1
|
Wang X, Zhang Y, Li J, Ding Y, Ma X, Zhang P, Liu H, Wei J, Bao Y. Diversity and Functional Insights into Endophytic Fungi in Halophytes from West Ordos Desert Ecosystems. J Fungi (Basel) 2025; 11:30. [PMID: 39852449 PMCID: PMC11766765 DOI: 10.3390/jof11010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
Arid desert regions are among the harshest ecological environments on Earth. Halophytes, with their unique physiological characteristics and adaptability, have become the dominant vegetation in these areas. Currently, research on halophytes in this region is relatively limited, particularly concerning studies related to their root endophytic fungi, which have been rarely reported on. Therefore, investigating the diversity and composition of endophytic fungi in halophytes is crucial for maintaining ecological balance in such an arid environment. This study focuses on eight representative angiosperm halophytes from the West Ordos Desert in China (including Nitraria tangutorum, Salsola passerina, Suaeda glauca, Reaumuria trigyna, Reaumuria kaschgarica, Limonium aureum, Apocynum venetum, and Tripolium vulgare), utilizing Illumina MiSeq high-throughput sequencing technology combined with soil physicochemical factor data to analyze the diversity, composition, and ecological functions of their root-associated fungal communities. Ascomycota dominated the fungal composition in most halophytes, particularly among the recretohalophytes, where it accounted for an average of 88.45%, while Basidiomycota was predominant in Suaeda glauca. A Circos analysis of the top 10 most abundant genera revealed Fusarium, Dipodascus, Curvularia, Penicillium, and other dominant genera. Co-occurrence network analysis showed significant differences in fungal networks across halophyte types, with the most complex network observed in excreting halophytes, characterized by the highest number of nodes and connections, indicating tighter fungal symbiotic relationships. In contrast, fungal networks in pseudohalophytes were relatively simple, reflecting lower community cohesiveness. Redundancy analysis (RDA) and Mantel tests demonstrated that soil factors such as organic matter, available sulfur, and urease significantly influenced fungal diversity, richness, and evenness, suggesting that soil physicochemical properties play a critical role in regulating fungal-plant symbiosis. Functional predictions indicated that endophytic fungi play important roles in metabolic pathways such as nucleotide biosynthesis, carbohydrate degradation, and lipid metabolism, which may enhance plant survival in saline-alkaline and arid environments. Furthermore, the high abundance of plant pathogens and saprotrophs in some fungal communities suggests their potential roles in plant defense and organic matter decomposition. The results of this study provide a reference for advancing the development and utilization of halophyte endophytic fungal resources, with applications in desert ecosystem restoration and halophyte cultivation.
Collapse
Affiliation(s)
- Xingzhe Wang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, China; (X.W.)
- State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010010, China
| | - Yan Zhang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, China; (X.W.)
- State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010010, China
| | - Jingpeng Li
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, China; (X.W.)
- State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010010, China
| | - Yiteng Ding
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, China; (X.W.)
- State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010010, China
| | - Xiaodan Ma
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, China; (X.W.)
- State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010010, China
| | - Peng Zhang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, China; (X.W.)
- State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010010, China
| | - Haijing Liu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, China; (X.W.)
- State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010010, China
| | - Jie Wei
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, China; (X.W.)
- State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010010, China
| | - Yuying Bao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, China; (X.W.)
- State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010010, China
| |
Collapse
|
2
|
Maffia A, Scotti R, Wood T, Muscolo A, Lepore A, Acocella E, Celano G. Transforming Agricultural and Sulfur Waste into Fertilizer: Assessing the Short-Term Effects on Microbial Biodiversity via a Metagenomic Approach. Life (Basel) 2024; 14:1633. [PMID: 39768341 PMCID: PMC11677321 DOI: 10.3390/life14121633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Fungi and soil bacteria are vital for organic matter decomposition and biogeochemical cycles, but excessive synthetic fertilizer use contributes to soil degradation and loss of biodiversity. Despite this, about 97% of soil microorganisms are unculturable, making them difficult to study. Metagenomics offers a solution, enabling the direct extraction of DNA from soil to uncover microbial diversity and functions. This study utilized metagenomics to analyze the rhizosphere of two-year-old Tonda di Giffoni hazelnut saplings treated with synthetic NPK, composted olive pomace, and an innovative fertilizer derived from sulfur-based agro-industrial waste stabilized with bentonite clay. Using 16S rDNA for bacteria and ITS2 for fungi, Illumina sequencing provided insights into microbial responses to different fertilizer treatments. The results highlighted a significant increase in the abundance of beneficial microorganisms such as Thiobacillus, Pseudoxanthomonas, and Thermomyces, especially when organic materials were included. Additionally, microbial biodiversity improved with organic inputs, as shown by increased species richness (Chao1) and diversity (Bray-Curtis) greater than 20% compared with NPK and unfertilized soils (CTR). These findings emphasize the importance of organic fertilization in enhancing soil microbial health, offering a sustainable approach to improving soil quality and hazelnut productivity.
Collapse
Affiliation(s)
- Angela Maffia
- Department of AGRARIA, ‘Mediterranea’ University of Reggio Calabria, Feo di Vito, 89122 Reggio Calabria, Italy;
| | - Riccardo Scotti
- NIAB, Cambridge Pathology, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK; (R.S.); (T.W.)
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 51, 84098 Pontecagnano Faiano, Italy
| | - Thomas Wood
- NIAB, Cambridge Pathology, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK; (R.S.); (T.W.)
| | - Adele Muscolo
- Department of AGRARIA, ‘Mediterranea’ University of Reggio Calabria, Feo di Vito, 89122 Reggio Calabria, Italy;
| | - Alessandra Lepore
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (A.L.); (E.A.); (G.C.)
| | - Elisabetta Acocella
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (A.L.); (E.A.); (G.C.)
| | - Giuseppe Celano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (A.L.); (E.A.); (G.C.)
| |
Collapse
|
3
|
Gholizadeh S, Nemati I, Vestergård M, Barnes CJ, Kudjordjie EN, Nicolaisen M. Harnessing root-soil-microbiota interactions for drought-resilient cereals. Microbiol Res 2024; 283:127698. [PMID: 38537330 DOI: 10.1016/j.micres.2024.127698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 04/17/2024]
Abstract
Cereal plants form complex networks with their associated microbiome in the soil environment. A complex system including variations of numerous parameters of soil properties and host traits shapes the dynamics of cereal microbiota under drought. These multifaceted interactions can greatly affect carbon and nutrient cycling in soil and offer the potential to increase plant growth and fitness under drought conditions. Despite growing recognition of the importance of plant microbiota to agroecosystem functioning, harnessing the cereal root microbiota remains a significant challenge due to interacting and synergistic effects between root traits, soil properties, agricultural practices, and drought-related features. A better mechanistic understanding of root-soil-microbiota associations could lead to the development of novel strategies to improve cereal production under drought. In this review, we discuss the root-soil-microbiota interactions for improving the soil environment and host fitness under drought and suggest a roadmap for harnessing the benefits of these interactions for drought-resilient cereals. These methods include conservative trait-based approaches for the selection and breeding of plant genetic resources and manipulation of the soil environments.
Collapse
Affiliation(s)
- Somayeh Gholizadeh
- Faculty of Technical Sciences, Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark
| | - Iman Nemati
- Department of Plant Production and Genetics Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mette Vestergård
- Faculty of Technical Sciences, Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark
| | - Christopher James Barnes
- Faculty of Technical Sciences, Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark
| | - Enoch Narh Kudjordjie
- Faculty of Technical Sciences, Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark
| | - Mogens Nicolaisen
- Faculty of Technical Sciences, Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark.
| |
Collapse
|
4
|
Jiang Z, Zhang P, Wu Y, Wu X, Ni H, Lu Q, Zang S. Long-term surface composts application enhances saline-alkali soil carbon sequestration and increases bacterial community stability and complexity. ENVIRONMENTAL RESEARCH 2024; 240:117425. [PMID: 37875172 DOI: 10.1016/j.envres.2023.117425] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/07/2023] [Accepted: 10/15/2023] [Indexed: 10/26/2023]
Abstract
Organic composts could remediate saline-alkali soils on agricultural land by amending soil micro-environment which is one of the main strategies for resourceful treatment and recycling of livestock manure. However, it was still unknown how long-term surface application of organic composts affects the microhabitat and bacterial community characteristics and assembly processes on the profile. We examined the features of the soil properties, bacterial community, and assembly models after 7-years composts application. Physicochemical indicators, enzyme activities, and bacterial diversity of the saline-alkali farmland were all enhanced by the surface composts application, particularly in the 0-20 cm. The network analysis showed that the surface application of composts significantly enhanced the robustness and topological characteristics of the bacterial community and that bacteria from Acidobacteriota were the keystone of the saline-alkali soils improvement. Composts also greatly increased the ecological niche of the bacterial community, while stochastic processes (mainly dispersal limitation) significantly shaped the bacterial community compared to the control. Structural equation modeling indicated that composts application promoted bacterial community succession, which in turn promoted elevated total organic carbon and improved saline-alkali soils properties. Overall, the study linked the ecological characteristics of soil microhabitats and bacterial communities during the restoration of saline-alkali soils by long-term surface application of composts, providing the management and remediation of saline-alkali agricultural soil with a theoretical foundation and technological support.
Collapse
Affiliation(s)
- Ziwei Jiang
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China; Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin 150025, China
| | - Pengfei Zhang
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China; Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin 150025, China
| | - Yufei Wu
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China; Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin 150025, China
| | - Xiaodong Wu
- Cryosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hongwei Ni
- Heilongjiang Academy of Forestry, Harbin 150040, China
| | - Qian Lu
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China.
| | - Shuying Zang
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China; Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin 150025, China.
| |
Collapse
|
5
|
Yang D, Lin X, Wei Y, Li Z, Zhang H, Liang T, Yang S, Tan H. Can endophytic microbial compositions in cane roots be shaped by different propagation methods. PLoS One 2023; 18:e0290167. [PMID: 37582116 PMCID: PMC10427008 DOI: 10.1371/journal.pone.0290167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/02/2023] [Indexed: 08/17/2023] Open
Abstract
In practical production, cane stems with buds are generally used as seed for propagation. However, long-terms cane stems only easily lead to some problems such as disease sensitivity, quality loss, etc. Recently, cane seedings, which are produced by tissue culture were used in sugarcane production, but few studies on cane health related to tissue culture seedings. Therefore, to evaluate the immunity and health of sugarcanes growing from different reproduction modes, the endophytic microbial compositions in cane roots between stem and tissue culture seedlings were analyzed using high-throughput techniques. The results showed that the endophytic microbial compositions in cane roots were significant differences between stem and tissue culture seedlings. At the genus level, Pantoea, Bacillus, Streptomyces, Lechevalieria, Pseudomonas, Nocardioides, unclassified_f__Comamonadaceae enriched as the dominant endophytic bacterial genera, and Rhizoctonia, Sarocladium, Scytalidium, Wongia, Fusarium, unclassified_f__Phaeosphaer, unclassified_c__Sordariom, unclassified_f__Stachybot, Poaceascoma, Microdochium, Arnium, Echria, Mycena and Exophiala enriched as the dominant endophytic fungal genera in cane roots growing from the tissue culture seedlings. In contrast, Mycobacterium, Massilia, Ralstonia, unclassified_f__Pseudonocardiacea, norank_f__Micropepsaceae, Leptothrix and Bryobacter were the dominant endophytic bacterial genera, and unclassified_k__Fungi, unclassified_f__Marasmiaceae, Talaromyces, unclassified_c__Sordariomycetes and Trichocladium were the dominant endophytic fungal genera in cane roots growing from stem seedlings. Additionally, the numbers of bacterial and fungal operational taxonomic units (OTUs) in cane roots growing from tissue culture seedlings were significantly higher than those of stem seedlings. It indicates that not only the endophytic microbial compositions in cane roots can be shaped by different propagation methods, but also the stress resistance of sugarcanes can be improved by the tissue culture propagation method.
Collapse
Affiliation(s)
- Da Yang
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College, Guangxi University, Nanning, China
| | - Xinru Lin
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College, Guangxi University, Nanning, China
| | - Yufei Wei
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College, Guangxi University, Nanning, China
| | - Zujian Li
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College, Guangxi University, Nanning, China
| | - Haodong Zhang
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College, Guangxi University, Nanning, China
| | - Tian Liang
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Shangdong Yang
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College, Guangxi University, Nanning, China
| | - Hongwei Tan
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
6
|
Wentzien NM, Fernández-González AJ, Villadas PJ, Valverde-Corredor A, Mercado-Blanco J, Fernández-López M. Thriving beneath olive trees: The influence of organic farming on microbial communities. Comput Struct Biotechnol J 2023; 21:3575-3589. [PMID: 37520283 PMCID: PMC10372477 DOI: 10.1016/j.csbj.2023.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
Soil health and root-associated microbiome are interconnected factors involved in plant health. The use of manure amendment on agricultural fields exerts a direct benefit on soil nutrient content and water retention, among others. However, little is known about the impact of manure amendment on the root-associated microbiome, particularly in woody species. In this study, we aimed to evaluate the effects of ovine manure on the microbial communities of the olive rhizosphere and root endosphere. Two adjacent orchards subjected to conventional (CM) and organic (OM) management were selected. We used metabarcoding sequencing to assess the bacterial and fungal communities. Our results point out a clear effect of manure amendment on the microbial community. Fungal richness and diversity were increased in the rhizosphere. The fungal biomass in the rhizosphere was more than doubled, ranging from 1.72 × 106 ± 1.62 × 105 (CM) to 4.54 × 106 ± 8.07 × 105 (OM) copies of the 18 S rRNA gene g-1 soil. Soil nutrient content was also enhanced in the OM orchard. Specifically, oxidable organic matter, total nitrogen, nitrate, phosphorous, potassium and sulfate concentrations were significantly increased in the OM orchard. Moreover, we predicted a higher abundance of bacteria in OM with metabolic functions involved in pollutant degradation and defence against pathogens. Lastly, microbial co-occurrence network showed more positive interactions, complexity and shorter geodesic distance in the OM orchard. According to our results, manure amendment on olive orchards represents a promising tool for positively modulating the microbial community in direct contact with the plant.
Collapse
Affiliation(s)
- Nuria M. Wentzien
- Soil and Plant Microbiology Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain
| | - Antonio J. Fernández-González
- Soil and Plant Microbiology Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain
| | - Pablo J. Villadas
- Soil and Plant Microbiology Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain
| | | | - Jesús Mercado-Blanco
- Soil and Plant Microbiology Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain
- Crop Protection Department, Instituto de Agricultura Sostenible (CSIC), 14004 Córdoba, Spain
| | - Manuel Fernández-López
- Soil and Plant Microbiology Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain
| |
Collapse
|
7
|
Martinez L, Wu S, Baur L, Patton MT, Owen-Smith P, Collins SL, Rudgers JA. Soil nematode assemblages respond to interacting environmental changes. Oecologia 2023:10.1007/s00442-023-05412-y. [PMID: 37368022 DOI: 10.1007/s00442-023-05412-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
Multi-factor experiments suggest that interactions among environmental changes commonly influence biodiversity and community composition. However, most field experiments manipulate only single factors. Soil food webs are critical to ecosystem health and may be particularly sensitive to interactions among environmental changes that include soil warming, eutrophication, and altered precipitation. Here, we asked how environmental changes interacted to alter soil nematode communities in a northern Chihuahuan Desert grassland. Factorial manipulations of nitrogen, winter rainfall, and nighttime warming matched predictions for regional environmental change. Warming reduced nematode diversity by 25% and genus-level richness by 32%, but declines dissipated with additional winter rain, suggesting that warming effects occurred via drying. Interactions between precipitation and nitrogen also altered nematode community composition, but only weakly affected total nematode abundance, indicating that most change involved reordering of species abundances. Specifically, under ambient precipitation, nitrogen fertilizer reduced bacterivores by 68% and herbivores by 73%, but did not affect fungivores. In contrast, under winter rain addition, nitrogen fertilization increased bacterivores by 95%, did not affect herbivores, and doubled fungivore abundance. Rain can reduce soil nitrogen availability and increase turnover in the microbial loop, potentially promoting the recovery of nematode populations overwhelmed by nitrogen eutrophication. Nematode communities were not tightly coupled to plant community composition and may instead track microbes, including biocrusts or decomposers. Our results highlight the importance of interactions among environmental change stressors for shaping the composition and function of soil food webs in drylands.
Collapse
Affiliation(s)
- Laura Martinez
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Shuqi Wu
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA.
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Lauren Baur
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Mariah T Patton
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Paul Owen-Smith
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Scott L Collins
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jennifer A Rudgers
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
8
|
Dai W, Zhang P, Yang F, Wang M, Yang H, Li Z, Wang M, Liu R, Huang Y, Wu S, He G, Zhou J, Wei C. Effects of composite materials and revegetation on soil nutrients, chemical and microbial properties in rare earth tailings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157854. [PMID: 35940274 DOI: 10.1016/j.scitotenv.2022.157854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
The mining of ionic rare earth elements in Ganzhou left large area of barren tailings with severe vegetation destruction in pressing needs of remediation. However, the remediating effects of soil additives combined with revegetation on the preservation of nutrients in the tailings and microbial communities were rarely studied. For this purpose, pilot experiments were implemented in a field, with the control group (CK) only cultivating plants without adding materials, and three treatments including peanut straw biochar composite (T1), phosphorus‑magnesium composite (T2) and modified zeolite composite (T3) along with the cultivation of Medicago sativa L., Paspalum vaginatum Sw. and Lolium perenne L. Soil pH and organic matter in CK significantly decreased from 4.90 to 4.17 and from 6.62 g/kg to 3.87 g/kg after six months, respectively (p ≤ 0.05), while all the treatments could effectively buffer soil acidification (over 5.74) and delay the loss of soil organic matter. Soil cation exchange capacity was still below the detection limit in all the groups except T2. The results of rainfall runoff monitoring indicated that compared with CK, only T2 could significantly reduce the runoff loss of soil NO3- and SO42- by 45.61 %-75.78 % and 64.03 %-76.12 %, respectively (p ≤ 0.05). Compared with CK, the bacterial diversity in T2 and T3 significantly increased 21.18 % and 28.15 %, respectively (p ≤ 0.05), while T1 didn't change the bacterial or fungal diversity (p > 0.05). Co-occurrence network analysis showed that compared with CK, the whole microbial communities interacted more closely in the three treatments. Functional prediction of the microbial communities revealed all the treatments were dominated by carbon transforming bacteria and saprotrophic fungi except T2. This study demonstrated that the composite materials combined with revegetation couldn't retain soil nitrogen compounds and sulfate in rare earth tailings in the long term.
Collapse
Affiliation(s)
- Weijie Dai
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fen Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Huixian Yang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhiying Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Mei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Renlu Liu
- School of Life Sciences, Key Laboratory of Agricultural Environmental Pollution Prevention and Control in Red Soil Hilly Region of Jiangxi Province, Jinggangshan University, Jian 343009, China
| | - Yuanying Huang
- National Research Center for Geoanalysis, Beijing 100037, China; Key Laboratory of Ministry of Natural Resources for Eco-geochemistry, Beijing 100037, China
| | - Song Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Genhe He
- School of Life Sciences, Key Laboratory of Agricultural Environmental Pollution Prevention and Control in Red Soil Hilly Region of Jiangxi Province, Jinggangshan University, Jian 343009, China
| | - Jing Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chaoyang Wei
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|