1
|
Wu DG, D'Amico V, Trammell TLE. Soil bacterial communities in urban deciduous forests are filtered by site identity, soil chemistry, and shrub presence. Sci Rep 2024; 14:31735. [PMID: 39738340 DOI: 10.1038/s41598-024-81838-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/29/2024] [Indexed: 01/02/2025] Open
Abstract
Urban forest soils are complex environments subjected to various stressors that alter chemical and microbial properties. To understand soil chemistry and bacterial community patterns in urban forest soils with respect to site identity and multiflora rose (Rosa multiflora) invasion, soils were collected from beneath R. multiflora, native spice bush (Lindera benzoin), and uncovered ground in three forests in Newark, Delaware. High-throughput sequencing was used to analyze bacterial communities with corresponding soil chemical properties. Soil chemistry and operational taxonomic unit (OTU) communities were explained by site rather than by shrub cover type. Unlike other invasive plant studies, R. multiflora had minimal effects on either soil chemistry or bacterial communities. Phylum level bacterial communities were more uniform under shrub cover versus no cover, indicative of a generalized plant effect shaping soil microbiomes. Correlations between bacterial phyla and soil chemistry varied, with some phyla positively or negatively correlating with the same property at different sites. Filters for bacterial communities differ across forest scales, where sites and sampling location primarily correlate with OTU communities yet shrub presence mediates phylum level organization. Forest soil studies should consider location-based differences in bacterial communities and their correlations with soil chemistry before generalizing outcomes for whole macrosystems.
Collapse
Affiliation(s)
- Derek Griffin Wu
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA.
- Population Biology, Ecology, and Evolution Graduate Program, Emory University, Atlanta, GA, USA.
| | - Vincent D'Amico
- USDA Forest Service, Northern Research Station, NRS-08, Newark, DE, USA
| | | |
Collapse
|
2
|
Wang C, Masoudi A, Wang M, Wang Y, Zhang Z, Cao J, Feng J, Yu Z, Liu J. Stochastic processes drive the dynamic assembly of bacterial communities in Salix matsudana afforested soils. Front Microbiol 2024; 15:1467813. [PMID: 39323888 PMCID: PMC11422207 DOI: 10.3389/fmicb.2024.1467813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Introduction This study investigates the dynamic shifts in soil bacterial communities within a Salix matsudana afforested ecosystem transitioning from agricultural land. Understanding the temporal variability in bacterial diversity and community structures is crucial for informing forest management and conservation strategies, particularly in regions undergoing afforestation. Methods We employed high-throughput sequencing across three distinct months (August, September, and October) to analyze the temporal variability in bacterial community composition and diversity. Network analysis was utilized to identify keystone species and assess community stability under varying environmental conditions, including fluctuations in temperature and precipitation. Results We uncover significant temporal variability in bacterial diversity and community structures, which are closely tied to fluctuations in temperature and precipitation. Our findings reveal the abundance of the dominant bacterial phyla, such as Actinobacteria and Proteobacteria, which did not change overall, highlighting the stability and resilience of the microbial community across seasonal transitions. Notably, the increasing similarity in community composition from August to October indicates a reduction in species turnover, likely driven by more homogeneous environmental conditions. Through comprehensive network analysis, we identify the pivotal role of keystone species, particularly the human pathogen Nocardia, in maintaining community stability under reduced soil moisture. The observed variations in community connectivity underscore the microbial community's resilience and adaptability to seasonal shifts, with higher stability in August and October contrasting with the instability observed in September. Discussion These results underscore the complex interplay between stochastic and deterministic processes in bacterial community assembly, significantly shaped by prevailing environmental conditions. The insights gained from this research have far-reaching implications for forestry management and conservation strategies, particularly in regions undergoing similar afforestation efforts.
Collapse
Affiliation(s)
- Can Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Abolfazl Masoudi
- Department of Biological Sciences, University of Illinois, Chicago, IL, United States
| | - Min Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yin Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Ze Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jingkun Cao
- Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jian Feng
- Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zhijun Yu
- Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
3
|
Cao F, Shu W, Liu Q, Wan J, Jiang Z, Liu M, Jiang Y. Distinct structure, assembly, and gene expression of microplankton in two Arctic estuaries with varied terrestrial inputs. ENVIRONMENTAL RESEARCH 2024; 256:119207. [PMID: 38782345 DOI: 10.1016/j.envres.2024.119207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/05/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
The Laptev Sea is a major Marginal Sea in the Western Arctic Ocean. The Arctic amplification brought by global warming influences the hydrological properties of rivers passing through the permafrost zone, which would alter the biological community structure at continental margin. In this study, the structure, assembly, and gene expression of planktonic microbial communities in two estuaries (Protoka Ularovskaya River Estuary, PURE; Lena River Estuary, LRE) of Laptev Sea were examined to investigate the environmental effects of polar rivers. PURE and LRE exhibited distinct environmental characteristics: low temperature and high salinity for PURE, and high temperature and low salinity for LRE, influenced by runoff size. Salinity more closely influenced microbial communities in LRE, with freshwater species playing a significant role in community composition. The findings revealed differences between two estuaries in community composition and diversity. Prokaryotes and microeukaryotes had shown different assembly patterns in response to habitat changes caused by terrestrial freshwater input. Furthermore, compared with the PURE, the co-occurrence and inter-domain network of the LRE, which was more affected by terrestrial input, was more complex and stable. Functional gene prediction revealed a higher gene expression of methane metabolism in LRE than in PURE, particularly those related to methane oxidation, and this conclusion could help better explore the impact of global warming on the methane cycle in the Arctic Marginal Seas. This study explored the increased freshwater runoffs under the background of global warming dramatically affect Arctic microplankton communities from community structure, assembly and gene expression aspects.
Collapse
Affiliation(s)
- Furong Cao
- MoE Key Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Wangxinze Shu
- MoE Key Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Qian Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266003, China
| | - Jiyuan Wan
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Zhiyang Jiang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Mingjian Liu
- MoE Key Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| | - Yong Jiang
- MoE Key Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, China.
| |
Collapse
|
4
|
Schwob G, Almendras K, Veas-Mattheos K, Pezoa M, Orlando J. Host specialization and spatial divergence of bacteria associated with Peltigera lichens promote landscape gamma diversity. ENVIRONMENTAL MICROBIOME 2024; 19:57. [PMID: 39103916 DOI: 10.1186/s40793-024-00598-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/21/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Lichens are micro-ecosystems relying on diverse microorganisms for nutrient cycling, environmental adaptation, and structural support. We investigated the spatial-scale dependency of factors shaping the ecological processes that govern lichen-associated bacteria. We hypothesize that lichens function as island-like habitats hosting divergent microbiomes and promoting landscape gamma-diversity. Three microenvironments -thalli, substrates, and neighboring soils- were sampled from four geographically overlapping species of Peltigera cyanolichens, spanning three bioclimatic zones in the Chilean Patagonia, to determine how bacterial diversity, assembly processes, ecological drivers, interaction patterns, and niche breadth vary among Peltigera microenvironments on a broad geographical scale. RESULTS The hosts' phylogeny, especially that of the cyanobiont, alongside climate as a secondary factor, impose a strong ecological filtering of bacterial communities within Peltigera thalli. This results in deterministically assembled, low diverse, and phylogenetically convergent yet structurally divergent bacterial communities. Host evolutionary and geographic distances accentuate the divergence in bacterial community composition of Peltigera thalli. Compared to soil and substrate, Peltigera thalli harbor specialized and locally adapted bacterial taxa, conforming sparse and weak ecological networks. CONCLUSIONS The findings suggest that Petigera thalli create fragmented habitats that foster landscape bacterial gamma-diversity. This underscores the importance of preserving lichens for maintaining a potential reservoir of specialized bacteria.
Collapse
Affiliation(s)
- Guillaume Schwob
- Instituto Milenio Biodiversidad de Ecosistemas Antárticos y Subantárticos (BASE), Las Palmeras 3425, Ñuñoa, Santiago, 7800003, Chile
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, 7800003, Chile
| | - Katerin Almendras
- Instituto Milenio Biodiversidad de Ecosistemas Antárticos y Subantárticos (BASE), Las Palmeras 3425, Ñuñoa, Santiago, 7800003, Chile
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, 7800003, Chile
| | - Karla Veas-Mattheos
- Instituto Milenio Biodiversidad de Ecosistemas Antárticos y Subantárticos (BASE), Las Palmeras 3425, Ñuñoa, Santiago, 7800003, Chile
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, 7800003, Chile
| | - Matías Pezoa
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, 7800003, Chile
| | - Julieta Orlando
- Instituto Milenio Biodiversidad de Ecosistemas Antárticos y Subantárticos (BASE), Las Palmeras 3425, Ñuñoa, Santiago, 7800003, Chile.
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, 7800003, Chile.
| |
Collapse
|
5
|
Eberly JO, Hurd A, Oli D, Dyer AT, Seipel TF, Carr PM. Compositional profiling of the rhizosphere microbiome of Canada thistle reveals consistent patterns across the United States northern Great Plains. Sci Rep 2024; 14:18016. [PMID: 39097653 PMCID: PMC11298000 DOI: 10.1038/s41598-024-69082-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024] Open
Abstract
Canada thistle is a pervasive perennial weed, causing challenges to agricultural and natural ecosystems globally. Although research has focused on the phenology, genetics, and control of Canada thistle, little is known about the rhizosphere microbiome and the role plant-microbe interactions play in invasion success. This study investigated the rhizosphere microbiome of Canada thistle across diverse climates, soils, and crops in the U.S. northern Great Plains. Soil and rhizosphere samples were collected and bacterial 16S and fungal ITS2 sequencing were performed to characterize the core microbiome and identify potential factors contributing to invasion success. Amplicon sequencing revealed a stable core microbiome that was detected in the Canada thistle rhizosphere across all locations. The core microbiome was dominated by the bacterial phyla Actinobacteriota and Proteobacteria and fungal phyla Ascomycota and Basidiomycota. Differential abundance analysis showed rhizosphere fungal communities were enriched in pathogen-containing genera with a 1.7-fold greater abundance of Fusaria and a 2.6-fold greater abundance of Gibberella compared to bulk soil. Predictive functional profiling showed rhizosphere communities were enriched (p < 0.05, FDR corrected) in plant pathogen fungal guilds which represented 19% of the fungal community. The rhizosphere microbiome was similar in composition across environments, highlighting the stable association between Canada thistle and specific microbial taxa. This study characterized the core microbiome of Canada thistle, and the findings highlight plant-microbe interactions shaping invasive behavior. These findings are important for understanding the ecological impacts of plant invasion and soil-microbe ecological processes.
Collapse
Affiliation(s)
- Jed O Eberly
- Central Agricultural Research Center, Montana State University, Moccasin, MT, USA.
| | - Asa Hurd
- Central Agricultural Research Center, Montana State University, Moccasin, MT, USA
| | - Dipiza Oli
- Department of Plant Science and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Alan T Dyer
- Department of Plant Science and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Tim F Seipel
- Department of Land Resources and Environmental Science, Montana State University, Bozeman, MT, USA
| | - Patrick M Carr
- Central Agricultural Research Center, Montana State University, Moccasin, MT, USA
| |
Collapse
|
6
|
Khattak WA, Sun J, Hameed R, Zaman F, Abbas A, Khan KA, Elboughdiri N, Akbar R, He F, Ullah MW, Al-Andal A, Du D. Unveiling the resistance of native weed communities: insights for managing invasive weed species in disturbed environments. Biol Rev Camb Philos Soc 2024; 99:753-777. [PMID: 38174626 DOI: 10.1111/brv.13043] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
Weed communities influence the dynamics of ecosystems, particularly in disturbed environments where anthropogenic activities often result in higher pollution. Understanding the dynamics existing between native weed communities and invasive species in disturbed environments is crucial for effective management and normal ecosystem functioning. Recognising the potential resistance of native weed communities to invasion in disturbed environments can help identify suitable native plants for restoration operations. This review aims to investigate the adaptations exhibited by native and non-native weeds that may affect invasions within disturbed environments. Factors such as ecological characteristics, altered soil conditions, and adaptations of native weed communities that potentially confer a competitive advantage relative to non-native or invasive weeds in disturbed environments are analysed. Moreover, the roles of biotic interactions such as competition, mutualistic relationships, and allelopathy in shaping the invasion resistance of native weed communities are described. Emphasis is given to the consideration of the resistance of native weeds as a key factor in invasion dynamics that provides insights for conservation and restoration efforts in disturbed environments. Additionally, this review underscores the need for further research to unravel the underlying mechanisms and to devise targeted management strategies. These strategies aim to promote the resistance of native weed communities and mitigate the negative effects of invasive weed species in disturbed environments. By delving deeper into these insights, we can gain an understanding of the ecological dynamics within disturbed ecosystems and develop valuable insights for the management of invasive species, and to restore long-term ecosystem sustainability.
Collapse
Affiliation(s)
- Wajid Ali Khattak
- School of Emergency Management, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
- School of the Environment and Safety Engineering, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
| | - Jianfan Sun
- School of Emergency Management, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
- School of the Environment and Safety Engineering, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, PO Box 215009, Suzhou City, Jiangsu Province, P.R. China
| | - Rashida Hameed
- School of the Environment and Safety Engineering, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
| | - Fawad Zaman
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, Jiangxi Agricultural University, PO Box 330045, Nanchang City, Jiangxi Province, P.R. China
- Jiangxi Provincial Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, PO Box 330045, Nanchang City, Jiangxi Province, P.R. China
| | - Adeel Abbas
- School of the Environment and Safety Engineering, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
| | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, PO Box 9004, Abha, 61413, Saudi Arabia
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, PO Box 2440, Ha'il, 81441, Saudi Arabia
- Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, 6029, Gabes, Tunisia
| | - Rasheed Akbar
- School of the Environment and Safety Engineering, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
- Department of Entomology, The University of Haripur, PO Box 22620, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Feng He
- School of the Environment and Safety Engineering, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of The Environmental and Safety Engineering, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
| | - Abeer Al-Andal
- Department of Biology, College of Science, King Khalid University, PO Box 960, Abha, 61413, Saudi Arabia
| | - Daolin Du
- School of the Environment and Safety Engineering, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
| |
Collapse
|
7
|
Li J, Jin MK, Huang L, Liu ZF, Wang T, Chang RY, Op de Beeck M, Lambers H, Hui D, Xiao KQ, Chen QL, Sardans J, Peñuelas J, Yang XR, Zhu YG. Assembly and succession of the phyllosphere microbiome and nutrient-cycling genes during plant community development in a glacier foreland. ENVIRONMENT INTERNATIONAL 2024; 187:108688. [PMID: 38685158 DOI: 10.1016/j.envint.2024.108688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
The phyllosphere, particularly the leaf surface of plants, harbors a diverse range of microbiomes that play a vital role in the functioning of terrestrial ecosystems. However, our understanding of microbial successions and their impact on functional genes during plant community development is limited. In this study, considering core and satellite microbial taxa, we characterized the phyllosphere microbiome and functional genes in various microhabitats (i.e., leaf litter, moss and plant leaves) across the succession of a plant community in a low-altitude glacier foreland. Our findings indicate that phyllosphere microbiomes and associated ecosystem stability increase during the succession of the plant community. The abundance of core taxa increased with plant community succession and was primarily governed by deterministic processes. In contrast, satellite taxa abundance decreased during plant community succession and was mainly governed by stochastic processes. The abundance of microbial functional genes (such as C, N, and P hydrolysis and fixation) in plant leaves generally increased during the plant community succession. However, in leaf litter and moss leaves, only a subset of functional genes (e.g., C fixation and degradation, and P mineralization) showed a tendency to increase with plant community succession. Ultimately, the community of both core and satellite taxa collaboratively influenced the characteristics of phyllosphere nutrient-cycling genes, leading to the diverse profiles and fluctuating abundance of various functional genes during plant community succession. These findings offer valuable insights into the phyllosphere microbiome and plant-microbe interactions during plant community development, advancing our understanding of the succession and functional significance of the phyllosphere microbial community.
Collapse
Affiliation(s)
- Jian Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Ming-Kang Jin
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Lijie Huang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Zhan-Feng Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Tao Wang
- Key Laboratory of Mountain Environment Evolvement and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Rui-Ying Chang
- Key Laboratory of Mountain Environment Evolvement and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Michiel Op de Beeck
- Centre for Environmental and Climate Research, Lund University, Lund, Sweden
| | - Hans Lambers
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia; Department of Plant Nutrition, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plan-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, Nashville, TN, USA
| | - Ke-Qing Xiao
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Qing-Lin Chen
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Jordi Sardans
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain
| | - Josep Peñuelas
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Raheem A, Yohanna P, Li G, Noh NJ, Iqbal B, Tang J, Du D, Alahmadi TA, Ansari MJ, Zhan A, Son Y. Unraveling the ecological threads: How invasive alien plants influence soil carbon dynamics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120556. [PMID: 38537457 DOI: 10.1016/j.jenvman.2024.120556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Invasive alien plants (IAPs) pose significant threats to native ecosystems and biodiversity worldwide. However, the understanding of their precise impact on soil carbon (C) dynamics in invaded ecosystems remains a crucial area of research. This review comprehensively explores the mechanisms through which IAPs influence soil C pools, fluxes, and C budgets, shedding light on their effects and broader consequences. Key mechanisms identified include changes in litter inputs, rates of organic matter decomposition, alterations in soil microbial communities, and shifts in nutrient cycling, all driving the impact of IAPs on soil C dynamics. These mechanisms affect soil C storage, turnover rates, and ecosystem functioning. Moreover, IAPs tend to increase gross primary productivity and net primary productivity leading to the alterations in fluxes and C budgets. The implications of IAP-induced alterations in soil C dynamics are significant and extend to plant-soil interactions, ecosystem structure, and biodiversity. Additionally, they have profound consequences for C sequestration, potentially impacting climate change mitigation. Restoring native plant communities, promoting soil health, and implementing species-specific management are essential measures to significantly mitigate the impacts of IAPs on soil C dynamics. Overall, understanding and mitigating the effects of IAPs on soil C storage, nutrient cycling, and related processes will contribute to the conservation of native biodiversity and complement global C neutrality efforts.
Collapse
Affiliation(s)
- Abdulkareem Raheem
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Paul Yohanna
- Department of Environmental Resource Management, Faculty of Earth and Environmental Sciences, Federal University Dustin-ma, Katsina State, Nigeria
| | - Guanlin Li
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| | - Nam Jin Noh
- Department of Forest Resources, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Babar Iqbal
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Jing Tang
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box-2925, Riyadh -11461, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), India
| | - Aibin Zhan
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.
| | - Yowhan Son
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
9
|
Pei L, Ye S, Xie L, Zhou P, He L, Yang S, Ding X, Yuan H, Dai T, Laws EA. Differential effects of warming on the complexity and stability of the microbial network in Phragmites australis and Spartina alterniflora wetlands in Yancheng, Jiangsu Province, China. Front Microbiol 2024; 15:1347821. [PMID: 38601935 PMCID: PMC11004437 DOI: 10.3389/fmicb.2024.1347821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
The impact of climate warming on soil microbial communities can significantly influence the global carbon cycle. Coastal wetlands, in particular, are susceptible to changes in soil microbial community structure due to climate warming and the presence of invasive plant species. However, there is limited knowledge about how native and invasive plant wetland soil microbes differ in their response to warming. In this study, we investigated the temporal dynamics of soil microbes (prokaryotes and fungi) under experimental warming in two coastal wetlands dominated by native Phragmites australis (P. australis) and invasive Spartina alterniflora (S. alterniflora). Our research indicated that short-term warming had minimal effects on microbial abundance, diversity, and composition. However, it did accelerate the succession of soil microbial communities, with potentially greater impacts on fungi than prokaryotes. Furthermore, in the S. alterniflora wetland, experimental warming notably increased the complexity and connectivity of the microbial networks. While in the P. australis wetland, it decreased these factors. Analysis of robustness showed that experimental warming stabilized the co-occurrence network of the microbial community in the P. australis wetland, but destabilized it in the S. alterniflora wetland. Additionally, the functional prediction analysis using the Faprotax and FunGuild databases revealed that the S. alterniflora wetland had a higher proportion of saprotrophic fungi and prokaryotic OTUs involved in carbon degradation (p < 0.05). With warming treatments, there was an increasing trend in the proportion of prokaryotic OTUs involved in carbon degradation, particularly in the S. alterniflora wetland. Therefore, it is crucial to protect native P. australis wetlands from S. alterniflora invasion to mitigate carbon emissions and preserve the health of coastal wetland ecosystems under future climate warming in China.
Collapse
Affiliation(s)
- Lixin Pei
- Qingdao Institute of Marine Geology, China Geologic Survey, Qingdao, China
- Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Siyuan Ye
- Qingdao Institute of Marine Geology, China Geologic Survey, Qingdao, China
- Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Liujuan Xie
- Qingdao Institute of Marine Geology, China Geologic Survey, Qingdao, China
- Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Pan Zhou
- Qingdao Institute of Marine Geology, China Geologic Survey, Qingdao, China
- Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Lei He
- Qingdao Institute of Marine Geology, China Geologic Survey, Qingdao, China
- Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Shixiong Yang
- Qingdao Institute of Marine Geology, China Geologic Survey, Qingdao, China
- Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Xigui Ding
- Qingdao Institute of Marine Geology, China Geologic Survey, Qingdao, China
- Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Hongming Yuan
- Qingdao Institute of Marine Geology, China Geologic Survey, Qingdao, China
- Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Tianjiao Dai
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, China
| | - Edward A. Laws
- Department of Environmental Sciences, College of the Coast and Environment, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
10
|
Huang Z, Pan B, Zhao X, Liu X, Liu X, Zhao G. Hydrological disturbances enhance stochastic assembly processes and decrease network stability of algae communities in a highland floodplain system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166207. [PMID: 37567295 DOI: 10.1016/j.scitotenv.2023.166207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/19/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Floodplains are hotspots for biodiversity research and conservation worldwide. Hydrological disturbances can profoundly influence the ecological processes and functions of floodplain systems by altering key biological groups such as algae communities. However, the impacts of flood disturbance on the assembly processes and co-occurrence patterns of algae communities in floodplain ecosystems are still unclear. To ascertain the response patterns of algae communities to flood disturbance, we characterized planktonic and benthic algae communities in 144 water and sediment samples collected from the Tibetan floodplain during non-flood and flood periods based on 23S ribosomal RNA gene sequencing. Results showed that planktonic algae exhibited higher diversity and greater compositional variations compared with benthic communities after flood disturbance. Flooding promoted algae community homogenization at horizontal (rivers vs. oxbow lakes) and vertical levels (water vs. sediment). Stochastic processes governed the assembly of distinct algae communities, and their ecological impacts were enhanced in response to flooding. In the non-flood period, dispersal limitation (81.78 %) was the primary ecological process driving algae community assembly. In the flood period, the relative contribution of ecological drift (72.91 %) to algae community assembly markedly increased, with dispersal limitation (22.61 %) being less important. Flooding reduced the interactions among algae taxa, resulting in lower network complexity and stability. Compared with the planktonic algae subnetworks, the benthic subnetworks showed greater stability in the face of flooding. Findings of this study broaden our understanding of how algae communities respond to hydrological disturbances from an ecological perspective and could be useful for the management of highland floodplain ecosystems.
Collapse
Affiliation(s)
- Zhenyu Huang
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi 710048, PR China.
| | - Baozhu Pan
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi 710048, PR China.
| | - Xiaohui Zhao
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi 710048, PR China.
| | - Xing Liu
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi 710048, PR China.
| | - Xinyuan Liu
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi 710048, PR China.
| | - Gengnan Zhao
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi 710048, PR China.
| |
Collapse
|
11
|
Qi JQ, Yuan HY, Zhuang QL, Zama EF, Tian XF, Tao BX, Zhang BH. Effect of different types of biochar on soil properties and functional microbial communities in rhizosphere and bulk soils and their relationship with CH 4 and N 2O emissions. Front Microbiol 2023; 14:1292959. [PMID: 38029118 PMCID: PMC10656817 DOI: 10.3389/fmicb.2023.1292959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Biochar as an agricultural soil amendment plays vital roles in mediating methane (CH4) and nitrous oxide (N2O) emissions in soils. The link between different types of biochar, bulk soil, and rhizosphere microbial communities in relation to CH4 and N2O emissions is being investigated in this study. The rice pot experiment was conducted using biochar at two temperatures (300°C and 500°C) in combination with three biochar levels (0, 2, 10% w/w). Soil properties and the abundance of genes associated with CH4 and N2O emissions from both rhizosphere and bulk soils were investigated. The study also aimed to examine the structure of microbial communities (pmoA, nosZ) in rhizosphere and bulk soils whereas CH4 and N2O emissions were monitored while growing rice. Results showed that biochar at 300°C and 10% incorporation significantly increased the CH4 emissions by up to 59% rise compared to the control group. Random Forest analysis revealed that the ratio of mcrA/pmoA along with the abundance of mcrA from both rhizosphere and bulk soils, the abundance of AOA, TN, DOC, and the community composition of pmoA-harboring microorganisms from both bulk and rhizosphere soils were important predictors of CH4 emissions. Therefore, the ratio of mcrA/pmoA in rhizosphere soil and the abundance of AOA in bulk soil were the main factors influencing CH4 emissions. Variation Partitioning Analysis (VPA) results indicated that the effects of these factors on bulk soil were 9% of CH4 emissions variations in different treatments, which contributed more than rhizosphere soils' factors. Moreover, random forest analysis results indicated that the abundance of AOB in bulk soil was the most important predictor influencing N2O emissions. The VPA result revealed that the factors in rhizosphere soil could explain more than 28% of the variations in N2O emissions. Our study highlights that rhizosphere soil has a more significant effect than bulk soil on N2O production. Our findings further the understanding of the link between bulk and rhizosphere attributes, and their impact on CH4 and N2O emissions in paddy soils. In summary, we recommend the application of biochar at 500°C and 2% incorporation rate for agricultural production in the area.
Collapse
Affiliation(s)
- Jian-Qing Qi
- School of Geography and Environment, Liaocheng University, Liaocheng, China
| | - Hai-Yan Yuan
- School of Geography and Environment, Liaocheng University, Liaocheng, China
| | - Qi-Lu Zhuang
- School of Geography and Environment, Liaocheng University, Liaocheng, China
| | - Eric-Fru Zama
- Department of Agricultural and Environmental Engineering, College of Technology, University of Bamenda, Bambili, Cameroon
| | - Xiao-Fei Tian
- School of Geography and Environment, Liaocheng University, Liaocheng, China
| | - Bao-Xian Tao
- School of Geography and Environment, Liaocheng University, Liaocheng, China
| | - Bao-Hua Zhang
- School of Geography and Environment, Liaocheng University, Liaocheng, China
| |
Collapse
|
12
|
Wang Y, Zheng G, Zhao Y, Bo H, Li C, Dong J, Wang Y, Yan S, Zhang F, Liu J. Different bacterial and fungal community patterns in restored habitats in coal-mining subsidence areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104304-104318. [PMID: 37700132 DOI: 10.1007/s11356-023-29744-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/03/2023] [Indexed: 09/14/2023]
Abstract
Soil microbiota, which plays a fundamental role in ecosystem functioning, is sensitive to environmental changes. Studying soil microbial ecological patterns can help to understand the consequences of environmental disturbances on soil microbiota and hence ecosystem services. The different habitats with critical environmental gradients generated through the restoration of coal-mining subsidence areas provide an ideal area to explore the response of soil microbiota to environmental changes. Here, based on high-throughput sequencing, we revealed the patterns of soil bacterial and fungal communities in habitats with different land-use types (wetland, farmland, and grassland) and with different restored times which were generated during the ecological restoration of a typical coal-mining subsidence area in Jining City, China. The α-diversity of bacterial was higher in wetland than in farmland and grassland, while that of fungi had no discrepancy among the three habitats. The β-diversity of bacterial community in the grassland was lower than in the farmland, and fungal community was significant different in all three habitats, showing wetland, grassland, and farmland from high to low. The β-diversity of the bacterial community decreased with restoration time while that of the fungal community had no significant change in the longer-restoration-time area. Furthermore, soil electrical conductivity was the most important driver for both bacterial and fungal communities. Based on the taxonomic difference among different habitats, we identified a group of biomarkers for each habitat. The study contributes to understand the microbial patterns during the ecological restoration of coal-mining subsidence areas, which has implications for the efficient ecological restoration of subsidence areas.
Collapse
Affiliation(s)
- Yijing Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Guodong Zheng
- Technology Innovation Center of Restoration and Reclamation in Mining induced Subsidence Land, Ministry of Natural Resources, Shandong Provincial Lunan Geology and Exploration Institute (Shandong Provincial Bureau of Geology and Mineral Resources No.2 Geological Brigade), Jining, 272000, China.
| | - Yongkang Zhao
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Huaizhi Bo
- Technology Innovation Center of Restoration and Reclamation in Mining induced Subsidence Land, Ministry of Natural Resources, Shandong Provincial Lunan Geology and Exploration Institute (Shandong Provincial Bureau of Geology and Mineral Resources No.2 Geological Brigade), Jining, 272000, China
| | - Changchao Li
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Junyu Dong
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yan Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Shuwan Yan
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Fanglong Zhang
- Technology Innovation Center of Restoration and Reclamation in Mining induced Subsidence Land, Ministry of Natural Resources, Shandong Provincial Lunan Geology and Exploration Institute (Shandong Provincial Bureau of Geology and Mineral Resources No.2 Geological Brigade), Jining, 272000, China
| | - Jian Liu
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| |
Collapse
|
13
|
Perdomo-González A, Pérez-Reverón R, Goberna M, León-Barrios M, Fernández-López M, Villadas PJ, Reyes-Betancort JA, Díaz-Peña FJ. How harmful are exotic plantations for soils and its microbiome? A case study in an arid island. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163030. [PMID: 36963683 DOI: 10.1016/j.scitotenv.2023.163030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/17/2023]
Abstract
The plantation of exotic species has been a common practice in (semi-) arid areas worldwide aiming to restore highly degraded habitats. The effects of these plantations on plant cover or soil erosion have been widely studied, while little attention has been paid to the consequences on soil quality and belowground biological communities. This study evaluates the long-term (>60 years) effects of the exotic species Acacia cyclops and Pinus halepensis revegetation on soil properties, including microbiome, in an arid island. Soils under exotic plantation were compared to both degraded soils with a very low cover of native species and soils with well-preserved native plant communities. Seven scenarios were selected in a small area (~25 ha) with similar soil type but differing in the plant cover. Topsoils (0-15 cm) were analyzed for physical, chemical and biochemical properties, and amplicon sequencing of bacterial and fungal communities. Microbial diversity was similar among soils with exotic plants and native vegetation (Shannon's index = 5.26 and 5.34, respectively), while the most eroded soils exhibited significantly lower diversity levels (Shannon's index = 4.72). Bacterial and fungal communities' composition in degraded soils greatly differed from those in vegetated soils (Canberra index = 0.85 and 0.92, respectively) likely due to high soil sodicity, fine textures and compaction. Microbial communities' composition also differed in soils covered with exotic and native species, to a greater extent for fungi than for bacteria (Canberra index = 0.94 and 0.89, respectively), due to higher levels of nutrients, microbial biomass and activity in soils with native species. Results suggest that reforestation succeeded in avoiding further soil degradation but still leading to relevant changes in soil microbial community that may have negative effects on ecosystem stability. Information gained in this research could be useful for environmental agencies and decision makers about the controversial replacement of exotic plants in insular territories.
Collapse
Affiliation(s)
- Adolfo Perdomo-González
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain.
| | - Raquel Pérez-Reverón
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Marta Goberna
- Departamento de Medio Ambiente y Agronomía, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Milagros León-Barrios
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Manuel Fernández-López
- Grupo de Microbiología de Ecosistemas Agroforestales, Departamento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Pablo J Villadas
- Grupo de Microbiología de Ecosistemas Agroforestales, Departamento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - J Alfredo Reyes-Betancort
- Jardín de Aclimatación de La Orotava, Instituto Canario de Investigaciones Agrarias (ICIA), 38400 Puerto de la Cruz, Spain
| | - Francisco J Díaz-Peña
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain.
| |
Collapse
|
14
|
Li W, Lu Q, Alharbi SA, Soromotin AV, Kuzyakov Y, Lei Y. Plant-soil-microbial interactions mediate vegetation succession in retreating glacial forefields. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162393. [PMID: 36841408 DOI: 10.1016/j.scitotenv.2023.162393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/11/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Global warming is accelerating glacial retreat and leaving open areas for vegetation succession on young developing soils. Soil microbial communities interact with plants affecting vegetation succession, but the specific microbial groups controlling these interactions are unclear. We tested whether plant-soil-microbial interactions explain plant primary succession in the Gongga Mountain glacial retreat chronosequence. The direction and intensity of plant-soil-microbial interactions were quantified by comparing the biomass of one early-, two mid- and two late-succession plant species under sterilized vs. live, and inter- vs. intra-specific competition. The performance of most plant species was negatively affected by soil biota from early habitats (5-10 yr), but positively by soil biota from mid- (30-40) and late-succession (80-100) habitats. Two species of Salicaceae from middle habitats, which are strong competitors, developed well on the soils of all successional stages and limited the establishment of later serial plant species. The strongest microbial drivers of plant-microbial interactions changed from i) saprophytic fungal specialists during the early stage, to ii) generalists bacteria and arbuscular mycorrhizal fungi in the middle stage, and finally to iii) ectomycorrhizal fungal specialists in the late stage. Microbial turnover intensified plant-soil-microbial interactions and accelerated primary succession in the young soils of the glacial retreat area.
Collapse
Affiliation(s)
- Weitao Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Qi Lu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Sulaiman Almwarai Alharbi
- Department of Botany & Microbiology, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Saudi Arabia
| | - Andrey V Soromotin
- Research Institute of Ecology and Natural Resources Management, Tyumen State University, 6 Volodarskogo Street, 625003 Tyumen, Russia
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Göttingen, Göttingen 37077, Germany; Institute of Environmental Sciences, Kazan Federal University, 420049 Kazan, Russia; Peoples Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Yanbao Lei
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
15
|
Li C, Jin L, Zhang C, Li S, Zhou T, Hua Z, Wang L, Ji S, Wang Y, Gan Y, Liu J. Destabilized microbial networks with distinct performances of abundant and rare biospheres in maintaining networks under increasing salinity stress. IMETA 2023; 2:e79. [PMID: 38868331 PMCID: PMC10989821 DOI: 10.1002/imt2.79] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 06/14/2024]
Abstract
Global changes such as seawater intrusion and freshwater resource salinization increase environmental stress imposed on the aquatic microbiome. A strong predictive understanding of the responses of the aquatic microbiome to environmental stress will help in coping with the "gray rhino" events in the environment, thereby contributing to an ecologically sustainable future. Considering that microbial ecological networks are tied to the stability of ecosystem functioning and that abundant and rare biospheres with different biogeographic patterns are important drivers of ecosystem functioning, the roles of abundant and rare biospheres in maintaining ecological networks need to be clarified. Here we showed that, with the increasing salinity stress induced by the freshwater-to-seawater transition, the microbial diversity reduced significantly and the taxonomic structure experienced a strong succession. The complexity and stability of microbial ecological networks were diminished by the increasing stress. The composition of the microorganisms supporting the networks underwent sharp turnovers during the freshwater-to-seawater transition, with the abundant biosphere behaving more robustly than the rare biosphere. Notably, the abundant biosphere played a much more important role than the rare biosphere in stabilizing ecological networks under low-stress environments, but the difference between their relative importance narrowed significantly with the increasing stress, suggesting that the environmental stress weakened the "Matthew effect" in the microbial world. With in-depth insights into the aquatic microbial ecology under stress, our findings highlight the importance of adjusting conservation strategies for the abundant and rare biospheres to maintain ecosystem functions and services in response to rising environmental stress.
Collapse
Affiliation(s)
- Changchao Li
- Environment Research InstituteShandong UniversityQingdaoChina
- Department of Civil and Environmental Engineering and State Key Laboratory of Marine PollutionThe Hong Kong Polytechnic UniversityKowloonHong Kong SARChina
| | - Ling Jin
- Department of Civil and Environmental Engineering and State Key Laboratory of Marine PollutionThe Hong Kong Polytechnic UniversityKowloonHong Kong SARChina
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityKowloonHong Kong SARChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| | - Chao Zhang
- Environment Research InstituteShandong UniversityQingdaoChina
| | - Shuzhen Li
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
| | - Tong Zhou
- Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of OceanologyChinese Academy of SciencesQingdaoChina
| | - Zhongyi Hua
- National Resource Center for Chinese Materia MedicaChinese Academy of Chinese Medical SciencesBeijingChina
| | - Lifei Wang
- Environment Research InstituteShandong UniversityQingdaoChina
| | - Shuping Ji
- Environment Research InstituteShandong UniversityQingdaoChina
| | - Yanfei Wang
- College of Computer Science and TechnologyShanghai University of Electric PowerShanghaiChina
| | - Yandong Gan
- School of Life SciencesQufu Normal UniversityQufuChina
| | - Jian Liu
- Environment Research InstituteShandong UniversityQingdaoChina
| |
Collapse
|
16
|
Li G, Liu P, Zhao J, Su L, Zhao M, Jiang Z, Zhao Y, Yang X. Correlation of microbiomes in "plant-insect-soil" ecosystem. Front Microbiol 2023; 14:1088532. [PMID: 36793880 PMCID: PMC9922863 DOI: 10.3389/fmicb.2023.1088532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/03/2023] [Indexed: 02/03/2023] Open
Abstract
Introduction Traditional chemical control methods pose a damaging effect on farmland ecology, and their long-term use has led to the development of pest resistance. Methods Here, we analyzed the correlations and differences in the microbiome present in the plant and soil of sugarcane cultivars exhibiting different insect resistance to investigate the role played by microbiome in crop insect resistance. We evaluated the microbiome of stems, topsoil, rhizosphere soil, and striped borers obtained from infested stems, as well as soil chemical parameters. Results and Discussion Results showed that microbiome diversity was higher in stems of insect-resistant plants, and contrast, lower in the soil of resistant plants, with fungi being more pronounced than bacteria. The microbiome in plant stems was almost entirely derived from the soil. The microbiome of insect-susceptible plants and surrounding soil tended to change towards that of insect-resistant plants after insect damage. Insects' microbiome was mainly derived from plant stems and partly from the soil. Available potassium showed an extremely significant correlation with soil microbiome. This study validated the role played by the microbiome ecology of plant-soil-insect system in insect resistance and provided a pre-theoretical basis for crop resistance control.
Collapse
Affiliation(s)
- Guomeng Li
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China,Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, China
| | - Peng Liu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China,Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, China
| | - Jihan Zhao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China,Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, China
| | - Liangyinan Su
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China,Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, China
| | - Mengyu Zhao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China,Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, China
| | - Zhengjie Jiang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China,Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, China
| | - Yang Zhao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China,Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, China,*Correspondence: Yang Zhao,
| | - Xiping Yang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China,Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, China,Xiping Yang,
| |
Collapse
|