1
|
Perween N, Pekhale K, Haval G, Sirkar G, Bose GS, Mittal SPK, Ghaskadbi S, Ghaskadbi SS. Identification and characterization of multidomain monothiol glutaredoxin 3 from diploblastic Hydra. Comp Biochem Physiol B Biochem Mol Biol 2024; 273:110986. [PMID: 38703881 DOI: 10.1016/j.cbpb.2024.110986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Intracellular antioxidant glutaredoxin controls cell proliferation and survival. Based on the active site, structure, and conserved domain motifs, it is classified into two classes. Class I contains dithiol Grxs with two cysteines in the consensus active site sequence CXXC, while class II has monothiol Grxs with one cysteine residue in the active site. Monothiol Grxs can also have an additional N-terminal thioredoxin (Trx)-like domain. Previously, we reported the characterization of Grx1 from Hydra vulgaris (HvGrx1), which is a dithiol isoform. Here, we report the molecular cloning, expression, analysis, and characterization of another isoform of Grx, which is the multidomain monothiol glutaredoxin-3 from Hydra vulgaris (HvGrx3). It encodes a protein with 303 amino acids and is significantly larger and more divergent than HvGrx1. In-silico analysis revealed that Grx1 and Grx3 have 22.5% and 9.9% identical nucleotide and amino acid sequences, respectively. HvGrx3 has two glutaredoxin domains and a thioredoxin-like domain at its amino terminus, unlike HvGrx1, which has a single glutaredoxin domain. Like other monothiol glutaredoxins, HvGrx3 failed to reduce glutathione-hydroxyethyl disulfide. In the whole Hydra, HvGrx3 was found to be expressed all over the body column, and treatment with H2O2 led to a significant upregulation of HvGrx3. When transfected in HCT116 (human colon cancer cells) cells, HvGrx3 enhanced cell proliferation and migration, indicating that this isoform could be involved in these cellular functions. These transfected cells also tolerate oxidative stress better.
Collapse
Affiliation(s)
- Nusrat Perween
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India; Department of Zoology, M.C.E. Society's Abeda Inamdar Senior College, Pune 411001, India. https://twitter.com/nusratperween13
| | - Komal Pekhale
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India
| | - Gauri Haval
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India; Department of Zoology, Abasaheb Garware College, Pune 411004, India
| | - Gargi Sirkar
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India
| | - Ganesh S Bose
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Smriti P K Mittal
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Surendra Ghaskadbi
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune 411004, India
| | - Saroj S Ghaskadbi
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
2
|
Kim G, Omeka WKM, Liyanage DS, Lee J. Molecular characterization, redox regulation, and immune responses of monothiol and dithiol glutaredoxins from disk abalone (Haliotis discus discus). FISH & SHELLFISH IMMUNOLOGY 2020; 107:385-394. [PMID: 33141077 DOI: 10.1016/j.fsi.2020.10.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Glutaredoxins (Grxs) are well-known oxidoreductases involved in a wide range of redox activities in organisms. In this study, two invertebrate Grxs (AbGrx1-like and AbGrx2) from disk abalone were identified and characterized in an effort to gain a deeper understanding into their immune and redox regulatory roles. Both AbGrxs share typical thioredoxin/Grx structures. AbGrx1-like and AbGrx2 were identified as monothiol and diothiol Grxs, respectively. AbGrxs were significantly expressed at the egg and 16-cell stage of early abalone development. Although the expression of both AbGrxs demonstrated similar patterns, the expression of AbGrx1-like was higher than AbGrx2 during development stages. In contrast, AbGrx2 expression was significantly higher than that of AbGrx1-like in adult tissues. Highest AbGrx1-like expression was observed in the hepatopancreas and digestive tract, while highest AbGrx2 expression was found in the gills, followed by the mantle, in healthy adult abalone tissues. The highest expression of AbGrx1-like was observed in the gills at 12 h and 6 h post injection (p.i) of Vibrio parahemolyticus and other stimulants, respectively. The highest expression of AbGrx2 in the gills were observed at 120 h, 6 h, 24 h, and 12 h post injection of V. parahaemolyticus, Listeria monocytogenes, Viral hemorrhagic septicemia virus, and Polyinosinic:polycytidylic acid, respectively. AbGrxs possessed significant 2-hydroxyethyl disulfide (HED) and dehydroascorbate (DHA) reduction activity, but AbGrx2 exhibited higher redox activity than AbGrx1-like. Altogether, our results suggest an important role of AbGrx1-like and AbGrx2 in redox homeostasis, as well as in the invertebrate immune defense system. Our findings will aid the development of new disease management strategies for this economically valuable species.
Collapse
Affiliation(s)
- Gaeun Kim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea
| | - W K M Omeka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea.
| |
Collapse
|
3
|
Stultz LK, Hunsucker A, Middleton S, Grovenstein E, O'Leary J, Blatt E, Miller M, Mobley J, Hanson PK. Proteomic analysis of the S. cerevisiae response to the anticancer ruthenium complex KP1019. Metallomics 2020; 12:876-890. [PMID: 32329475 PMCID: PMC7362344 DOI: 10.1039/d0mt00008f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Like platinum-based chemotherapeutics, the anticancer ruthenium complex indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(iii)], or KP1019, damages DNA, induces apoptosis, and causes tumor regression in animal models. Unlike platinum-based drugs, KP1019 showed no dose-limiting toxicity in a phase I clinical trial. Despite these advances, the mechanism(s) and target(s) of KP1019 remain unclear. For example, the drug may damage DNA directly or by causing oxidative stress. Likewise, KP1019 binds cytosolic proteins, suggesting DNA is not the sole target. Here we use the budding yeast Saccharomyces cerevisiae as a model in a proteomic study of the cellular response to KP1019. Mapping protein level changes onto metabolic pathways revealed patterns consistent with elevated synthesis and/or cycling of the antioxidant glutathione, suggesting KP1019 induces oxidative stress. This result was supported by increased fluorescence of the redox-sensitive dye DCFH-DA and increased KP1019 sensitivity of yeast lacking Yap1, a master regulator of the oxidative stress response. In addition to oxidative and DNA stress, bioinformatic analysis revealed drug-dependent increases in proteins involved ribosome biogenesis, translation, and protein (re)folding. Consistent with proteotoxic effects, KP1019 increased expression of a heat-shock element (HSE) lacZ reporter. KP1019 pre-treatment also sensitized yeast to oxaliplatin, paralleling prior research showing that cancer cell lines with elevated levels of translation machinery are hypersensitive to oxaliplatin. Combined, these data suggest that one of KP1019's many targets may be protein metabolism, which opens up intriguing possibilities for combination therapy.
Collapse
Affiliation(s)
- Laura K Stultz
- Department of Chemistry, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Alexandra Hunsucker
- Department of Biology, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Sydney Middleton
- Department of Chemistry, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Evan Grovenstein
- Department of Biology, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Jacob O'Leary
- Department of Chemistry, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Eliot Blatt
- Department of Biology, Rhodes College, Memphis, TN 38112, USA
| | - Mary Miller
- Department of Biology, Rhodes College, Memphis, TN 38112, USA
| | - James Mobley
- Department of Surgery, University of Alabama at Birmingham, School of Medicine, Birmingham, AL 35294, USA
| | - Pamela K Hanson
- Department of Biology, Furman University, Greenville, SC 29613, USA.
| |
Collapse
|
4
|
The monothiol glutaredoxin GrxD is essential for sensing iron starvation in Aspergillus fumigatus. PLoS Genet 2019; 15:e1008379. [PMID: 31525190 PMCID: PMC6762210 DOI: 10.1371/journal.pgen.1008379] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/26/2019] [Accepted: 08/20/2019] [Indexed: 01/17/2023] Open
Abstract
Efficient adaptation to iron starvation is an essential virulence determinant of the most common human mold pathogen, Aspergillus fumigatus. Here, we demonstrate that the cytosolic monothiol glutaredoxin GrxD plays an essential role in iron sensing in this fungus. Our studies revealed that (i) GrxD is essential for growth; (ii) expression of the encoding gene, grxD, is repressed by the transcription factor SreA in iron replete conditions and upregulated during iron starvation; (iii) during iron starvation but not iron sufficiency, GrxD displays predominant nuclear localization; (iv) downregulation of grxD expression results in de-repression of genes involved in iron-dependent pathways and repression of genes involved in iron acquisition during iron starvation, but did not significantly affect these genes during iron sufficiency; (v) GrxD displays protein-protein interaction with components of the cytosolic iron-sulfur cluster biosynthetic machinery, indicating a role in this process, and with the transcription factors SreA and HapX, which mediate iron regulation of iron acquisition and iron-dependent pathways; (vi) UV-Vis spectra of recombinant HapX or the complex of HapX and GrxD indicate coordination of iron-sulfur clusters; (vii) the cysteine required for iron-sulfur cluster coordination in GrxD is in vitro dispensable for interaction with HapX; and (viii) there is a GrxD-independent mechanism for sensing iron sufficiency by HapX; (ix) inactivation of SreA suppresses the lethal effect caused by GrxD inactivation. Taken together, this study demonstrates that GrxD is crucial for iron homeostasis in A. fumigatus. Aspergillus fumigatus is a ubiquitous saprophytic mold and the major causative pathogen causing life-threatening aspergillosis. To improve therapy, there is an urgent need for a better understanding of the fungal physiology. We have previously shown that adaptation to iron starvation is an essential virulence attribute of A. fumigatus. In the present study, we characterized the mechanism employed by A. fumigatus to sense the cellular iron status, which is essential for iron homeostasis. We demonstrate that the transcription factors SreA and HapX, which coordinate iron acquisition, iron consumption and iron detoxification require physical interaction with the monothiol glutaredoxin GrxD to sense iron starvation. Moreover, we show that there is a GrxD-independent mechanism for sensing excess of iron.
Collapse
|
5
|
Omeka WKM, Liyanage DS, Priyathilaka TT, Godahewa GI, Lee S, Lee S, Lee J. Glutaredoxin 1 from big-belly seahorse (Hippocampus abdominalis): Molecular, transcriptional, and functional evidence in teleost immune responses. FISH & SHELLFISH IMMUNOLOGY 2019; 90:40-51. [PMID: 31015065 DOI: 10.1016/j.fsi.2019.03.078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/02/2019] [Accepted: 03/30/2019] [Indexed: 06/09/2023]
Abstract
Glutaredoxins (Grx) are redox enzymes conserved in viruses, eukaryotes, and prokaryotes. In this study, we characterized glutaredoxin 1 (HaGrx1) from big-belly seahorse, Hippocampus abdominalis. In-silico analysis showed that HaGrx1 contained the classical glutaredoxin 1 structure with a CSYC thioredoxin active site motif. According to multiple sequence alignment and phylogenetic reconstruction, HaGrx1 presented the highest homology to the Grx1 ortholog from Hippocampus comes. Transcriptional studies demonstrated the ubiquitous distribution of HaGrx1 transcripts in all the seahorse tissues tested. Significant modulation (p < 0.05) of HaGrx1 transcripts were observed in blood upon stimulation with pathogen-associated molecular patterns and live pathogens. The β-hydroxyethyl disulfide reduction assay confirmed the antioxidant activity of recombinant HaGrx1. Further, dehydroascorbate reduction and insulin disulfide reduction assays revealed the oxidoreductase activity of HaGrx1. HaGrx1 utilized 1,4-dithiothreitol, l-cysteine, 2-mercaptoethanol, and reduced l-glutathione as reducing agent with different dehydroascorbate reduction activity levels. Altogether, our results suggested a vital role of HaGrx1 in redox homeostasis as well as the host innate immune defense system.
Collapse
Affiliation(s)
- W K M Omeka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Thanthrige Thiunuwan Priyathilaka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - G I Godahewa
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Seongdo Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Sukkyoung Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea.
| |
Collapse
|
6
|
Park SC, Kim YM, Lee JK, Kim NH, Kim EJ, Heo H, Lee MY, Lee JR, Jang MK. Targeting and synergistic action of an antifungal peptide in an antibiotic drug-delivery system. J Control Release 2017; 256:46-55. [DOI: 10.1016/j.jconrel.2017.04.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/29/2017] [Accepted: 04/17/2017] [Indexed: 10/19/2022]
|
7
|
Lill R, Srinivasan V, Mühlenhoff U. The role of mitochondria in cytosolic-nuclear iron–sulfur protein biogenesis and in cellular iron regulation. Curr Opin Microbiol 2015; 22:111-9. [PMID: 25460804 DOI: 10.1016/j.mib.2014.09.015] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/20/2014] [Accepted: 09/24/2014] [Indexed: 12/16/2022]
Abstract
Mitochondria are indispensable in eukaryotes because of their function in the maturation of cytosolic and nuclear iron–sulfur proteins that are essential for DNA synthesis and repair, tRNA modification, and protein translation. The mitochondrial Fe/S cluster assembly machinery not only generates the organelle's iron–sulfur proteins, but also extra-mitochondrial ones. Biogenesis of the latter proteins requires the mitochondrial ABC transporter Atm1 that exports a sulfur-containing compound in a glutathione-dependent fashion. The process is further assisted by the cytosolic iron–sulfur protein assembly machinery. Here, we discuss the knowns and unknowns of the mitochondrial export process that is also crucial for signaling the cellular iron status to the regulatory systems involved in the maintenance of cellular iron homeostasis.
Collapse
Affiliation(s)
- Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany.
| | | | | |
Collapse
|
8
|
Calmes B, Morel-Rouhier M, Bataillé-Simoneau N, Gelhaye E, Guillemette T, Simoneau P. Characterization of glutathione transferases involved in the pathogenicity of Alternaria brassicicola. BMC Microbiol 2015; 15:123. [PMID: 26081847 PMCID: PMC4470081 DOI: 10.1186/s12866-015-0462-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/03/2015] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Glutathione transferases (GSTs) represent an extended family of multifunctional proteins involved in detoxification processes and tolerance to oxidative stress. We thus anticipated that some GSTs could play an essential role in the protection of fungal necrotrophs against plant-derived toxic metabolites and reactive oxygen species that accumulate at the host-pathogen interface during infection. RESULTS Mining the genome of the necrotrophic Brassica pathogen Alternaria brassicicola for glutathione transferase revealed 23 sequences, 17 of which could be clustered into the main classes previously defined for fungal GSTs and six were 'orphans'. Five isothiocyanate-inducible GSTs from five different classes were more thoroughly investigated. Analysis of their catalytic properties revealed that two GSTs, belonging to the GSTFuA and GTT1 classes, exhibited GSH transferase activity with isothiocyanates (ITC) and peroxidase activity with cumene hydroperoxide, respectively. Mutant deficient for these two GSTs were however neither more susceptible to ITC nor less aggressive than the wild-type parental strain. By contrast mutants deficient for two other GSTs, belonging to the Ure2pB and GSTO classes, were distinguished by their hyper-susceptibility to ITC and low aggressiveness against Brassica oleracea. In particular AbGSTO1 could participate in cell tolerance to ITC due to its glutathione-dependent thioltransferase activity. The fifth ITC-inducible GST belonged to the MAPEG class and although it was not possible to produce the soluble active form of this protein in a bacterial expression system, the corresponding deficient mutant failed to develop normal symptoms on host plant tissues. CONCLUSIONS Among the five ITC-inducible GSTs analyzed in this study, three were found essential for full aggressiveness of A. brassicicola on host plant. This, to our knowledge is the first evidence that GSTs might be essential virulence factors for fungal necrotrophs.
Collapse
Affiliation(s)
- Benoit Calmes
- Université d'Angers, UMR 1345 IRHS, SFR 4207 QUASAV, 2 Bd Lavoisier, Angers cedex, F-49045, France.
- INRA, UMR 1345 IRHS, 42 rue Georges Morel, Beaucouzé Cedex, F-49071, France.
- Agrocampus-Ouest, UMR 1345 IRHS, 2 rue le Nôtre, Angers cedex, F-49045, France.
| | - Mélanie Morel-Rouhier
- Université de Lorraine, UMR1136 Interactions Arbres-Microorganismes, Vandoeuvre-lès, F-54500, Nancy, France.
- INRA, UMR1136 Interactions Arbres-Microorganismes, F-54280, Champenoux, France.
| | - Nelly Bataillé-Simoneau
- Université d'Angers, UMR 1345 IRHS, SFR 4207 QUASAV, 2 Bd Lavoisier, Angers cedex, F-49045, France.
- INRA, UMR 1345 IRHS, 42 rue Georges Morel, Beaucouzé Cedex, F-49071, France.
- Agrocampus-Ouest, UMR 1345 IRHS, 2 rue le Nôtre, Angers cedex, F-49045, France.
| | - Eric Gelhaye
- Université de Lorraine, UMR1136 Interactions Arbres-Microorganismes, Vandoeuvre-lès, F-54500, Nancy, France.
- INRA, UMR1136 Interactions Arbres-Microorganismes, F-54280, Champenoux, France.
| | - Thomas Guillemette
- Université d'Angers, UMR 1345 IRHS, SFR 4207 QUASAV, 2 Bd Lavoisier, Angers cedex, F-49045, France.
- INRA, UMR 1345 IRHS, 42 rue Georges Morel, Beaucouzé Cedex, F-49071, France.
- Agrocampus-Ouest, UMR 1345 IRHS, 2 rue le Nôtre, Angers cedex, F-49045, France.
| | - Philippe Simoneau
- Université d'Angers, UMR 1345 IRHS, SFR 4207 QUASAV, 2 Bd Lavoisier, Angers cedex, F-49045, France.
- INRA, UMR 1345 IRHS, 42 rue Georges Morel, Beaucouzé Cedex, F-49071, France.
- Agrocampus-Ouest, UMR 1345 IRHS, 2 rue le Nôtre, Angers cedex, F-49045, France.
| |
Collapse
|
9
|
Kojer K, Peleh V, Calabrese G, Herrmann JM, Riemer J. Kinetic control by limiting glutaredoxin amounts enables thiol oxidation in the reducing mitochondrial intermembrane space. Mol Biol Cell 2014; 26:195-204. [PMID: 25392302 PMCID: PMC4294668 DOI: 10.1091/mbc.e14-10-1422] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Proteins of the mitochondrial intermembrane space are oxidatively folded by the incorporation of structural disulfide bonds. Efficient protein oxidation in this highly reducing compartment is possible only because glutaredoxins, which could translate the glutathione redox potential into that of protein thiols, are present at limiting levels. The mitochondrial intermembrane space (IMS) harbors an oxidizing machinery that drives import and folding of small cysteine-containing proteins without targeting signals. The main component of this pathway is the oxidoreductase Mia40, which introduces disulfides into its substrates. We recently showed that the IMS glutathione pool is maintained as reducing as that of the cytosol. It thus remained unclear how equilibration of protein disulfides with the IMS glutathione pool is prevented in order to allow oxidation-driven protein import. Here we demonstrate the presence of glutaredoxins in the IMS and show that limiting amounts of these glutaredoxins provide a kinetic barrier to prevent the thermodynamically feasible reduction of Mia40 substrates by the IMS glutathione pool. Moreover, they allow Mia40 to exist in a predominantly oxidized state. Consequently, overexpression of glutaredoxin 2 in the IMS results in a more reduced Mia40 redox state and a delay in oxidative folding and mitochondrial import of different Mia40 substrates. Our findings thus indicate that carefully balanced glutaredoxin amounts in the IMS ensure efficient oxidative folding in the reducing environment of this compartment.
Collapse
Affiliation(s)
- Kerstin Kojer
- Cellular Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Valentina Peleh
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Gaetano Calabrese
- Cellular Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | | | - Jan Riemer
- Cellular Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| |
Collapse
|
10
|
Transcriptomic responses of Phanerochaete chrysosporium to oak acetonic extracts: focus on a new glutathione transferase. Appl Environ Microbiol 2014; 80:6316-27. [PMID: 25107961 DOI: 10.1128/aem.02103-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The first steps of wood degradation by fungi lead to the release of toxic compounds known as extractives. To better understand how lignolytic fungi cope with the toxicity of these molecules, a transcriptomic analysis of Phanerochaete chrysosporium genes was performed in the presence of oak acetonic extracts. It reveals that in complement to the extracellular machinery of degradation, intracellular antioxidant and detoxification systems contribute to the lignolytic capabilities of fungi, presumably by preventing cellular damages and maintaining fungal health. Focusing on these systems, a glutathione transferase (P. chrysosporium GTT2.1 [PcGTT2.1]) has been selected for functional characterization. This enzyme, not characterized so far in basidiomycetes, has been classified first as a GTT2 compared to the Saccharomyces cerevisiae isoform. However, a deeper analysis shows that the GTT2.1 isoform has evolved functionally to reduce lipid peroxidation by recognizing high-molecular-weight peroxides as substrates. Moreover, the GTT2.1 gene has been lost in some non-wood-decay fungi. This example suggests that the intracellular detoxification system evolved concomitantly with the extracellular ligninolytic machinery in relation to the capacity of fungi to degrade wood.
Collapse
|
11
|
Cabiscol E, Tamarit J, Ros J. Protein carbonylation: proteomics, specificity and relevance to aging. MASS SPECTROMETRY REVIEWS 2014; 33:21-48. [PMID: 24114980 DOI: 10.1002/mas.21375] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 02/13/2013] [Accepted: 02/13/2013] [Indexed: 06/02/2023]
Abstract
Detection and quantification of protein carbonyls present in biological samples has become a popular, albeit indirect, method to determine the existence of oxidative stress. Moreover, the rise of proteomics has allowed the identification of the specific proteins targeted by protein carbonylation. This review discusses these methodologies and proteomic strategies and then focuses on the relationship between protein carbonylation and aging and the parameters that may explain the increased sensitivity of certain proteins to protein carbonylation.
Collapse
Affiliation(s)
- Elisa Cabiscol
- Departament de Ciències Mèdiques Bàsiques, IRB Lleida, Universitat de Lleida, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain
| | | | | |
Collapse
|
12
|
Morel M, Meux E, Mathieu Y, Thuillier A, Chibani K, Harvengt L, Jacquot JP, Gelhaye E. Xenomic networks variability and adaptation traits in wood decaying fungi. Microb Biotechnol 2013; 6:248-63. [PMID: 23279857 PMCID: PMC3815920 DOI: 10.1111/1751-7915.12015] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/05/2012] [Accepted: 11/08/2012] [Indexed: 01/08/2023] Open
Abstract
Fungal degradation of wood is mainly restricted to basidiomycetes, these organisms having developed complex oxidative and hydrolytic enzymatic systems. Besides these systems, wood-decaying fungi possess intracellular networks allowing them to deal with the myriad of potential toxic compounds resulting at least in part from wood degradation but also more generally from recalcitrant organic matter degradation. The members of the detoxification pathways constitute the xenome. Generally, they belong to multigenic families such as the cytochrome P450 monooxygenases and the glutathione transferases. Taking advantage of the recent release of numerous genomes of basidiomycetes, we show here that these multigenic families are extended and functionally related in wood-decaying fungi. Furthermore, we postulate that these rapidly evolving multigenic families could reflect the adaptation of these fungi to the diversity of their substrate and provide keys to understand their ecology. This is of particular importance for white biotechnology, this xenome being a putative target for improving degradation properties of these fungi in biomass valorization purposes.
Collapse
Affiliation(s)
- Mélanie Morel
- Université de Lorraine, IAM, UMR 1136, IFR 110 EFABA, Vandoeuvre-lès-Nancy, F-54506, France.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Lill R, Hoffmann B, Molik S, Pierik AJ, Rietzschel N, Stehling O, Uzarska MA, Webert H, Wilbrecht C, Mühlenhoff U. The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1823:1491-508. [PMID: 22609301 DOI: 10.1016/j.bbamcr.2012.05.009] [Citation(s) in RCA: 364] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/07/2012] [Accepted: 05/09/2012] [Indexed: 12/21/2022]
Abstract
Mitochondria play a key role in iron metabolism in that they synthesize heme, assemble iron-sulfur (Fe/S) proteins, and participate in cellular iron regulation. Here, we review the latter two topics and their intimate connection. The mitochondrial Fe/S cluster (ISC) assembly machinery consists of 17 proteins that operate in three major steps of the maturation process. First, the cysteine desulfurase complex Nfs1-Isd11 as the sulfur donor cooperates with ferredoxin-ferredoxin reductase acting as an electron transfer chain, and frataxin to synthesize an [2Fe-2S] cluster on the scaffold protein Isu1. Second, the cluster is released from Isu1 and transferred toward apoproteins with the help of a dedicated Hsp70 chaperone system and the glutaredoxin Grx5. Finally, various specialized ISC components assist in the generation of [4Fe-4S] clusters and cluster insertion into specific target apoproteins. Functional defects of the core ISC assembly machinery are signaled to cytosolic or nuclear iron regulatory systems resulting in increased cellular iron acquisition and mitochondrial iron accumulation. In fungi, regulation is achieved by iron-responsive transcription factors controlling the expression of genes involved in iron uptake and intracellular distribution. They are assisted by cytosolic multidomain glutaredoxins which use a bound Fe/S cluster as iron sensor and additionally perform an essential role in intracellular iron delivery to target metalloproteins. In mammalian cells, the iron regulatory proteins IRP1, an Fe/S protein, and IRP2 act in a post-transcriptional fashion to adjust the cellular needs for iron. Thus, Fe/S protein biogenesis and cellular iron metabolism are tightly linked to coordinate iron supply and utilization. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
Affiliation(s)
- Roland Lill
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch Str. 6, 35033 Marburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state. EMBO J 2012; 31:3169-82. [PMID: 22705944 DOI: 10.1038/emboj.2012.165] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 05/16/2012] [Indexed: 02/07/2023] Open
Abstract
Glutathione is an important mediator and regulator of cellular redox processes. Detailed knowledge of local glutathione redox potential (E(GSH)) dynamics is critical to understand the network of redox processes and their influence on cellular function. Using dynamic oxidant recovery assays together with E(GSH)-specific fluorescent reporters, we investigate the glutathione pools of the cytosol, mitochondrial matrix and intermembrane space (IMS). We demonstrate that the glutathione pools of IMS and cytosol are dynamically interconnected via porins. In contrast, no appreciable communication was observed between the glutathione pools of the IMS and matrix. By modulating redox pathways in the cytosol and IMS, we find that the cytosolic glutathione reductase system is the major determinant of E(GSH) in the IMS, thus explaining a steady-state E(GSH) in the IMS which is similar to the cytosol. Moreover, we show that the local E(GSH) contributes to the partially reduced redox state of the IMS oxidoreductase Mia40 in vivo. Taken together, we provide a comprehensive mechanistic picture of the IMS redox milieu and define the redox influences on Mia40 in living cells.
Collapse
|
15
|
Hoffmann B, Uzarska MA, Berndt C, Godoy JR, Haunhorst P, Lillig CH, Lill R, Mühlenhoff U. The multidomain thioredoxin-monothiol glutaredoxins represent a distinct functional group. Antioxid Redox Signal 2011; 15:19-30. [PMID: 21299470 DOI: 10.1089/ars.2010.3811] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Monothiol glutaredoxins (Grxs) with a noncanonical CGFS active site are found in all kingdoms of life. They include members with a single domain and thioredoxin-Grx fusion proteins. In Saccharomyces cerevisiae, the multidomain Grx3 and Grx4 play an essential role in intracellular iron trafficking. This crucial task is mediated by an essential Fe/S cofactor. This study shows that this unique physiological role cannot be executed by single domain Grxs, because the thioredoxin domain is indispensable for function in vivo. Mutational analysis revealed that a CPxS active site motif is fully compatible with Fe/S cluster binding on Grx4, while a dithiol active site results in cofactor destabilization and a moderate impairment of in vivo function. These requirements for Fe/S cofactor stabilization on Grx4 are virtually the opposite of those previously reported for single domain Grxs. Grx4 functions as iron sensor for the iron-sensing transcription factor Aft1 in S. cerevisiae. We found that Aft1 binds to a conserved binding site at the C-terminus of Grx4. This interaction is essential for the regulation of Aft1. Collectively, our analysis demonstrates that the multidomain monothiol Grxs form a unique protein family distinct from that of the single domain Grxs.
Collapse
Affiliation(s)
- Bastian Hoffmann
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Meux E, Prosper P, Ngadin A, Didierjean C, Morel M, Dumarçay S, Lamant T, Jacquot JP, Favier F, Gelhaye E. Glutathione transferases of Phanerochaete chrysosporium: S-glutathionyl-p-hydroquinone reductase belongs to a new structural class. J Biol Chem 2011; 286:9162-73. [PMID: 21177852 PMCID: PMC3059006 DOI: 10.1074/jbc.m110.194548] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 12/17/2010] [Indexed: 01/24/2023] Open
Abstract
The white rot fungus Phanerochaete chrysosporium, a saprophytic basidiomycete, possesses a large number of cytosolic glutathione transferases, eight of them showing similarity to the Omega class. PcGSTO1 (subclass I, the bacterial homologs of which were recently proposed, based on their enzymatic function, to constitute a new class of glutathione transferase named S-glutathionyl-(chloro)hydroquinone reductases) and PcGSTO3 (subclass II related to mammalian homologs) have been investigated in this study. Biochemical investigations demonstrate that both enzymes are able to catalyze deglutathionylation reactions thanks to the presence of a catalytic cysteinyl residue. This reaction leads to the formation of a disulfide bridge between the conserved cysteine and the removed glutathione from their substrate. The substrate specificity of each isoform differs. In particular PcGSTO1, in contrast to PcGSTO3, was found to catalyze deglutathionylation of S-glutathionyl-p-hydroquinone substrates. The three-dimensional structure of PcGSTO1 presented here confirms the hypothesis that it belongs not only to a new biological class but also to a new structural class that we propose to name GST xi. Indeed, it shows specific features, the most striking ones being a new dimerization mode and a catalytic site that is buried due to the presence of long loops and that contains the catalytic cysteine.
Collapse
Affiliation(s)
- Edgar Meux
- From the UMR 1136 INRA-UHP “Interactions Arbres/Micro-Organismes,” IFR110 “Ecosystèmes Forestiers, Agroressources, Bioprocédés et Alimentation,”
| | - Pascalita Prosper
- the CRM2, Equipe Biocristallographie, UMR 7036 CNRS-UHP, Institut Jean Barriol, and
| | - Andrew Ngadin
- From the UMR 1136 INRA-UHP “Interactions Arbres/Micro-Organismes,” IFR110 “Ecosystèmes Forestiers, Agroressources, Bioprocédés et Alimentation,”
| | - Claude Didierjean
- the CRM2, Equipe Biocristallographie, UMR 7036 CNRS-UHP, Institut Jean Barriol, and
| | - Mélanie Morel
- From the UMR 1136 INRA-UHP “Interactions Arbres/Micro-Organismes,” IFR110 “Ecosystèmes Forestiers, Agroressources, Bioprocédés et Alimentation,”
| | - Stéphane Dumarçay
- the Laboratoire d'Études et de Recherches sur le Matériau Bois, EA UHP 4370, Nancy Université, Faculté des Sciences et Techniques, BP 70239, 54506 Vandoeuvre-les-Nancy, France
| | - Tiphaine Lamant
- From the UMR 1136 INRA-UHP “Interactions Arbres/Micro-Organismes,” IFR110 “Ecosystèmes Forestiers, Agroressources, Bioprocédés et Alimentation,”
| | - Jean-Pierre Jacquot
- From the UMR 1136 INRA-UHP “Interactions Arbres/Micro-Organismes,” IFR110 “Ecosystèmes Forestiers, Agroressources, Bioprocédés et Alimentation,”
| | - Frédérique Favier
- the CRM2, Equipe Biocristallographie, UMR 7036 CNRS-UHP, Institut Jean Barriol, and
| | - Eric Gelhaye
- From the UMR 1136 INRA-UHP “Interactions Arbres/Micro-Organismes,” IFR110 “Ecosystèmes Forestiers, Agroressources, Bioprocédés et Alimentation,”
| |
Collapse
|
17
|
Luo M, Jiang YL, Ma XX, Tang YJ, He YX, Yu J, Zhang RG, Chen Y, Zhou CZ. Structural and Biochemical Characterization of Yeast Monothiol Glutaredoxin Grx6. J Mol Biol 2010; 398:614-22. [DOI: 10.1016/j.jmb.2010.03.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 03/14/2010] [Accepted: 03/17/2010] [Indexed: 10/19/2022]
|
18
|
Fitzgerald LA, Zhang Y, Lewis G, Van Etten JL. Characterization of a monothiol glutaredoxin encoded by Chlorella virus PBCV-1. Virus Genes 2009; 39:418-26. [PMID: 19697117 PMCID: PMC2898178 DOI: 10.1007/s11262-009-0392-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 08/05/2009] [Indexed: 01/13/2023]
Abstract
Annotation of the 330-kb Chlorella virus PBCV-1 genome identified a 237 nucleotide gene (a438l) that codes for a protein with approximately 35% amino acid identity to glutaredoxins (Grx) found in other organisms. The PBCV-1 protein resembles classical Grxs in both size (9 kDa) and location of the active site (N-terminus). However, the PBCV-1 Grx is unusual because it contains a monothiol active site (CPYS) rather than the typical dithiol active site (CPYC). To examine this unique active site, four site-specific mutants (CPYC, CPYA, SPYC, and SPYS) were constructed to determine if the N-terminal cysteine is necessary for enzyme activity. Wild type and both mutants containing N-terminal cysteines catalyzed the reduction of disulfides in a coupled system with GSH, NADPH, and glutathione reductase. However, both mutants with an altered N-terminal cysteine were inactive. The grx gene is common in the Chlorella viruses. Molecular phylogenetic analyses of the PBCV-1 enzyme support its relatedness to those from other Chlorella viruses and yet demonstrate the divergence of the Grx molecule.
Collapse
Affiliation(s)
- Lisa A. Fitzgerald
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583, USA
| | - Yuanzheng Zhang
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583, USA
| | - Gentry Lewis
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900, USA
| | - James L. Van Etten
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583, USA
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900, USA
| |
Collapse
|
19
|
Morel M, Ngadin AA, Droux M, Jacquot JP, Gelhaye E. The fungal glutathione S-transferase system. Evidence of new classes in the wood-degrading basidiomycete Phanerochaete chrysosporium. Cell Mol Life Sci 2009; 66:3711-25. [PMID: 19662500 PMCID: PMC11115709 DOI: 10.1007/s00018-009-0104-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 07/03/2009] [Accepted: 07/13/2009] [Indexed: 12/13/2022]
Abstract
The recent release of several basidiomycete genome sequences allows an improvement of the classification of fungal glutathione S-transferases (GSTs). GSTs are well-known detoxification enzymes which can catalyze the conjugation of glutathione to non-polar compounds that contain an electrophilic carbon, nitrogen, or sulfur atom. Following this mechanism, they are able to metabolize drugs, pesticides, and many other xenobiotics and peroxides. A genomic and phylogenetic analysis of GST classes in various sequenced fungi--zygomycetes, ascomycetes, and basidiomycetes--revealed some particularities in GST distribution, in comparison with previous analyses with ascomycetes only. By focusing essentially on the wood-degrading basidiomycete Phanerochaete chrysosporium, this analysis highlighted a new fungal GST class named GTE, which is related to bacterial etherases, and two new subclasses of the omega class GSTs. Moreover, our phylogenetic analysis suggests a relationship between the saprophytic behavior of some fungi and the number and distribution of some GST isoforms within specific classes.
Collapse
Affiliation(s)
- Mélanie Morel
- IFR 110 Ecosystèmes Forestiers, Agroressources, Bioprocédés et Alimentation, Unité Mixte de Recherches INRA UHP 1136 Interaction Arbres Microorganismes, Université Nancy I BP 239, 54506 Vandoeuvre-lès-Nancy Cedex, France.
| | | | | | | | | |
Collapse
|
20
|
Calculation of the relative metastabilities of proteins in subcellular compartments of Saccharomyces cerevisiae. BMC SYSTEMS BIOLOGY 2009; 3:75. [PMID: 19615086 PMCID: PMC2734844 DOI: 10.1186/1752-0509-3-75] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Accepted: 07/18/2009] [Indexed: 01/10/2023]
Abstract
Background Protein subcellular localization and differences in oxidation state between subcellular compartments are two well-studied features of the the cellular organization of S. cerevisiae (yeast). Theories about the origin of subcellular organization are assisted by computational models that can integrate data from observations of compositional and chemical properties of the system. Presentation and implications of the hypothesis I adopt the hypothesis that the state of yeast subcellular organization is in a local energy minimum. This hypothesis implies that equilibrium thermodynamic models can yield predictions about the interdependence between populations of proteins and their subcellular chemical environments. Testing the hypothesis Three types of tests are proposed. First, there should be correlations between modeled and observed oxidation states for different compartments. Second, there should be a correspondence between the energy requirements of protein formation and the order the appearance of organelles during cellular development. Third, there should be correlations between the predicted and observed relative abundances of interacting proteins within compartments. Results The relative metastability fields of subcellular homologs of glutaredoxin and thioredoxin indicate a trend from less to more oxidizing as mitochondrion – cytoplasm – nucleus. Representing the overall amino acid compositions of proteins in 23 different compartments each with a single reference model protein suggests that the formation reactions for proteins in the vacuole (in relatively oxidizing conditions), ER and early Golgi (in relatively reducing conditions) are relatively highly favored, while that for the microtubule is the most costly. The relative abundances of model proteins for each compartment inferred from experimental data were found in some cases to correlate with the predicted abundances, and both positive and negative correlations were found for some assemblages of proteins in known complexes. Conclusion The results of these calculations and tests suggest that a tendency toward a metastable energy minimum could underlie some organizational links between the the chemical thermodynamic properties of proteins and subcellular chemical environments. Future models of this kind will benefit from consideration of additional thermodynamic variables together with more detailed subcellular observations.
Collapse
|
21
|
Lillig CH, Berndt C, Holmgren A. Glutaredoxin systems. Biochim Biophys Acta Gen Subj 2008; 1780:1304-17. [DOI: 10.1016/j.bbagen.2008.06.003] [Citation(s) in RCA: 416] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 06/11/2008] [Accepted: 06/11/2008] [Indexed: 12/15/2022]
|
22
|
Peggion C, Lopreiato R, Casanova E, Ruzzene M, Facchin S, Pinna LA, Carignani G, Sartori G. Phosphorylation of the Saccharomyces cerevisiae Grx4p glutaredoxin by the Bud32p kinase unveils a novel signaling pathway involving Sch9p, a yeast member of the Akt / PKB subfamily. FEBS J 2008; 275:5919-33. [DOI: 10.1111/j.1742-4658.2008.06721.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Auchère F, Santos R, Planamente S, Lesuisse E, Camadro JM. Glutathione-dependent redox status of frataxin-deficient cells in a yeast model of Friedreich's ataxia. Hum Mol Genet 2008; 17:2790-802. [PMID: 18562474 DOI: 10.1093/hmg/ddn178] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Friedreich's ataxia is a neurodegenerative disease caused by reduced expression of the mitochondrial protein frataxin. The main phenotypic features of frataxin-deficient human and yeast cells include iron accumulation in mitochondria, iron-sulphur cluster defects and high sensitivity to oxidative stress. Glutathione is a major protective agent against oxidative damage and glutathione-related systems participate in maintaining the cellular thiol/disulfide status and the reduced environment of the cell. Here, we present the first detailed biochemical study of the glutathione-dependent redox status of wild-type and frataxin-deficient cells in a yeast model of the disease. There were five times less total glutathione (GSH+GSSG) in frataxin-deficient cells, imbalanced GSH/GSSG pools and higher glutathione peroxidase activity. The pentose phosphate pathway was stimulated in frataxin-deficient cells, glucose-6-phosphate dehydrogenase activity was three times higher than in wild-type cells and this was coupled to a defect in the NADPH/NADP(+) pool. Moreover, analysis of gene expression confirms the adaptative response of mutant cells to stress conditions and we bring evidence for a strong relation between the glutathione-dependent redox status of the cells and iron homeostasis. Dynamic studies show that intracellular glutathione levels reflect an adaptation of cells to iron stress conditions, and allow to distinguish constitutive stress observed in frataxin-deficient cells from the acute response of wild-type cells. In conclusion, our findings provide evidence for an impairment of glutathione homeostasis in a yeast model of Friedreich's ataxia and identify glutathione as a valuable indicator of the redox status of frataxin-deficient cells.
Collapse
Affiliation(s)
- Françoise Auchère
- Laboratoire d'Ingénierie des Protéines et Contrôle Métabolique, Département de Biologie des Génomes, Institut Jacques Monod, UMR 7592, CNRS, Universités Paris 6 and 7, 2 Place Jussieu, Tour 43, 75251 Paris Cedex 05, France.
| | | | | | | | | |
Collapse
|
24
|
Morel M, Kohler A, Martin F, Gelhaye E, Rouhier N. Comparison of the thiol-dependent antioxidant systems in the ectomycorrhizal Laccaria bicolor and the saprotrophic Phanerochaete chrysosporium. THE NEW PHYTOLOGIST 2008; 180:391-407. [PMID: 18513221 DOI: 10.1111/j.1469-8137.2008.02498.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Sequencing of the Laccaria bicolor and Phanerochaete chrysosporium genomes, together with the availability of many fungal genomes, allow careful comparison to be made of these two basidiomycetes, which possess a different way of life (either symbiotic or saprophytic), with other fungi. Central to the antioxidant systems are superoxide dismutases, catalases and thiol-dependent peroxidases (Tpx). The two reducing systems (thioredoxin (Trx) and glutathione/glutaredoxin (Grx)) are of particular importance against oxidative insults, both for detoxification, through the regeneration of thiol-peroxidases, and for developmental, physiological and signalling processes. Among those thiol-dependent antioxidant systems, special emphasis is given to the redoxin and methionine sulfoxide reductase (Msr) multigenic families. The genes coding for these enzymes were identified in the L. bicolor and P. chrysosporium genomes, were correctly annotated, and the gene content, organization and distribution were compared with other fungi. Expression of the Laccaria genes was also compiled from microarray data. A complete classification, based essentially on gene structure, on phylogenetic and sequence analysis, and on existing experimental data, was proposed. Comparison of the gene content of fungi from all phyla did not show huge differences for multigenic families in the reactive oxygen species (ROS) detoxification network, although some protein subgroups were absent in some fungi.
Collapse
Affiliation(s)
- Mélanie Morel
- Unité Mixte de Recherches 1136 Interactions Arbres/Microorganismes INRA/Nancy Université, IFR 110 Génomique Ecologie et Ecophysiologie Fonctionnelles. Faculté des Sciences BP 239, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | - Annegret Kohler
- Unité Mixte de Recherches 1136 Interactions Arbres/Microorganismes INRA/Nancy Université, IFR 110 Génomique Ecologie et Ecophysiologie Fonctionnelles. Faculté des Sciences BP 239, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | - Francis Martin
- Unité Mixte de Recherches 1136 Interactions Arbres/Microorganismes INRA/Nancy Université, IFR 110 Génomique Ecologie et Ecophysiologie Fonctionnelles. Faculté des Sciences BP 239, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | - Eric Gelhaye
- Unité Mixte de Recherches 1136 Interactions Arbres/Microorganismes INRA/Nancy Université, IFR 110 Génomique Ecologie et Ecophysiologie Fonctionnelles. Faculté des Sciences BP 239, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | - Nicolas Rouhier
- Unité Mixte de Recherches 1136 Interactions Arbres/Microorganismes INRA/Nancy Université, IFR 110 Génomique Ecologie et Ecophysiologie Fonctionnelles. Faculté des Sciences BP 239, 54506 Vandoeuvre-lès-Nancy Cedex, France
| |
Collapse
|
25
|
Gessler NN, Aver’yanov AA, Belozerskaya TA. Reactive oxygen species in regulation of fungal development. BIOCHEMISTRY (MOSCOW) 2007; 72:1091-109. [DOI: 10.1134/s0006297907100070] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
26
|
Belozerskaya TA, Gessler NN. Reactive oxygen species and the strategy of antioxidant defense in fungi: A review. APPL BIOCHEM MICRO+ 2007. [DOI: 10.1134/s0003683807050031] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|