1
|
Garegnani M, Sandri C, Pacelli C, Ferranti F, Bennici E, Desiderio A, Nardi L, Villani ME. Non-destructive real-time analysis of plant metabolite accumulation in radish microgreens under different LED light recipes. FRONTIERS IN PLANT SCIENCE 2024; 14:1289208. [PMID: 38273958 PMCID: PMC10808373 DOI: 10.3389/fpls.2023.1289208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/29/2023] [Indexed: 01/27/2024]
Abstract
Introduction The future of human space missions relies on the ability to provide adequate food resources for astronauts and also to reduce stress due to the environment (microgravity and cosmic radiation). In this context, microgreens have been proposed for the astronaut diet because of their fast-growing time and their high levels of bioactive compounds and nutrients (vitamins, antioxidants, minerals, etc.), which are even higher than mature plants, and are usually consumed as ready-to-eat vegetables. Methods Our study aimed to identify the best light recipe for the soilless cultivation of two cultivars of radish microgreens (Raphanus sativus, green daikon, and rioja improved) harvested eight days after sowing that could be used for space farming. The effects on plant metabolism of three different light emitting diodes (LED) light recipes (L1-20% red, 20% green, 60% blue; L2-40% red, 20% green, 40% blue; L3-60% red, 20% green, 20% blue) were tested on radish microgreens hydroponically grown. A fluorimetric-based technique was used for a real-time non-destructive screening to characterize plant methabolism. The adopted sensors allowed us to quantitatively estimate the fluorescence of flavonols, anthocyanins, and chlorophyll via specific indices verified by standardized spectrophotometric methods. To assess plant growth, morphometric parameters (fresh and dry weight, cotyledon area and weight, hypocotyl length) were analyzed. Results We observed a statistically significant positive effect on biomass accumulation and productivity for both cultivars grown under the same light recipe (40% blue, 20% green, 40% red). We further investigated how the addition of UV and/or far-red LED lights could have a positive effect on plant metabolite accumulation (anthocyanins and flavonols). Discussion These results can help design plant-based bioregenerative life-support systems for long-duration human space exploration, by integrating fluorescence-based non-destructive techniques to monitor the accumulation of metabolites with nutraceutical properties in soilless cultivated microgreens.
Collapse
Affiliation(s)
- Marco Garegnani
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department for Sustainability Casaccia Research Center, Rome, Italy
- Department of Aerospace Science and Technology, Politecnico of Milano, Milan, Italy
| | - Carla Sandri
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department for Sustainability Casaccia Research Center, Rome, Italy
| | - Claudia Pacelli
- Human Spaceflight and Scientific Research Unit, Italian Space Agency, Rome, Italy
| | - Francesca Ferranti
- Human Spaceflight and Scientific Research Unit, Italian Space Agency, Rome, Italy
| | - Elisabetta Bennici
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department for Sustainability Casaccia Research Center, Rome, Italy
| | - Angiola Desiderio
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department for Sustainability Casaccia Research Center, Rome, Italy
| | - Luca Nardi
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department for Sustainability Casaccia Research Center, Rome, Italy
| | - Maria Elena Villani
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department for Sustainability Casaccia Research Center, Rome, Italy
| |
Collapse
|
2
|
Radotić K, Stanković M, Bartolić D, Natić M. Intrinsic Fluorescence Markers for Food Characteristics, Shelf Life, and Safety Estimation: Advanced Analytical Approach. Foods 2023; 12:3023. [PMID: 37628022 PMCID: PMC10453546 DOI: 10.3390/foods12163023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/27/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Food is a complex matrix of proteins, fats, minerals, vitamins, and other components. Various analytical methods are currently used for food testing. However, most of the used methods require sample preprocessing and expensive chemicals. New analytical methods are needed for quick and economic measurement of food quality and safety. Fluorescence spectroscopy is a simple and quick method to measure food quality, without sample preprocessing. This technique has been developed for food samples due to the application of a front-face measuring setup. Fluorescent compounds-fluorophores in the food samples are highly sensitive to their environment. Information about molecular structure and changes in food samples is obtained by the measurement of excitation-emission matrices of the endogenous fluorophores and by applying multivariate chemometric tools. Synchronous fluorescence spectroscopy is an advantageous screening mode used in food analysis. The fluorescent markers in food are amino acids tryptophan and tyrosine; the structural proteins collagen and elastin; the enzymes and co-enzymes NADH and FAD; vitamins; lipids; porphyrins; and mycotoxins in certain food types. The review provides information on the principles of the fluorescence measurements of food samples and the advantages of this method over the others. An analysis of the fluorescence spectroscopy applications in screening the various food types is provided.
Collapse
Affiliation(s)
- Ksenija Radotić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11000 Belgrade, Serbia; (M.S.); (D.B.)
- Center for Green Technologies, University of Belgrade, Kneza Višeslava 1, 11000 Belgrade, Serbia
| | - Mira Stanković
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11000 Belgrade, Serbia; (M.S.); (D.B.)
- Center for Green Technologies, University of Belgrade, Kneza Višeslava 1, 11000 Belgrade, Serbia
| | - Dragana Bartolić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11000 Belgrade, Serbia; (M.S.); (D.B.)
- Center for Green Technologies, University of Belgrade, Kneza Višeslava 1, 11000 Belgrade, Serbia
| | - Maja Natić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia;
| |
Collapse
|
3
|
Liu X, Du F, Sun L, Li J, Chen S, Li N, Chang Y, Cui J, Chen W, Yao D. Anthocyanin metabolism in Nelumbo: translational and post-translational regulation control transcription. BMC PLANT BIOLOGY 2023; 23:61. [PMID: 36710356 PMCID: PMC9885672 DOI: 10.1186/s12870-023-04068-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Lotus (Nelumbo Adans.) is used as an herbal medicine and the flowers are a source of natural flavonoids. 'Da Sajin', which was firstly found in the plateau area, is a natural mutant in flower color with red streamers dyeing around white petals. RESULTS The LC-MS-MS results showed that eight anthocyanin compounds, including cyanidin 3-O-glucoside, cyanidin 3-O-galactoside, malvidin 3-O-galactoside, and malvidin 3-O-glucoside, were differentially enriched in red-pigmented tissues of the petals, whereas most of these metabolites were undetected in white tissues of the petals. Transcriptome profiling indicated that the relative high expression levels of structural genes, such as NnPAL, NnF3H, and NnANS, was inconsistent with the low anthocyanin concentration in white tissues. Members of the NnMYB and NnbHLH transcription factor families were presumed to play a role in the metabolic flux in the anthocyanin and proanthocyanidin biosynthetic pathway. The expression model of translational initiation factor, ribosomal proteins and SKP1-CUL1-F-box protein complex related genes suggested an important role for translational and post-translational network in anthocyanin biosynthesis. In addition, pathway analysis indicated that light reaction or photo destruction might be an important external cause for floral color determination in lotus. CONCLUSIONS In this study, it is supposed that the natural lotus mutant 'Da Sajin' may have originated from a red-flowered ancestor. Partial loss of anthocyanin pigments in petals may result from metabolic disorder caused by light destruction. This disorder is mainly regulated at post translation and translation level, resulting in a non-inherited phenotype. These results contribute to an improved understanding of anthocyanin metabolism in lotus, and indicate that the translational and post-translational regulatory network determines the metabolic flux of anthocyanins and proanthocyanidins under specific environmental conditions.
Collapse
Affiliation(s)
- Xiaojing Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources/Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Fengfeng Du
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources/Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Linhe Sun
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources/Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Jinfeng Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources/Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Shaozhou Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources/Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Naiwei Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources/Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Yajun Chang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources/Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Jian Cui
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources/Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Wen Chen
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Zhejiang, 311300, Hangzhou, China
| | - Dongrui Yao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources/Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| |
Collapse
|
4
|
Yin H, Wang L, Wang F, Xi Z. Effects of UVA disappearance and presence on the acylated anthocyanins formation in grape berries. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 5:100142. [PMID: 36281335 PMCID: PMC9587524 DOI: 10.1016/j.fochms.2022.100142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/02/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
Abstract
UVA block inhibited acylated anthocyanin formation. UVA presence promoted acylated anthocyanin formation. Peonidin for acetylation and p-coumaroylation primarily respond to UVA. A total of 3962 DEGs and 136 DAMs were identified. VvMYBA1 played a key role in co-expression network.
Ultraviolet A (UVA), the major component of the UV, plays a crucial role in formatting the characteristics of color in wine grapes by influencing its anthocyanin composition and contents. Results showed that anthocyanin biosynthesis was suppressed by UVA screening and enhanced by irradiation. The acetylation and p-coumaroylation of anthocyanins were more pronounced and showed positive correlation with a* and negative correlation with L*, b*, C*, and h, thereby leading to changes in color. Weighted gene co-expression network analysis showed that two modules (red and turquoise) were significantly related to the acetylation and p-coumaroylation of peonidin. In addition, relative gene expression assays and correlation analysis also indicated that VvMYBA1 might influence anthocyanin accumulation by directly regulating VvOMT expression and increasing the flux to the vacuole through VvGST4. In conclusion, the results helped in improving our understanding of the role of UVA in skin color formation.
Collapse
Affiliation(s)
- Haining Yin
- College of Enology, Northwest A&F University, Yangling, Shannxi Province, People’s Republic of China
| | - Lin Wang
- College of Enology, Northwest A&F University, Yangling, Shannxi Province, People’s Republic of China
| | - Fucheng Wang
- Penglai Vine and Wine Technology Research Extension Center, Penglai, Shandong Province, People’s Republic of China
| | - Zhumei Xi
- College of Enology, Northwest A&F University, Yangling, Shannxi Province, People’s Republic of China
- Corresponding author.
| |
Collapse
|
5
|
Combining Different Transformations of Ground Hyperspectral Data with Unmanned Aerial Vehicle (UAV) Images for Anthocyanin Estimation in Tree Peony Leaves. REMOTE SENSING 2022. [DOI: 10.3390/rs14092271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To explore rapid anthocyanin (Anth) detection technology based on remote sensing (RS) in tree peony leaves, we considered 30 species of tree peonies located in Shaanxi Province, China. We used an SVC HR~1024i portable ground object spectrometer and mini-unmanned aerial vehicle (UAV)-borne RS systems to obtain hyperspectral (HS) reflectance and images of canopy leaves. First, we performed principal component analysis (PCA), first-order differential (FD), and continuum removal (CR) transformations on the original ground-based spectra; commonly used spectral parameters were implemented to estimate Anth content using multiple stepwise regression (MSR), partial least squares (PLS), back-propagation neural network (BPNN), and random forest (RF) models. The spectral transformation highlighted the characteristics of spectral curves and improved the relationship between spectral reflectance and Anth, and the RF model based on the FD spectrum portrayed the best estimation accuracy (R2c = 0.91; R2v = 0.51). Then, the RGB (red-green-blue) gray vegetation index (VI) and the texture parameters were constructed using UAV images, and an Anth estimation model was constructed using UAV parameters. Finally, the UAV image was fused with the ground spectral data, and a multisource RS model of Anth estimation was constructed, based on PCA + UAV, FD + UAV, and CR + UAV, using MSR, PLS, BPNN, and RF methods. The RF model based on FD+UAV portrayed the best modeling and verification effect (R2c = 0.93; R2v = 0.76); compared with the FD-RF model, R2c increased only slightly, but R2v increased greatly from 0.51 to 0.76, indicating improved modeling and testing accuracy. The optimal spectral transformation for the Anth estimation of tree peony leaves was obtained, and a high-precision Anth multisource RS model was constructed. Our results can be used for the selection of ground-based HS transformation in future plant Anth estimation, and as a theoretical basis for plant growth monitoring based on ground and UAV multisource RS.
Collapse
|
6
|
Agati G, Guidi L, Landi M, Tattini M. Anthocyanins in photoprotection: knowing the actors in play to solve this complex ecophysiological issue. THE NEW PHYTOLOGIST 2021; 232:2228-2235. [PMID: 34449083 PMCID: PMC9291080 DOI: 10.1111/nph.17648] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/24/2021] [Indexed: 05/04/2023]
Affiliation(s)
- Giovanni Agati
- National Research Council of ItalyInstitute of Applied Physics ‘Nello Carrara’Via Madonna del Piano 10Sesto Fiorentino, FlorenceI‐50019Italy
| | - Lucia Guidi
- Department of Agriculture, Food and EnvironmentUniversity of PisaVia del Borghetto 80I‐56124PisaItaly
| | - Marco Landi
- Department of Agriculture, Food and EnvironmentUniversity of PisaVia del Borghetto 80I‐56124PisaItaly
| | - Massimiliano Tattini
- Institute for Sustainable Plant ProtectionNational Research Council of ItalyVia Madonna del Piano 10I‐50019Sesto Fiorentino, FlorenceItaly
| |
Collapse
|
7
|
Neugart S, Tobler MA, Barnes PW. Rapid adjustment in epidermal UV sunscreen: Comparison of optical measurement techniques and response to changing solar UV radiation conditions. PHYSIOLOGIA PLANTARUM 2021; 173:725-735. [PMID: 34375003 DOI: 10.1111/ppl.13517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/02/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
The accumulation of soluble and cell-wall bound UV-absorbing compounds (i.e., flavonoids) in the epidermis and the mesophyll of leaves is a response of plants to UV exposure. These compounds are known to function in UV screening, but they are also of potential value for food quality. One way to non-destructively monitor UV screening in leaves is by optical methods, from which UVA-PAM and Dualex instruments stand out. The degree and rapidity to which plants can modulate UV screening in response to fluctuating solar UV conditions is poorly understood. In this study, okra plants were exposed to two solar radiation treatments (near-ambient UV [+UV] and attenuated UV [-UV]) and the epidermal UV transmittance (TUV ; UVA-PAM) and flavonoid index (Dualex) were measured in the youngest and second youngest mature leaves over three consecutive days and within an individual day. The day-to-day (measured near solar noon) and diurnal (over the course of a day) measurements of leaf optical properties indicated that TUV decreased and flavonoid index increased in the adaxial epidermis ~50% until 15:00 CDT then returned close to morning values later in the day. Correlations between UV-B radiation and TUV and flavonoid index revealed highest values 30 min to 1 h prior to the measurements. These findings indicate that plants can respond quickly to fluctuating solar UV conditions and underlines the importance of the harvest-time point for health-promoting compounds in fruit and vegetables. Our findings also indicate that the UVA-PAM and the Dualex instruments are both suitable instruments to monitor rapid changes in UV screening in plants.
Collapse
Affiliation(s)
- Susanne Neugart
- Division Quality and Sensory of Plant Products, Georg-August-Universität Göttingen, Goettingen, Germany
- Department of Biological Sciences and Environment Program, Loyola University New Orleans, New Orleans, Louisiana
| | - Mark A Tobler
- Department of Biological Sciences and Environment Program, Loyola University New Orleans, New Orleans, Louisiana
| | - Paul W Barnes
- Department of Biological Sciences and Environment Program, Loyola University New Orleans, New Orleans, Louisiana
| |
Collapse
|
8
|
Zheng XT, Yu ZC, Tang JW, Cai ML, Chen YL, Yang CW, Chow WS, Peng CL. The major photoprotective role of anthocyanins in leaves of Arabidopsis thaliana under long-term high light treatment: antioxidant or light attenuator? PHOTOSYNTHESIS RESEARCH 2021; 149:25-40. [PMID: 32462454 DOI: 10.1007/s11120-020-00761-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Anthocyanins are water-soluble pigments in plants known for their photoprotective role against photoinhibitory and photooxidative damage under high light (HL). However, it remains unclear whether light-shielding or antioxidant activity plays a major role in the photoprotection exerted by anthocyanins under HL stress. To shed light on this question, we analyzed the physiological and biochemical responses to HL of three Arabidopsis thaliana lines (Col, chi, ans) with different light absorption and antioxidant characteristics. Under HL, ans had the highest antioxidant capacity, followed by Col, and finally chi; Col had the strongest light attenuation capacity, followed by chi, and finally ans. The line ans had weaker physiological activity of chloroplasts and more severe oxidative damage than chi after HL treatment. Col with highest photoprotection of light absorption capacity had highest resistance to HL among the three lines. The line ans with high antioxidant capacity could not compensate for its disadvantages in HL caused by the absence of the light-shielding function of anthocyanins. In addition, the expression level of the Anthocyanin Synthase (ANS) gene was most upregulated after HL treatment, suggesting that the conversion of colorless into colored anthocyanin precursors was necessary under HL. The contribution of anthocyanins to flavonoids, phenols, and antioxidant capacity increased in the late period of HL, suggesting that plants prefer to synthesize red anthocyanins (a group of colored antioxidants) over other colorless antioxidants to cope with HL. These experimental observations indicate that the light attenuation role of anthocyanins is more important than their antioxidant role in photoprotection.
Collapse
Affiliation(s)
- Xiao-Ting Zheng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Zheng-Chao Yu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Jun-Wei Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Min-Ling Cai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Yi-Lin Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Cheng-Wei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Wah Soon Chow
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Acton, ACT, 2601, Australia
| | - Chang-Lian Peng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China.
| |
Collapse
|
9
|
Sytar O, Zivcak M, Neugart S, Brestic M. Assessment of hyperspectral indicators related to the content of phenolic compounds and multispectral fluorescence records in chicory leaves exposed to various light environments. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:429-438. [PMID: 32912483 DOI: 10.1016/j.plaphy.2020.06.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 05/20/2023]
Abstract
Hyperspectral analysis represents a powerful technique for diagnostics of morphological and chemical information from aboveground parts of the plants, but the real potential of the method in pre-screening of phenolics in leaves is still insufficiently explored. In this study, assessment of the sensitivity and reliability of non-invasive methods of various phenolic compounds, also analyzed by HPLC in chicory plants (Cichorium intybus L.) exposed to various color light pretreatments was done. The hyperspectral records in visible and near infrared (VNIR) spectra were recorded using a handheld spectrometer and relationships between the specific hyperspectral parameters and the contents of tested phenolic compounds in chicory leaves were analyzed. Moreover, the correlations between the hyperspectral parameters and related parameters derived from the multispectral fluorescence records were assessed to compare the sensitivity of both techniques. The results indicated a relatively high correlation of anthocyanin-related parameters (ARI, mARI, mACI indices) with the content of some of tested phenolic compounds (quercetin-3-gluconuride, isorhamnetine-3-gluconuride, etc.), as well as with fluorescence ANTH index. Similar trends were observed in flavonoid parameter based on the near infra-red spectral bands (700, 760 nm), which expressed a high correlation with chlorogenic acid. On the other hand, the most frequently used flavonoid (FLAVI) indices based on UV-to-blue band reflectance showed very weak correlations with phenolic compounds, as well as with fluorescence FLAV index. The detailed analysis of the correlation between reflectance and fluorescence flavonoid parameters has shown that the parameters based on spectral reflectance are sensitive to increase of UV-absorbing compounds from low to moderate values, but, unlike the fluorescence parameter, they are not useful to recognize a further increase from middle to high or very high contents. Thus, our results outlined the possibilities, but also the limits of the use of hyperspectral analysis for rapid screening phenolic content, providing a practical evidence towards more efficient production of bioactive compounds for pharmaceutical or nutraceutical use.
Collapse
Affiliation(s)
- Oksana Sytar
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, A. Hlinku 2, 94976, Nitra, Slovak Republic; Plant Physiology and Ecology Department, Taras Shevchenko National University of Kyiv, Institute of Biology, Volodymyrskya Str., 64, Kyiv, 01033, Ukraine.
| | - Marek Zivcak
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, A. Hlinku 2, 94976, Nitra, Slovak Republic.
| | - Susanne Neugart
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany; Quality and Sensory of Plant Products, Georg-August-Universität Göttingen, Wilhelmsplatz 1, 37073, Göttingen, Germany
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, A. Hlinku 2, 94976, Nitra, Slovak Republic
| |
Collapse
|
10
|
Pieristè M, Neimane S, Solanki T, Nybakken L, Jones AG, Forey E, Chauvat M, Ņečajeva J, Robson TM. Ultraviolet radiation accelerates photodegradation under controlled conditions but slows the decomposition of senescent leaves from forest stands in southern Finland. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:42-54. [PMID: 31731113 DOI: 10.1016/j.plaphy.2019.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Depending on the environment, sunlight can positively or negatively affect litter decomposition, through the ensemble of direct and indirect processes constituting photodegradation. Which of these processes predominate depends on the ecosystem studied and on the spectral composition of sunlight received. To examine the relevance of photodegradation for litter decomposition in forest understoreys, we filtered ultraviolet radiation (UV) and blue light from leaves of Fagus sylvatica and Betula pendula at two different stages of senescence in both a controlled-environment experiment and outdoors in four different forest stands (Picea abies, Fagus sylvatica, Acer platanoides, Betula pendula). Controlling for leaf orientation and initial differences in leaf chlorophyll and flavonol concentrations; we measured mass loss at the end of each experiment and characterised the phenolic profile of the leaf litter following photodegradation. In most forest stands, less mass was lost from decomposing leaves that received solar UV radiation compared with those under UV-attenuating filters, while in the controlled environment UV-A radiation either slightly accelerated or had no significant effect on photodegradation, according to species identity. Only a few individual phenolic compounds were affected by our different filter treatments, but photodegradation did affect the phenolic profile. We can conclude that photodegradation has a small stand- and species-specific effect on the decomposition of surface leaf litter in forest understoreys during the winter following leaf fall in southern Finland. Photodegradation was wavelength-dependent and modulated by the canopy species filtering sunlight and likely creating different combinations of spectral composition, moisture, temperature and snowpack characteristics.
Collapse
Affiliation(s)
- Marta Pieristè
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Science, P.O. Box 65, 00014, University of Helsinki, Finland; Normandie Université, UNIROUEN, Ecodiv URA/EA1293, IRSTEA, FR Scale CNRS 3730, Rouen, France
| | - Santa Neimane
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Science, P.O. Box 65, 00014, University of Helsinki, Finland; Department of Plant Physiology, University of Latvia, Jelgavas Street 1, LV-1004, Riga, Latvia; Latvian State Forest Research Institute (Silava), Rīgas Iela 111, Salaspils, Salaspils Pilsēta, LV-2169, Latvia
| | - Twinkle Solanki
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Science, P.O. Box 65, 00014, University of Helsinki, Finland
| | - Line Nybakken
- Faculty of Environmental Sciences and Natural Resource Management, CERAD, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Alan G Jones
- Forest Systems, Scion. 49 Sala Street, Private Bag 3020, Rotorua, 3046, New Zealand
| | - Estelle Forey
- Normandie Université, UNIROUEN, Ecodiv URA/EA1293, IRSTEA, FR Scale CNRS 3730, Rouen, France
| | - Matthieu Chauvat
- Normandie Université, UNIROUEN, Ecodiv URA/EA1293, IRSTEA, FR Scale CNRS 3730, Rouen, France
| | - Jevgenija Ņečajeva
- Department of Plant Physiology, University of Latvia, Jelgavas Street 1, LV-1004, Riga, Latvia
| | - T Matthew Robson
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Science, P.O. Box 65, 00014, University of Helsinki, Finland.
| |
Collapse
|
11
|
Zheng XT, Chen YL, Zhang XH, Cai ML, Yu ZC, Peng CL. ANS-deficient Arabidopsis is sensitive to high light due to impaired anthocyanin photoprotection. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:756-765. [PMID: 31023420 DOI: 10.1071/fp19042] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 03/26/2019] [Indexed: 05/20/2023]
Abstract
Light attenuation and antioxidation are the main mechanisms of photoprotection by anthocyanin under high light (HL) stress. Anthocyanin synthase (ANS) is the key enzyme in the downstream portion of anthocyanin synthetic pathways. To explore the role of ANS in photoprotection by anthocyanin under HL stress, homozygous ANS-deficient Arabidopsis mutants were screened from SALK_073183 and SALK_028793. Here, we obtained two deficient mutants, ans-1 and ans-2, which had ANS gene expression levels equal to 5.9 and 32.9% of that of Col respectively. By analysing their physiological and biochemical responses to HL stress, we found that there were positive correlations among ANS expression level, anthocyanin content and resistance to HL. The line with the lowest ANS expression level, ans-1, was also the most sensitive to HL, showing the lowest anthocyanin content, chlorophyll content, Fv/Fm ratio, and Rubisco content and the highest O2•- accumulation and membrane leakage rate, although it also had the highest antioxidant capacity. Experimental evidence suggests that ANS mainly regulated the light-attenuating function of anthocyanin in photoprotection under HL. Blocking excess light is an important function of anthocyanin that protects plants from HL stress, and a high antioxidant capacity cannot compensate for the absence of the light-shielding function of anthocyanin.
Collapse
Affiliation(s)
- Xiao-Ting Zheng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yi-Lin Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiao-Hong Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Min-Ling Cai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Zheng-Chao Yu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Chang-Lian Peng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China; and Corresponding author.
| |
Collapse
|
12
|
Rusinowski S, Krzyżak J, Sitko K, Kalaji HM, Jensen E, Pogrzeba M. Cultivation of C4 perennial energy grasses on heavy metal contaminated arable land: Impact on soil, biomass, and photosynthetic traits. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:300-311. [PMID: 31003142 DOI: 10.1016/j.envpol.2019.04.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/28/2019] [Accepted: 04/09/2019] [Indexed: 05/04/2023]
Abstract
The objective of this study was to evaluate the potential of three C4 perennial grasses (Miscanthus x giganteus, Panicum virgatum and Spartina pectinata) for biomass production on arable land unsuitable for food crop cultivation due to Pb, Cd and Zn contamination. We assessed soil properties, biomass yield, metal concentrations, and the photosynthetic performance of each species. Physico-chemical and elemental analyses were performed on soil samples before plantation establishment (2014) and after three years of cultivation (2016), when leaf area index, plant height, yield and heavy metal content of biomass were also determined. Physiological measurements (gas exchange, pigment content, chlorophyll a fluorescence) were recorded monthly between June and September on mature plants in 2016. Cultivation of investigated plants resulted in increased pH, nitrogen, and organic matter (OM) content in soil, although OM increase (13%) was significant only for S. pectinata plots. During the most productive months, maximal quantum yield values of primary photochemistry (Fv/Fm) and gas exchange parameter values reflected literature data of those plants grown on uncontaminated sites. Biomass yields of M. x giganteus (15.0 ± 0.4 t d.m. ha-1) and S. pectinata (12.6 ± 1.2 t d.m. ha-1) were also equivalent to data published from uncontaminated land. P. virgatum performed poorly (4.1 ± 0.4 t d.m. ha-1), probably due to unfavourable climatic conditions, although metal uptake in this species was the highest (3.6 times that of M. x giganteus for Pb). Yield and physiological measurements indicated that M. x giganteus and S. pectinata were unaffected by the levels of contamination and therefore offer alternatives for areas where food production is prohibited. The broad cultivatable latitudinal range of these species suggests these results are widely relevant for development of the bioeconomy. We recommend multi-location trials under diverse contaminant and environmental regimes to determine the full potential of these species.
Collapse
Affiliation(s)
- S Rusinowski
- Institute for Ecology of Industrial Areas, 6 Kossutha Street, 40-844, Katowice, Poland
| | - J Krzyżak
- Institute for Ecology of Industrial Areas, 6 Kossutha Street, 40-844, Katowice, Poland
| | - K Sitko
- Department of Plant Physiology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 28 Jagiellońska Street, 40-032, Katowice, Poland
| | - H M Kalaji
- Department of Plant Physiology, Warsaw University of Life Sciences SGGW, 159 Nowoursynowska Street, 02-776, Warsaw, Poland
| | - E Jensen
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, Wales, SY23 3EB, UK
| | - M Pogrzeba
- Institute for Ecology of Industrial Areas, 6 Kossutha Street, 40-844, Katowice, Poland.
| |
Collapse
|
13
|
Stelzner J, Roemhild R, Garibay-Hernández A, Harbaum-Piayda B, Mock HP, Bilger W. Hydroxycinnamic acids in sunflower leaves serve as UV-A screening pigments. Photochem Photobiol Sci 2019; 18:1649-1659. [DOI: 10.1039/c8pp00440d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the weak absorption of hydroxycinnamic acids in the UV-A region, we found evidence that these compounds protect against damage induced by UV-A radiation in sunflowers.
Collapse
Affiliation(s)
- Jana Stelzner
- Department of Ecophysiology of Plants
- Botanical Institute
- Christian-Albrechts University Kiel
- 24118 Kiel
- Germany
| | - Roderich Roemhild
- Department of Evolutionary Ecology and Genetics
- Zoological Institute
- Christian-Albrechts University Kiel
- 24118 Kiel
- Germany
| | - Adriana Garibay-Hernández
- Department of Physiology and Cell Biology
- Leibniz Institute for Plant Genetics and Crop Plant Research
- 06466 Gatersleben
- Germany
| | - Britta Harbaum-Piayda
- Department of Food Technology
- Institute of Human Nutrition and Food Science
- Christian-Albrechts University Kiel
- 24118 Kiel
- Germany
| | - Hans-Peter Mock
- Department of Physiology and Cell Biology
- Leibniz Institute for Plant Genetics and Crop Plant Research
- 06466 Gatersleben
- Germany
| | - Wolfgang Bilger
- Department of Ecophysiology of Plants
- Botanical Institute
- Christian-Albrechts University Kiel
- 24118 Kiel
- Germany
| |
Collapse
|
14
|
Mattila H, Valev D, Havurinne V, Khorobrykh S, Virtanen O, Antinluoma M, Mishra KB, Tyystjärvi E. Degradation of chlorophyll and synthesis of flavonols during autumn senescence-the story told by individual leaves. AOB PLANTS 2018; 10:ply028. [PMID: 29977486 PMCID: PMC6007487 DOI: 10.1093/aobpla/ply028] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 05/03/2018] [Indexed: 05/07/2023]
Abstract
Autumn senescence of deciduous trees is characterized by chlorophyll degradation and flavonoid synthesis. In the present study, chlorophyll and flavonol contents were measured every morning and evening during the whole autumn with a non-destructive method from individual leaves of Sorbus aucuparia, Acer platanoides, Betula pendula and Prunus padus. In most of the studied trees, the chlorophyll content of each individual leaf remained constant until a phase of rapid degradation commenced. The fast phase lasted only ~1 week and ended with abscission. In S. aucuparia, contrary to the other species, the chlorophyll content of leaflets slowly but steadily decreased during the whole autumn, but rapid chlorophyll degradation commenced only prior to leaflet abscission also in this species. An increase in flavonols commonly accompanied the rapid degradation of chlorophyll. The results may suggest that each individual tree leaf retains its photosynthetic activity, reflected by a high chlorophyll content, until a rapid phase of chlorophyll degradation and flavonoid synthesis begins. Therefore, in studies of autumn senescence, leaves whose chlorophyll content is decreasing and leaves with summertime chlorophyll content (i.e. the leaves that have not yet started to degrade chlorophyll) should be treated separately.
Collapse
Affiliation(s)
- Heta Mattila
- Department of Biochemistry/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Dimitar Valev
- Department of Biochemistry/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Vesa Havurinne
- Department of Biochemistry/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Sergey Khorobrykh
- Department of Biochemistry/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Olli Virtanen
- Department of Biochemistry/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Mikko Antinluoma
- Department of Biochemistry/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Kumud B Mishra
- Global Change Research Institute, CAS, Bělidla, Brno, Czech Republic
| | - Esa Tyystjärvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, Turku, Finland
- Corresponding author’s e-mail address:
| |
Collapse
|
15
|
Predicting Key Agronomic Soil Properties with UV-Vis Fluorescence Measurements Combined with Vis-NIR-SWIR Reflectance Spectroscopy: A Farm-Scale Study in a Mediterranean Viticultural Agroecosystem. SENSORS 2018; 18:s18041157. [PMID: 29642640 PMCID: PMC5948504 DOI: 10.3390/s18041157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/06/2018] [Accepted: 04/08/2018] [Indexed: 12/31/2022]
Abstract
For adequate crop and soil management, rapid and accurate techniques for monitoring soil properties are particularly important when a farmer starts up his activities and needs a diagnosis of his cultivated fields. This study aimed to evaluate the potential of fluorescence measured directly on 146 whole soil solid samples, for predicting key soil properties at the scale of a 6 ha Mediterranean wine estate with contrasting soils. UV-Vis fluorescence measurements were carried out in conjunction with reflectance measurements in the Vis-NIR-SWIR range. Combining PLSR predictions from Vis-NIR-SWIR reflectance spectra and from a set of fluorescence signals enabled us to improve the power of prediction of a number of key agronomic soil properties including SOC, Ntot, CaCO₃, iron, fine particle-sizes (clay, fine silt, fine sand), CEC, pH and exchangeable Ca2+ with cross-validation RPD ≥ 2 and R² ≥ 0.75, while exchangeable K⁺, Na⁺, Mg2+, coarse silt and coarse sand contents were fairly predicted (1.42 ≤ RPD < 2 and 0.54 ≤ R² < 0.75). Predictions of SOC, Ntot, CaCO₃, iron contents, and pH were still good (RPD ≥ 1.8, R² ≥ 0.68) when using a single fluorescence signal or index such as SFR_R or FERARI, highlighting the unexpected importance of red excitations and indices derived from plant studies. The predictive ability of single fluorescence indices or original signals was very significant for topsoil: this is very important for a farmer who wishes to update information on soil nutrient for the purpose of fertility diagnosis and particularly nitrogen fertilization. These results open encouraging perspectives for using miniaturized fluorescence devices enabling red excitation coupled with red or far-red fluorescence emissions directly in the field.
Collapse
|
16
|
Urban L, Aarrouf J, Bidel LPR. Assessing the Effects of Water Deficit on Photosynthesis Using Parameters Derived from Measurements of Leaf Gas Exchange and of Chlorophyll a Fluorescence. FRONTIERS IN PLANT SCIENCE 2017; 8:2068. [PMID: 29312367 PMCID: PMC5735977 DOI: 10.3389/fpls.2017.02068] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/20/2017] [Indexed: 05/21/2023]
Abstract
Water deficit (WD) is expected to increase in intensity, frequency and duration in many parts of the world as a consequence of global change, with potential negative effects on plant gas exchange and growth. We review here the parameters that can be derived from measurements made on leaves, in the field, and that can be used to assess the effects of WD on the components of plant photosynthetic rate, including stomatal conductance, mesophyll conductance, photosynthetic capacity, light absorbance, and efficiency of absorbed light conversion into photosynthetic electron transport. We also review some of the parameters related to dissipation of excess energy and to rerouting of electron fluxes. Our focus is mainly on the techniques of gas exchange measurements and of measurements of chlorophyll a fluorescence (ChlF), either alone or combined. But we put also emphasis on some of the parameters derived from analysis of the induction phase of maximal ChlF, notably because they could be used to assess damage to photosystem II. Eventually we briefly present the non-destructive methods based on the ChlF excitation ratio method which can be used to evaluate non-destructively leaf contents in anthocyanins and flavonols.
Collapse
Affiliation(s)
- Laurent Urban
- UMR 95 Qualisud/Laboratoire de Physiologie des Fruits et Légumes, Université d'Avignon, Avignon, France
| | - Jawad Aarrouf
- UMR 95 Qualisud/Laboratoire de Physiologie des Fruits et Légumes, Université d'Avignon, Avignon, France
| | | |
Collapse
|
17
|
Nichelmann L, Bilger W. Quantification of light screening by anthocyanins in leaves of Berberis thunbergii. PLANTA 2017; 246:1069-1082. [PMID: 28801823 DOI: 10.1007/s00425-017-2752-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/22/2017] [Indexed: 05/27/2023]
Abstract
Up to 40% of incident light was screened in red Berberis leaves in vivo by anthocyanins, resulting also in up to 40% reduction of light-limited photosynthesis. The biological function of anthocyanins in leaves has been strongly discussed, but the hypothesis of a screening function is favored by most authors. For an evaluation of the function as photoprotective pigments, a quantification of their screening of the mesophyll is important. Here, chlorophyll fluorescence excitation of leaves of a red and a green variety of Berberis thunbergii was used to estimate the extent of screening by anthocyanins at 545 nm and over the whole photosynthetically active wavelength range. Growth at high light (430 µmol m-2 s-1) resulted in 90% screening at 545 nm corresponding to 40-50% screening over the whole wavelength range, depending on the light source. The concomitant reduction of photosynthetic quantum yield was of the same size as the calculated reduction of light reaching the chloroplasts. The induction of anthocyanins in the red variety also enhanced the epoxidation state of the violaxanthin cycle under growth conditions, indicating that red leaves were suffering less from excessive irradiance. Pool sizes of violaxanthin cycle carotenoids indicated a shade acclimation of the light harvesting complexes in red leaves. The observed reduction of internal light in anthocyanic leaves has by necessity a photoprotective effect.
Collapse
Affiliation(s)
- Lars Nichelmann
- Botanical Institute, Christian-Albrechts University Kiel, Olshausenstraße 40, 24098, Kiel, Germany
| | - Wolfgang Bilger
- Botanical Institute, Christian-Albrechts University Kiel, Olshausenstraße 40, 24098, Kiel, Germany.
| |
Collapse
|
18
|
Musse M, Leport L, Cambert M, Debrandt W, Sorin C, Bouchereau A, Mariette F. A mobile NMR lab for leaf phenotyping in the field. PLANT METHODS 2017; 13:53. [PMID: 28670331 PMCID: PMC5490084 DOI: 10.1186/s13007-017-0203-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 06/20/2017] [Indexed: 06/01/2023]
Abstract
BACKGROUND Low field NMR has been used to investigate water status in various plant tissues. In plants grown in controlled conditions, the method was shown to be able to monitor leaf development as it could detect slight variations in senescence associated with structural modifications in leaf tissues. The aim of the present study was to demonstrate the potential of NMR to provide robust indicators of the leaf development stage in plants grown in the field, where leaves may develop less evenly due to environmental fluctuations. The study was largely motivated by the need to extend phenotyping investigations from laboratory experiments to plants in their natural environment. METHODS The mobile NMR laboratory was developed, enabling characterization of oilseed rape leaves throughout the canopy without uprooting the plant. The measurements made on the leaves of plants grown and analyzed in the field were compared to the measurements on plants grown in controlled conditions and analyzed in the laboratory. RESULTS The approach demonstrated the potential of the method to assess the physiological status of leaves of plants in their natural environment. Comparing changes in the patterns of NMR signal evolution in plants grown under well-controlled laboratory conditions and in plants grown in the field shows that NMR is an appropriate method to detect structural modifications in leaf tissues during senescence progress despite plant heterogeneity in natural conditions. Moreover, the specific effects of the environmental factors on the structural modifications were revealed. CONCLUSION The present study is an important step toward the selection of genotypes with high tolerance to water or nitrogen depletion that will be enabled by further field applications of the method.
Collapse
Affiliation(s)
- Maja Musse
- IRSTEA, OPAALE, 17, avenue de Cucillé, 35044 Rennes Cedex, France
- Université Bretagne Loire, Rennes, France
| | - Laurent Leport
- Université Bretagne Loire, Rennes, France
- INRA, UMR 1349 IGEPP-Institut de Génétique, Environnement et Protection des Plantes, UMR INRA – Agrocampus Ouest-Université de Rennes 1, Domaine de la Motte, 35653 Le Rheu Cedex, France
| | - Mireille Cambert
- IRSTEA, OPAALE, 17, avenue de Cucillé, 35044 Rennes Cedex, France
- Université Bretagne Loire, Rennes, France
| | - William Debrandt
- IRSTEA, OPAALE, 17, avenue de Cucillé, 35044 Rennes Cedex, France
- Université Bretagne Loire, Rennes, France
- INRA, UMR 1349 IGEPP-Institut de Génétique, Environnement et Protection des Plantes, UMR INRA – Agrocampus Ouest-Université de Rennes 1, Domaine de la Motte, 35653 Le Rheu Cedex, France
| | - Clément Sorin
- IRSTEA, OPAALE, 17, avenue de Cucillé, 35044 Rennes Cedex, France
- Université Bretagne Loire, Rennes, France
- INRA, UMR 1349 IGEPP-Institut de Génétique, Environnement et Protection des Plantes, UMR INRA – Agrocampus Ouest-Université de Rennes 1, Domaine de la Motte, 35653 Le Rheu Cedex, France
| | - Alain Bouchereau
- Université Bretagne Loire, Rennes, France
- INRA, UMR 1349 IGEPP-Institut de Génétique, Environnement et Protection des Plantes, UMR INRA – Agrocampus Ouest-Université de Rennes 1, Domaine de la Motte, 35653 Le Rheu Cedex, France
| | - François Mariette
- IRSTEA, OPAALE, 17, avenue de Cucillé, 35044 Rennes Cedex, France
- Université Bretagne Loire, Rennes, France
| |
Collapse
|
19
|
Zivcak M, Brückova K, Sytar O, Brestic M, Olsovska K, Allakhverdiev SI. Lettuce flavonoids screening and phenotyping by chlorophyll fluorescence excitation ratio. PLANTA 2017; 245:1215-1229. [PMID: 28303392 DOI: 10.1007/s00425-017-2676-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 03/08/2017] [Indexed: 05/27/2023]
Abstract
MAIN CONCLUSION Environmentally induced variation and the genotypic differences in flavonoid and phenolic content in lettuce can be reliably detected using the appropriate parameters derived from the records of rapid non-invasive fluorescence technique. The chlorophyll fluorescence excitation ratio method was designed as a rapid and non-invasive tool to estimate the content of UV-absorbing phenolic compounds in plants. Using this technique, we have assessed the dynamics of accumulation of flavonoids related to developmental changes and environmental effects. Moreover, we have tested appropriateness of the method to identify the genotypic differences and fluctuations in total phenolics and flavonoid content in lettuce. Six green and two red genotypes of lettuce (Lactuca sativa L.) grown in pots were exposed to two different environments for 50 days: direct sunlight (UV-exposed) and greenhouse conditions (low UV). The indices based on the measurements of chlorophyll fluorescence after red, green and UV excitation indicated increase of the content of UV-absorbing compounds and anthocyanins in the epidermis of lettuce leaves. In similar, the biochemical analyses performed at the end of the experiment confirmed significantly higher total phenolic and flavonoid content in lettuce plants exposed to direct sun compared to greenhouse conditions and in red compared to green genotypes. As the correlation between the standard fluorescence indices and the biochemical records was negatively influenced by the presence of red genotypes, we proposed the use of a new parameter named Modified Flavonoid Index (MFI) taking into an account both absorbance changes due to flavonol and anthocyanin content, for which the correlation with flavonoid and phenolic content was relatively good. Thus, our results confirmed that the fluorescence excitation ratio method is useful for identifying the major differences in phenolic and flavonoid content in lettuce plants and it can be used for high-throughput pre-screening and phenotyping of leafy vegetables in research and breeding applications towards improvement of vegetable health effects.
Collapse
Affiliation(s)
- Marek Zivcak
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| | - Klaudia Brückova
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| | - Oksana Sytar
- Agrobiotech Research Center, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
- Educational and Scientific Centre, Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, Kyiv, Ukraine
| | - Marian Brestic
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic.
| | - Katarina Olsovska
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| | - Suleyman I Allakhverdiev
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia.
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
- Department of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow, 119991, Russia.
- Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, Matbuat Avenue 2a, 1073, Baku, Azerbaijan.
| |
Collapse
|
20
|
Smith HL, McAusland L, Murchie EH. Don't ignore the green light: exploring diverse roles in plant processes. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2099-2110. [PMID: 28575474 DOI: 10.1093/jxb/erx098] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The pleasant green appearance of plants, caused by their reflectance of wavelengths in the 500-600 nm range, might give the impression that green light is of minor importance in biology. This view persists to an extent. However, there is strong evidence that these wavelengths are not only absorbed but that they also drive and regulate physiological responses and anatomical traits in plants. This review details the existing evidence of essential roles for green wavelengths in plant biology. Absorption of green light is used to stimulate photosynthesis deep within the leaf and canopy profile, contributing to carbon gain and likely crop yield. In addition, green light also contributes to the array of signalling information available to leaves, resulting in developmental adaptation and immediate physiological responses. Within shaded canopies this enables optimization of resource-use efficiency and acclimation of photosynthesis to available irradiance. In this review, we suggest that plants may use these wavelengths not just to optimize stomatal aperture but also to fine-tune whole-canopy efficiency. We conclude that all roles for green light make a significant contribution to plant productivity and resource-use efficiency. We also outline the case for using green wavelengths in applied settings such as crop cultivation in LED-based agriculture and horticulture.
Collapse
Affiliation(s)
- Hayley L Smith
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington campus, Leicestershire LE12 5JS, UK
| | - Lorna McAusland
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington campus, Leicestershire LE12 5JS, UK
| | - Erik H Murchie
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington campus, Leicestershire LE12 5JS, UK
| |
Collapse
|
21
|
Yang Y, Zhu L, Xia F, Gong B, Xie A, Li S, Huang F, Wang S, Shen Y, Weaver DT. A novel 5-FU/rGO/Bce hybrid hydrogel shell on a tumor cell: one-step synthesis and synergistic chemo/photo-thermal/photodynamic effect. RSC Adv 2017. [DOI: 10.1039/c6ra25834d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A novel drug-loaded inorganic nanoparticle–biomolecule hybrid hydrogel shell on tumor cells was firstly prepared.
Collapse
Affiliation(s)
- Ying Yang
- School of Chemistry and Chemical Engineering
- Anhui University
- Hefei 230601
- P. R. China
| | - Lin Zhu
- Institute of Health Sciences
- Anhui University
- Hefei 230601
- P. R. China
| | - Feng Xia
- School of Chemistry and Chemical Engineering
- Anhui University
- Hefei 230601
- P. R. China
| | - Baoyou Gong
- School of Chemistry and Chemical Engineering
- Anhui University
- Hefei 230601
- P. R. China
| | - Anjian Xie
- School of Chemistry and Chemical Engineering
- Anhui University
- Hefei 230601
- P. R. China
| | - Shikuo Li
- School of Chemistry and Chemical Engineering
- Anhui University
- Hefei 230601
- P. R. China
| | - Fangzhi Huang
- School of Chemistry and Chemical Engineering
- Anhui University
- Hefei 230601
- P. R. China
| | - Shaohua Wang
- School of Chemistry and Chemical Engineering
- Anhui University
- Hefei 230601
- P. R. China
| | - Yuhua Shen
- School of Chemistry and Chemical Engineering
- Anhui University
- Hefei 230601
- P. R. China
| | - David T. Weaver
- Institute of Health Sciences
- Anhui University
- Hefei 230601
- P. R. China
| |
Collapse
|
22
|
Barnes PW, Ryel RJ, Flint SD. UV Screening in Native and Non-native Plant Species in the Tropical Alpine: Implications for Climate Change-Driven Migration of Species to Higher Elevations. FRONTIERS IN PLANT SCIENCE 2017; 8:1451. [PMID: 28878792 PMCID: PMC5572244 DOI: 10.3389/fpls.2017.01451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/04/2017] [Indexed: 05/20/2023]
Abstract
Ongoing changes in Earth's climate are shifting the elevation ranges of many plant species with non-native species often experiencing greater expansion into higher elevations than native species. These climate change-induced shifts in distributions inevitably expose plants to novel biotic and abiotic environments, including altered solar ultraviolet (UV)-B (280-315 nm) radiation regimes. Do the greater migration potentials of non-native species into higher elevations imply that they have more effective UV-protective mechanisms than native species? In this study, we surveyed leaf epidermal UV-A transmittance (TUV A) in a diversity of plant species representing different growth forms to test whether native and non-native species growing above 2800 m elevation on Mauna Kea, Hawaii differed in their UV screening capabilities. We further compared the degree to which TUV A varied along an elevation gradient in the native shrub Vaccinium reticulatum and the introduced forb Verbascum thapsus to evaluate whether these species differed in their abilities to adjust their levels of UV screening in response to elevation changes in UV-B. For plants growing in the Mauna Kea alpine/upper subalpine, we found that adaxial TUV A, measured with a UVA-PAM fluorometer, varied significantly among species but did not differ between native (mean = 6.0%; n = 8) and non-native (mean = 5.8%; n = 11) species. When data were pooled across native and non-native taxa, we also found no significant effect of growth form on TUV A, though woody plants (shrubs and trees) were represented solely by native species whereas herbaceous growth forms (grasses and forbs) were dominated by non-native species. Along an elevation gradient spanning 2600-3800 m, TUV A was variable (mean range = 6.0-11.2%) and strongly correlated with elevation and relative biologically effective UV-B in the exotic V. thapsus; however, TUV A was consistently low (3%) and did not vary with elevation in the native V. reticulatum. Results indicate that high levels of UV protection occur in both native and non-native species in this high UV-B tropical alpine environment, and that flexibility in UV screening is a mechanism employed by some, but not all species to cope with varying solar UV-B exposures along elevation gradients.
Collapse
Affiliation(s)
- Paul W. Barnes
- Department of Biological Sciences and Environment Program, Loyola University New Orleans, New OrleansLA, United States
- *Correspondence: Paul W. Barnes,
| | - Ronald J. Ryel
- Department of Wildland Resources, Utah State University, LoganUT, United States
| | - Stephan D. Flint
- Department of Forest, Rangeland and Fire Sciences, University of Idaho, MoscowID, United States
| |
Collapse
|
23
|
Barnes PW, Flint SD, Tobler MA, Ryel RJ. Diurnal adjustment in ultraviolet sunscreen protection is widespread among higher plants. Oecologia 2016; 181:55-63. [PMID: 26809621 DOI: 10.1007/s00442-016-3558-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/12/2016] [Indexed: 01/26/2023]
Abstract
The accumulation of ultraviolet (UV)-absorbing compounds (flavonoids and related phenylpropanoids) in the epidermis of higher plants reduces the penetration of solar UV radiation to underlying tissues and is a primary mechanism of acclimation to changing UV conditions resulting from ozone depletion and climate change. Previously we reported that several herbaceous plant species were capable of rapid, diurnal adjustments in epidermal UV transmittance (T UV), but how widespread this phenomenon is among plants has been unknown. In the present study, we tested the generality of this response by screening 37 species of various cultivated and wild plants growing in four locations spanning a gradient of ambient solar UV and climate (Hawaii, Utah, Idaho and Louisiana). Non-destructive measurements of adaxial T UV indicated that statistically significant midday decreases in T UV occurred in 49 % of the species tested, including both herbaceous and woody growth forms, and there was substantial interspecific variation in the magnitude of these changes. In general, plants in Louisiana exhibited larger diurnal changes in T UV than those in the other locations. Moreover, across all taxa, the magnitude of these changes was positively correlated with minimum daily air temperatures but not daily UV irradiances. Results indicate that diurnal changes in UV shielding are widespread among higher plants, vary both within and among species and tend to be greatest in herbaceous plants growing in warm environments. These findings suggest that plant species differ in their UV protection "strategies" though the functional and ecological significance of this variation in UV sunscreen protection remains unclear at present.
Collapse
Affiliation(s)
- Paul W Barnes
- Department of Biological Sciences and Environment Program, Loyola University New Orleans, 6363 St. Charles Avenue, New Orleans, LA, 70118, USA.
| | - Stephan D Flint
- Department of Forest, Rangeland and Fire Sciences, UIPO 441135, University of Idaho, Moscow, ID, 83844-1135, USA
| | - Mark A Tobler
- Department of Biological Sciences and Environment Program, Loyola University New Orleans, 6363 St. Charles Avenue, New Orleans, LA, 70118, USA
| | - Ronald J Ryel
- Department of Wildland Resources, Utah State University, 5230 Old Main Hill, Logan, UT, 84322-5230, USA
| |
Collapse
|
24
|
Barnes PW, Flint SD, Ryel RJ, Tobler MA, Barkley AE, Wargent JJ. Rediscovering leaf optical properties: New insights into plant acclimation to solar UV radiation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 93:94-100. [PMID: 25465528 DOI: 10.1016/j.plaphy.2014.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/17/2014] [Indexed: 05/13/2023]
Abstract
The accumulation of UV-absorbing compounds (flavonoids and other phenylpropanoid derivatives) and resultant decrease in the UV transmittance of the epidermis in leaves (TUV), is a primary protective mechanism against the potentially deleterious effects of UV radiation and is a critical component of the overall acclimation response of plants to changing UV environments. Traditional measurements of TUV were laborious, time-consuming and destructive or invasive, thus limiting their ability to efficiently make multiple measurements of the optical properties of plants in the field. The development of rapid, nondestructive optical methods of determining TUV has permitted the examination of UV optical properties of leaves with increased replication, on a finer time scale, and enabled repeated sampling of the same leaf over time. This technology has therefore allowed for studies examining acclimation responses to UV in plants in ways not previously possible. Here we provide a brief review of these earlier studies examining leaf UV optical properties and some of their important contributions, describe the principles by which the newer non-invasive measurements of epidermal UV transmittance are made, and highlight several case studies that reveal how this technique is providing new insights into this UV acclimation response in plants, which is far more plastic and dynamic than previously thought.
Collapse
Affiliation(s)
- Paul W Barnes
- Department of Biological Sciences and Environment Program, Loyola University New Orleans, 6363 St. Charles Avenue, New Orleans, LA 70118, USA.
| | - Stephan D Flint
- Department of Forest, Rangeland and Fire Sciences, UIPO 441135, University of Idaho, Moscow, ID 83844-1135, USA
| | - Ronald J Ryel
- Department of Wildland Resources, Utah State University, 5230 Old Main Hill, Logan, UT 84322-5230, USA
| | - Mark A Tobler
- Department of Biological Sciences and Environment Program, Loyola University New Orleans, 6363 St. Charles Avenue, New Orleans, LA 70118, USA
| | - Anne E Barkley
- Department of Biological Sciences and Environment Program, Loyola University New Orleans, 6363 St. Charles Avenue, New Orleans, LA 70118, USA
| | - Jason J Wargent
- Institute of Agriculture & Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| |
Collapse
|
25
|
Kalaji HM, Schansker G, Ladle RJ, Goltsev V, Bosa K, Allakhverdiev SI, Brestic M, Bussotti F, Calatayud A, Dąbrowski P, Elsheery NI, Ferroni L, Guidi L, Hogewoning SW, Jajoo A, Misra AN, Nebauer SG, Pancaldi S, Penella C, Poli D, Pollastrini M, Romanowska-Duda ZB, Rutkowska B, Serôdio J, Suresh K, Szulc W, Tambussi E, Yanniccari M, Zivcak M. Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. PHOTOSYNTHESIS RESEARCH 2014; 122:121-58. [PMID: 25119687 PMCID: PMC4210649 DOI: 10.1007/s11120-014-0024-6] [Citation(s) in RCA: 340] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 06/02/2014] [Indexed: 05/18/2023]
Abstract
The aim of this educational review is to provide practical information on the hardware, methodology, and the hands on application of chlorophyll (Chl) a fluorescence technology. We present the paper in a question and answer format like frequently asked questions. Although nearly all information on the application of Chl a fluorescence can be found in the literature, it is not always easily accessible. This paper is primarily aimed at scientists who have some experience with the application of Chl a fluorescence but are still in the process of discovering what it all means and how it can be used. Topics discussed are (among other things) the kind of information that can be obtained using different fluorescence techniques, the interpretation of Chl a fluorescence signals, specific applications of these techniques, and practical advice on different subjects, such as on the length of dark adaptation before measurement of the Chl a fluorescence transient. The paper also provides the physiological background for some of the applied procedures. It also serves as a source of reference for experienced scientists.
Collapse
Affiliation(s)
- Hazem M. Kalaji
- Department of Plant Physiology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Gert Schansker
- Avenue des Amazones 2, 1226 Chêne-Bougeries, Switzerland
| | - Richard J. Ladle
- Institute of Biological and Health Sciences, Federal University of Alagoas, Praça Afrânio Jorge, s/n, Prado, Maceió, AL Brazil
| | - Vasilij Goltsev
- Department of Biophysics and Radiobiology, Faculty of Biology, St. Kliment Ohridski University of Sofia, 8 Dr. Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Karolina Bosa
- Department of Pomology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Suleyman I. Allakhverdiev
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276 Russia
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia
| | - Marian Brestic
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Filippo Bussotti
- Department of Agri-Food Production and Environmental Science (DISPAA), University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy
| | - Angeles Calatayud
- Departamento de Horticultura, Instituto Valenciano de Investigaciones Agrarias, Ctra. Moncada-Náquera Km 4.5, Moncada, 46113 Valencia, Spain
| | - Piotr Dąbrowski
- Department of Environmental Improvement, Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Nabil I. Elsheery
- Agricultural Botany Department, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Lorenzo Ferroni
- Department of Life Sciences and Biotechnologies, University of Ferrara, Corso Ercole I d’Este 32, 44121 Ferrara, Italy
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, Via del Borghetto, 80, 56124 Pisa, Italy
| | | | - Anjana Jajoo
- School of Life Sciences, Devi Ahilya University, Indore, 452 001 M.P India
| | - Amarendra N. Misra
- Centre for Life Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Ranchi, 835205 India
| | - Sergio G. Nebauer
- Departamento de Producción vegetal, Universitat Politècnica de València, C de Vera sn, 46022 Valencia, Spain
| | - Simonetta Pancaldi
- Department of Life Sciences and Biotechnologies, University of Ferrara, Corso Ercole I d’Este 32, 44121 Ferrara, Italy
| | - Consuelo Penella
- Departamento de Horticultura, Instituto Valenciano de Investigaciones Agrarias, Ctra. Moncada-Náquera Km 4.5, Moncada, 46113 Valencia, Spain
| | - DorothyBelle Poli
- Department of Biology, Roanoke College, 221 College Lane, Salem, VA 24153 USA
| | - Martina Pollastrini
- Department of Agri-Food Production and Environmental Science (DISPAA), University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy
| | | | - Beata Rutkowska
- Agricultural Chemistry Department, Faculty of Agriculture and Biology, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - João Serôdio
- Departamento de Biologia, CESAM – Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Kancherla Suresh
- Directorate of Oil Palm Research, West Godavari Dt., Pedavegi, 534 450 Andhra Pradesh India
| | - Wiesław Szulc
- Agricultural Chemistry Department, Faculty of Agriculture and Biology, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Eduardo Tambussi
- Institute of Plant Physiology, INFIVE (Universidad Nacional de La Plata – Consejo Nacional de Investigaciones Científicas y Técnicas), Diagonal 113 N°495, 327 La Plata, Argentina
| | - Marcos Yanniccari
- Institute of Plant Physiology, INFIVE (Universidad Nacional de La Plata – Consejo Nacional de Investigaciones Científicas y Técnicas), Diagonal 113 N°495, 327 La Plata, Argentina
| | - Marek Zivcak
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| |
Collapse
|
26
|
Turnbull TL, Barlow AM, Adams MA. Photosynthetic benefits of ultraviolet-A to Pimelea ligustrina, a woody shrub of sub-alpine Australia. Oecologia 2013; 173:375-85. [DOI: 10.1007/s00442-013-2640-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 03/01/2013] [Indexed: 11/27/2022]
|
27
|
Júnior APD, Shimizu MM, Moura JCMS, Catharino RR, Ramos RA, Ribeiro RV, Mazzafera P. Looking for the Physiological Role of Anthocyanins in the Leaves of Coffea arabica. Photochem Photobiol 2012; 88:928-37. [DOI: 10.1111/j.1751-1097.2012.01125.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Meyer S, Louis J, Moise N, Piolot T, Baudin X, Cerovic ZG. Developmental changes in spatial distribution of in vivo fluorescence and epidermal UV absorbance over Quercus petraea leaves. ANNALS OF BOTANY 2009; 104:621-33. [PMID: 19561346 PMCID: PMC2729627 DOI: 10.1093/aob/mcp144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 04/23/2009] [Accepted: 05/01/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Epidermal phenolic compounds (mainly flavonoids) constitute a vital screen that protects the leaf from damage by natural ultraviolet (UV) radiation. The effectiveness of epidermal UV-screening depends on leaf anatomy, the content of UV-screening compounds and their spatial uniformity over the leaf area. To investigate in vivo the spatial pattern of the epidermal UV-screen during leaf development, a fluorescence imaging method was developed to map the epidermal UV-absorbance at a microscopic scale. This study was done on oak (Quercus petraea) leaves that were used as a model of woody dicotyledonous leaves. METHODS The leaf development of 2-year-old trees, grown outdoors, was monitored, at a macroscopic scale, by in vivo measurements of chlorophyll content per unit area and epidermal UV-absorbance using two optical leaf-clip meters. The distribution of pigments within leaves was assessed in vivo spectroscopically. The microscopic images of UV-induced fluorescence and UV-absorbance acquired in vivo during leaf development were interpreted from spectral characteristics of leaves. KEY RESULTS At a macroscopic scale, epidermal UV-absorbance was high on the upper leaf side during leaf development, while it increased on the lower leaf side during leaf expansion and reached the adaxial value at maturity. At a microscopic scale, in immature leaves, for both leaf sides, the spatial distribution of epidermal UV-absorbance was heterogeneous, with a pattern depending on the flavonoid content of vacuoles in developing epidermal cells. At maturity, epidermal UV-absorbance was uniform. CONCLUSIONS The spatial pattern of epidermal UV-screen over the area of oak leaves is related to leaf anatomy during development. In vivo spectroscopy and fluorescence imaging of the leaf surface showed the distribution of pigments within the leaf and hence can provide a tool to monitor optically the leaf development in nature.
Collapse
Affiliation(s)
- S Meyer
- Laboratoire Ecologie Systématique et Evolution, CNRS, UMR 8079 (CNRS, UPS, AgroParisTech), Université Paris-Sud, Bât. 362, F-91405 Orsay, France.
| | | | | | | | | | | |
Collapse
|
29
|
Pfündel EE. Deriving room temperature excitation spectra for photosystem I and photosystem II fluorescence in intact leaves from the dependence of FV/FM on excitation wavelength. PHOTOSYNTHESIS RESEARCH 2009; 100:163-177. [PMID: 19544007 DOI: 10.1007/s11120-009-9453-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 06/01/2009] [Indexed: 05/27/2023]
Abstract
The F(0) and F(M) level fluorescence from a wild-type barley, a Chl b-less mutant barley, and a maize leaf was determined from 430 to 685 nm at 10 nm intervals using pulse amplitude-modulated (PAM) fluorimetry. Variable wavelengths of the pulsed excitation light were achieved by passing the broadband emission of a Xe flash lamp through a birefringent tunable optical filter. For the three leaf types, spectra of F(V)/F(M) (=(F(M) - F(0))/F (M)) have been derived: within each of the three spectra of F(V)/F(M), statistically meaningful variations were detected. Also, at distinct wavelength regions, the (V)/F(M) differed significantly between leaf types. From spectra of F(V)/F (M), excitation spectra of PS I and PS II fluorescence were calculated using a model that considers PS I fluorescence to be constant but variable PS II fluorescence. The photosystem spectra suggest that LHC II absorption results in high values of F(V)/F(M) between 470 and 490 nm in the two wild-type leaves but the absence of LHC II in the Chl b-less mutant barley leaf decreases the F(V)/F(M) at these wavelengths. All three leaves exhibited low values of F(V)/F(M) around 520 nm which was tentatively ascribed to light absorption by PS I-associated carotenoids. In the 550-650 nm region, the F(V)/F(M) in the maize leaf was lower than in the barley wild-type leaf which is explained with higher light absorption by PS I in maize, which is a NADP-ME C(4) species, than in barley, a C(3) species. Finally, low values of F(V)/F(M) at 685 in maize leaf and in the Chl b-less mutant barley leaf are in agreement with preferential PS I absorption at this wavelength. The potential use of spectra of the F(V)/F(M) ratio to derive information on spectral absorption properties of PS I and PS II is discussed.
Collapse
|