagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|