1
|
Tóth D, Tengölics R, Aarabi F, Karlsson A, Vidal-Meireles A, Kovács L, Kuntam S, Körmöczi T, Fernie AR, Hudson EP, Papp B, Tóth SZ. Chloroplastic ascorbate modifies plant metabolism and may act as a metabolite signal regardless of oxidative stress. PLANT PHYSIOLOGY 2024; 196:1691-1711. [PMID: 39106412 PMCID: PMC11444284 DOI: 10.1093/plphys/kiae409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/06/2024] [Accepted: 07/01/2024] [Indexed: 08/09/2024]
Abstract
Ascorbate (Asc) is a major plant metabolite that plays crucial roles in various processes, from reactive oxygen scavenging to epigenetic regulation. However, to what extent and how Asc modulates metabolism is largely unknown. We investigated the consequences of chloroplastic and total cellular Asc deficiencies by studying chloroplastic Asc transporter mutant lines lacking PHOSPHATE TRANSPORTER 4; 4 and the Asc-deficient vtc2-4 mutant of Arabidopsis (Arabidopsis thaliana). Under regular growth conditions, both Asc deficiencies caused minor alterations in photosynthesis, with no apparent signs of oxidative damage. In contrast, metabolomics analysis revealed global and largely overlapping alterations in the metabolome profiles of both Asc-deficient mutants, suggesting that chloroplastic Asc modulates plant metabolism. We observed significant alterations in amino acid metabolism, particularly in arginine metabolism, activation of nucleotide salvage pathways, and changes in secondary metabolism. In addition, proteome-wide analysis of thermostability revealed that Asc may interact with enzymes involved in arginine metabolism, the Calvin-Benson cycle, and several photosynthetic electron transport components. Overall, our results suggest that, independent of oxidative stress, chloroplastic Asc modulates the activity of diverse metabolic pathways in vascular plants and may act as an internal metabolite signal.
Collapse
Affiliation(s)
- Dávid Tóth
- Laboratory for Molecular Photobioenergetics, HUN-REN Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62, Szeged H-6726, Hungary
- Doctoral School of Biology, University of Szeged, Közép fasor 52, Szeged H-6722, Hungary
| | - Roland Tengölics
- HCEMM-BRC Metabolic Systems Biology Lab, Temesvári krt. 62, Szeged H-6726, Hungary
- Synthetic and Systems Biology Unit, HUN-REN Biological Research Centre, Institute of Biochemistry, Temesvári krt. 62, Szeged H-6726, Hungary
- Metabolomics Lab, Core Facilities, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Fayezeh Aarabi
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm D-14476, Germany
| | - Anna Karlsson
- Science for Life Laboratory, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, PO Box 1031, Solna 171 21, Sweden
| | - André Vidal-Meireles
- Laboratory for Molecular Photobioenergetics, HUN-REN Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62, Szeged H-6726, Hungary
| | - László Kovács
- Laboratory for Molecular Photobioenergetics, HUN-REN Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Soujanya Kuntam
- Laboratory for Molecular Photobioenergetics, HUN-REN Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Tímea Körmöczi
- HCEMM-BRC Metabolic Systems Biology Lab, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm D-14476, Germany
| | - Elton P Hudson
- Science for Life Laboratory, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, PO Box 1031, Solna 171 21, Sweden
| | - Balázs Papp
- HCEMM-BRC Metabolic Systems Biology Lab, Temesvári krt. 62, Szeged H-6726, Hungary
- Synthetic and Systems Biology Unit, HUN-REN Biological Research Centre, Institute of Biochemistry, Temesvári krt. 62, Szeged H-6726, Hungary
- National Laboratory for Health Security, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Szilvia Z Tóth
- Laboratory for Molecular Photobioenergetics, HUN-REN Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62, Szeged H-6726, Hungary
| |
Collapse
|
2
|
The Functions of Chloroplastic Ascorbate in Vascular Plants and Algae. Int J Mol Sci 2023; 24:ijms24032537. [PMID: 36768860 PMCID: PMC9916717 DOI: 10.3390/ijms24032537] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Ascorbate (Asc) is a multifunctional metabolite essential for various cellular processes in plants and animals. The best-known property of Asc is to scavenge reactive oxygen species (ROS), in a highly regulated manner. Besides being an effective antioxidant, Asc also acts as a chaperone for 2-oxoglutarate-dependent dioxygenases that are involved in the hormone metabolism of plants and the synthesis of various secondary metabolites. Asc also essential for the epigenetic regulation of gene expression, signaling and iron transport. Thus, Asc affects plant growth, development, and stress resistance via various mechanisms. In this review, the intricate relationship between Asc and photosynthesis in plants and algae is summarized in the following major points: (i) regulation of Asc biosynthesis by light, (ii) interaction between photosynthetic and mitochondrial electron transport in relation to Asc biosynthesis, (iii) Asc acting as an alternative electron donor of photosystem II, (iv) Asc inactivating the oxygen-evolving complex, (v) the role of Asc in non-photochemical quenching, and (vi) the role of Asc in ROS management in the chloroplast. The review also discusses differences in the regulation of Asc biosynthesis and the effects of Asc on photosynthesis in algae and vascular plants.
Collapse
|
3
|
Liu WJ, Liu H, Chen YE, Yin Y, Zhang ZW, Song J, Chang LJ, Zhang FL, Wang D, Dai XH, Wei C, Xiong M, Yuan S, Zhao J. Chloroplastic photoprotective strategies differ between bundle sheath and mesophyll cells in maize ( Zea mays L.) Under drought. FRONTIERS IN PLANT SCIENCE 2022; 13:885781. [PMID: 35909748 PMCID: PMC9330506 DOI: 10.3389/fpls.2022.885781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/27/2022] [Indexed: 05/24/2023]
Abstract
Bundle sheath cells play a crucial role in photosynthesis in C4 plants, but the structure and function of photosystem II (PSII) in these cells is still controversial. Photoprotective roles of bundle sheath chloroplasts at the occurrence of environmental stresses have not been investigated so far. Non-photochemical quenching (NPQ) of chlorophyll a fluorescence is the photoprotective mechanism that responds to a changing energy balance in chloroplasts. In the present study, we found a much higher NPQ in bundle sheath chloroplasts than in mesophyll chloroplasts under a drought stress. This change was accompanied by a more rapid dephosphorylation of light-harvesting complex II (LHCII) subunits and a greater increase in PSII subunit S (PsbS) protein abundance than in mesophyll cell chloroplasts. Histochemical staining of reactive oxygen species (ROS) suggested that the high NPQ may be one of the main reasons for the lower accumulation of ROS in bundle sheath chloroplasts. This may maintain the stable functioning of bundle sheath cells under drought condition. These results indicate that the superior capacity for dissipation of excitation energy in bundle sheath chloroplasts may be an environmental adaptation unique to C4 plants.
Collapse
Affiliation(s)
- Wen-Juan Liu
- Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Hao Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang-Er Chen
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Yan Yin
- Plant Science Facility of the Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhong-Wei Zhang
- College of Resources Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jun Song
- Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Li-Juan Chang
- Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Fu-Li Zhang
- Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Dong Wang
- Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiao-Hang Dai
- Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Chao Wei
- Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Mei Xiong
- Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Shu Yuan
- College of Resources Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jun Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Podmaniczki A, Nagy V, Vidal-Meireles A, Tóth D, Patai R, Kovács L, Tóth SZ. Ascorbate inactivates the oxygen-evolving complex in prolonged darkness. PHYSIOLOGIA PLANTARUM 2021; 171:232-245. [PMID: 33215703 DOI: 10.1111/ppl.13278] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
Ascorbate (Asc, vitamin C) is an essential metabolite participating in multiple physiological processes of plants, including environmental stress management and development. In this study, we acquired knowledge on the role of Asc in dark-induced leaf senescence using Arabidopsis thaliana as a model organism. One of the earliest effects of prolonged darkness is the inactivation of oxygen-evolving complexes (OEC) as demonstrated here by fast chlorophyll a fluorescence and thermoluminescence measurements. We found that inactivation of OEC due to prolonged darkness was attenuated in the Asc-deficient vtc2-4 mutant. On the other hand, the severe photosynthetic phenotype of a psbo1 knockout mutant, lacking the major extrinsic OEC subunit PSBO1, was further aggravated upon a 24-h dark treatment. The psbr mutant, devoid of the PSBR subunit of OEC, performed only slightly disturbed photosynthetic activity under normal growth conditions, whereas it showed a strongly diminished B thermoluminescence band upon dark treatment. We have also generated a double psbo1 vtc2 mutant, and it showed a slightly milder photosynthetic phenotype than the single psbo1 mutant. Our results, therefore, suggest that Asc leads to the inactivation of OEC in prolonged darkness by over-reducing the Mn-complex that is probably enabled by a dark-induced dissociation of the extrinsic OEC subunits. Our study is an example that Asc may negatively affect certain cellular processes and thus its concentration and localization need to be highly controlled.
Collapse
Affiliation(s)
- Anna Podmaniczki
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Valéria Nagy
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | | | - Dávid Tóth
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Roland Patai
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - László Kovács
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Szilvia Z Tóth
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
5
|
Tan Y, Zhang QS, Zhao W, Liu Z, Ma MY, Zhong MY, Wang MX. The highly efficient NDH-dependent photosystem I cyclic electron flow pathway in the marine angiosperm Zostera marina. PHOTOSYNTHESIS RESEARCH 2020; 144:49-62. [PMID: 32152819 DOI: 10.1007/s11120-020-00732-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 03/03/2020] [Indexed: 05/13/2023]
Abstract
Zostera marina, a fully submerged marine angiosperm with a unique evolutionary history associated with its terrestrial origin, has distinct photochemical characteristics caused by its oxygen-evolving complex (OEC) being prone to deactivation in visible light. Based on the present phylogenetic analysis, the chloroplast NADPH dehydrogenase-like (NDH) complex was found to be completed in of Z. marina, unlike other marine plants, suggesting its crucial role. Thus, the responses of electron transport to irradiation were investigated through multiple chlorophyll fluorescence techniques and Western blot analysis. Moreover, the respective contribution of the two photosystem I cyclic electron flow (PSI-CEF) pathways to the generation of trans-thylakoid proton gradient (∆pH) was also examined using inhibitors. The contributions of the two PSI-CEF pathways to ∆pH were similar; furthermore, there was a trade-off between the two pathways under excess irradiation: the PGR5/L1-dependent PSI-CEF decreased gradually following its activation during the initial illumination, while NDH-dependent PSI-CEF was activated gradually with exposure duration. OEC inactivation was continuously under excess irradiation, which exhibits a positive linear correlation with the activation of NDH-dependent PSI-CEF. We suggest that PGR5/L1-dependent PSI-CEF was preferentially activated to handle the excess electron caused by the operation of OEC during the initial illumination. Subsequently, the increasing OEC inactivation with exposure duration resulted in a deficit of electrons. Limited electrons from PSI might preferentially synthesize NADPH, which could support the function of NDH-dependent PSI-CEF to generate ∆pH and ATP via reducing ferredoxin, thereby maintaining OEC stability.
Collapse
Affiliation(s)
- Ying Tan
- Ocean School, Yantai University, Yantai, 264005, People's Republic of China
| | - Quan Sheng Zhang
- Ocean School, Yantai University, Yantai, 264005, People's Republic of China.
| | - Wei Zhao
- Ocean School, Yantai University, Yantai, 264005, People's Republic of China
| | - Zhe Liu
- Ocean School, Yantai University, Yantai, 264005, People's Republic of China
| | - Ming Yu Ma
- Ocean School, Yantai University, Yantai, 264005, People's Republic of China
| | - Ming Yu Zhong
- Ocean School, Yantai University, Yantai, 264005, People's Republic of China
| | - Meng Xin Wang
- Ocean School, Yantai University, Yantai, 264005, People's Republic of China
| |
Collapse
|
6
|
Tóth SZ, Lőrincz T, Szarka A. Concentration Does Matter: The Beneficial and Potentially Harmful Effects of Ascorbate in Humans and Plants. Antioxid Redox Signal 2018; 29:1516-1533. [PMID: 28974112 DOI: 10.1089/ars.2017.7125] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE Ascorbate (Asc) is an essential compound both in animals and plants, mostly due to its reducing properties, thereby playing a role in scavenging reactive oxygen species (ROS) and acting as a cofactor in various enzymatic reactions. Recent Advances: Growing number of evidence shows that excessive Asc accumulation may have negative effects on cellular functions both in humans and plants; inter alia it may negatively affect signaling mechanisms, cellular redox status, and contribute to the production of ROS via the Fenton reaction. CRITICAL ISSUES Both plants and humans tightly control cellular Asc levels, possibly via biosynthesis, transport, and degradation, to maintain them in an optimum concentration range, which, among other factors, is essential to minimize the potentially harmful effects of Asc. On the contrary, the Fenton reaction induced by a high-dose Asc treatment in humans enables a potential cancer-selective cell death pathway. FUTURE DIRECTIONS The elucidation of Asc induced cancer selective cell death mechanisms may give us a tool to apply Asc in cancer therapy. On the contrary, the regulatory mechanisms controlling cellular Asc levels are also to be considered, for example, when aiming at generating crops with elevated Asc levels.
Collapse
Affiliation(s)
- Szilvia Z Tóth
- 1 Institute of Plant Biology , Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Tamás Lőrincz
- 2 Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics , Budapest, Hungary
| | - András Szarka
- 2 Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics , Budapest, Hungary
| |
Collapse
|
7
|
Bellasio C, Lundgren MR. Anatomical constraints to C4 evolution: light harvesting capacity in the bundle sheath. THE NEW PHYTOLOGIST 2016; 212:485-496. [PMID: 27375085 DOI: 10.1111/nph.14063] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/10/2016] [Indexed: 06/06/2023]
Abstract
In C4 photosynthesis CO2 assimilation and reduction are typically coordinated across mesophyll (M) and bundle sheath (BS) cells, respectively. This system consequently requires sufficient light to reach BS to generate enough ATP to allow ribulose-1,5-bisphosphate (RuBP) regeneration in BS. Leaf anatomy influences BS light penetration and therefore constrains C4 cycle functionality. Using an absorption scattering model (coded in Excel, and freely downloadable) we simulate light penetration profiles and rates of ATP production in BS across the C3 , C3 -C4 and C4 anatomical continua. We present a trade-off for light absorption between BS pigment concentration and space allocation. C3 BS anatomy limits light absorption and benefits little from high pigment concentrations. Unpigmented BS extensions increase BS light penetration. C4 and C3 -C4 anatomies have the potential to generate sufficient ATP in the BS, whereas typical C3 anatomy does not, except some C3 taxa closely related to C4 groups. Insufficient volume of BS, relative to M, will hamper a C4 cycle via insufficient BS light absorption. Thus, BS ATP production and RuBP regeneration, coupled with increased BS investments, allow greater operational plasticity. We propose that larger BS in C3 lineages may be co-opted for C3 -C4 and C4 biochemistry requirements.
Collapse
Affiliation(s)
- Chandra Bellasio
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK.
| | - Marjorie R Lundgren
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
8
|
Abstract
Experimental data concerning the role of ascorbic acid in both the maintenance of photosynthesis and in the protection of the photosynthetic apparatus against reactive oxygen species and photoinhibition are reviewed. The function of ascorbic acid as an electron donor in the "Krasnovsky reaction", as well as its physiological role as a donor to components of the photosynthetic electron transport chain, which was first studied by A. A. Krasnovsky in the 1980s, is discussed. Data on the content and transport of ascorbic acid in plant cells and chloroplasts are presented.
Collapse
Affiliation(s)
- B N Ivanov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
9
|
Goss T, Hanke G. The end of the line: can ferredoxin and ferredoxin NADP(H) oxidoreductase determine the fate of photosynthetic electrons? Curr Protein Pept Sci 2014; 15:385-93. [PMID: 24678667 PMCID: PMC4030315 DOI: 10.2174/1389203715666140327113733] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 11/22/2013] [Accepted: 03/16/2014] [Indexed: 12/30/2022]
Abstract
At the end of the linear photosynthetic electron transfer (PET) chain, the small soluble protein ferredoxin (Fd) transfers electrons to Fd:NADP(H) oxidoreductase (FNR), which can then reduce NADP+ to support C assimilation. In addition to this linear electron flow (LEF), Fd is also thought to mediate electron flow back to the membrane complexes by different cyclic electron flow (CEF) pathways: either antimycin A sensitive, NAD(P)H complex dependent, or through FNR located at the cytochrome b6f complex. Both Fd and FNR are present in higher plant genomes as multiple gene copies, and it is now known that specific Fd iso-proteins can promote CEF. In addition, FNR iso-proteins vary in their ability to dynamically interact with thylakoid membrane complexes, and it has been suggested that this may also play a role in CEF. We will highlight work on the different Fd-isoproteins and FNR-membrane association found in the bundle sheath (BSC) and mesophyll (MC) cell chloroplasts of the C4 plant maize. These two cell types perform predominantly CEF and LEF, and the properties and activities of Fd and FNR in the BSC and MC are therefore specialized for CEF and LEF respectively. A diversity of Fd isoproteins and dynamic FNR location has also been recorded in C3 plants, algae and cyanobacteria. This indicates that the principles learned from the extreme electron transport situations in the BSC and MC of maize might be usefully applied to understanding the dynamic transition between these states in other systems.
Collapse
Affiliation(s)
| | - Guy Hanke
- Department of Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück,11 Barbara Strasse, Osnabrueck, DE-49076, Germany.
| |
Collapse
|
10
|
Tóth SZ, Schansker G, Garab G. The physiological roles and metabolism of ascorbate in chloroplasts. PHYSIOLOGIA PLANTARUM 2013; 148:161-75. [PMID: 23163968 DOI: 10.1111/ppl.12006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/30/2012] [Accepted: 10/31/2012] [Indexed: 05/03/2023]
Abstract
Ascorbate is a multifunctional metabolite in plants. It is essential for growth control, involving cell division and cell wall synthesis and also involved in redox signaling, in the modulation of gene expression and regulation of enzymatic activities. Ascorbate also fulfills crucial roles in scavenging reactive oxygen species, both enzymatically and nonenzymatically, a well-established phenomenon in the chloroplasts stroma. We give an overview on these important physiological functions and would like to give emphasis to less well-known roles of ascorbate, in the thylakoid lumen, where it also plays multiple roles. It is essential for photoprotection as a cofactor for violaxanthin de-epoxidase, a key enzyme in the formation of nonphotochemical quenching. Lumenal ascorbate has recently also been shown to act as an alternative electron donor of photosystem II once the oxygen-evolving complex is inactivated and to protect the photosynthetic machinery by slowing down donor-side induced photoinactivation; it is yet to be established if ascorbate has a similar role in the case of other stress effects, such as high light and UV-B stress. In bundle sheath cells, deficient in oxygen evolution, ascorbate provides electrons to photosystem II, thereby poising cyclic electron transport around photosystem I. It has also been shown that, by supporting linear electron transport through photosystem II in sulfur-deprived Chlamydomonas reinhardtii cells, in which oxygen evolution is largely inhibited, externally added ascorbate enhances hydrogen production. For fulfilling its multiple roles, Asc has to be transported into the thylakoid lumen and efficiently regenerated; however, very little is known yet about these processes.
Collapse
Affiliation(s)
- Szilvia Z Tóth
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, P.O. Box 521, H-6701, Hungary.
| | | | | |
Collapse
|
11
|
Kirchhoff H, Sharpe RM, Herbstova M, Yarbrough R, Edwards GE. Differential mobility of pigment-protein complexes in granal and agranal thylakoid membranes of C₃ and C₄ plants. PLANT PHYSIOLOGY 2013; 161:497-507. [PMID: 23148078 PMCID: PMC3532279 DOI: 10.1104/pp.112.207548] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 11/10/2012] [Indexed: 05/18/2023]
Abstract
The photosynthetic performance of plants is crucially dependent on the mobility of the molecular complexes that catalyze the conversion of sunlight to metabolic energy equivalents in the thylakoid membrane network inside chloroplasts. The role of the extensive folding of thylakoid membranes leading to structural differentiation into stacked grana regions and unstacked stroma lamellae for diffusion-based processes of the photosynthetic machinery is poorly understood. This study examines, to our knowledge for the first time, the mobility of photosynthetic pigment-protein complexes in unstacked thylakoid regions in the C₃ plant Arabidopsis (Arabidopsis thaliana) and agranal bundle sheath chloroplasts of the C₄ plants sorghum (Sorghum bicolor) and maize (Zea mays) by the fluorescence recovery after photobleaching technique. In unstacked thylakoid membranes, more than 50% of the protein complexes are mobile, whereas this number drops to about 20% in stacked grana regions. The higher molecular mobility in unstacked thylakoid regions is explained by a lower protein-packing density compared with stacked grana regions. It is postulated that thylakoid membrane stacking to form grana leads to protein crowding that impedes lateral diffusion processes but is required for efficient light harvesting of the modularly organized photosystem II and its light-harvesting antenna system. In contrast, the arrangement of the photosystem I light-harvesting complex I in separate units in unstacked thylakoid membranes does not require dense protein packing, which is advantageous for protein diffusion.
Collapse
Affiliation(s)
- Helmut Kirchhoff
- Institute of Biological Chemistry , Washington State University, Pullman, Washington 99164, USA.
| | | | | | | | | |
Collapse
|
12
|
Chang YM, Liu WY, Shih ACC, Shen MN, Lu CH, Lu MYJ, Yang HW, Wang TY, Chen SCC, Chen SM, Li WH, Ku MS. Characterizing regulatory and functional differentiation between maize mesophyll and bundle sheath cells by transcriptomic analysis. PLANT PHYSIOLOGY 2012; 160:165-77. [PMID: 22829318 PMCID: PMC3440195 DOI: 10.1104/pp.112.203810] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 07/23/2012] [Indexed: 05/18/2023]
Abstract
To study the regulatory and functional differentiation between the mesophyll (M) and bundle sheath (BS) cells of maize (Zea mays), we isolated large quantities of highly homogeneous M and BS cells from newly matured second leaves for transcriptome profiling by RNA sequencing. A total of 52,421 annotated genes with at least one read were found in the two transcriptomes. Defining a gene with more than one read per kilobase per million mapped reads as expressed, we identified 18,482 expressed genes; 14,972 were expressed in M cells, including 53 M-enriched transcription factor (TF) genes, whereas 17,269 were expressed in BS cells, including 214 BS-enriched TF genes. Interestingly, many TF gene families show a conspicuous BS preference in expression. Pathway analyses reveal differentiation between the two cell types in various functional categories, with the M cells playing more important roles in light reaction, protein synthesis and folding, tetrapyrrole synthesis, and RNA binding, while the BS cells specialize in transport, signaling, protein degradation and posttranslational modification, major carbon, hydrogen, and oxygen metabolism, cell division and organization, and development. Genes coding for several transporters involved in the shuttle of C(4) metabolites and BS cell wall development have been identified, to our knowledge, for the first time. This comprehensive data set will be useful for studying M/BS differentiation in regulation and function.
Collapse
Affiliation(s)
- Yao-Ming Chang
- Biodiversity Research Center (Y.-M.C., W.-Y.L., M.-N.S., M.-Y.J.L., T.-Y.W., W.-H.L.), Genomics Research Center (Y.-M.C., W.-Y.L., S.M.C., W.-H.L.), and Institute of Information Science (A.C.-C.S., C.-H.L.), Academia Sinica, Taipei, Taiwan 115; Institute of Bioagricultural Science, National Chiayi University, Chiayi, Taiwan 600 (H.-W.Y., M.S.B.K.); Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637 (S.C.-C.C., W.-H.L.); and School of Biological Sciences, Washington State University, Pullman, Washington 99164–4238 (M.S.B.K.)
| | - Wen-Yu Liu
- Biodiversity Research Center (Y.-M.C., W.-Y.L., M.-N.S., M.-Y.J.L., T.-Y.W., W.-H.L.), Genomics Research Center (Y.-M.C., W.-Y.L., S.M.C., W.-H.L.), and Institute of Information Science (A.C.-C.S., C.-H.L.), Academia Sinica, Taipei, Taiwan 115; Institute of Bioagricultural Science, National Chiayi University, Chiayi, Taiwan 600 (H.-W.Y., M.S.B.K.); Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637 (S.C.-C.C., W.-H.L.); and School of Biological Sciences, Washington State University, Pullman, Washington 99164–4238 (M.S.B.K.)
| | - Arthur Chun-Chieh Shih
- Biodiversity Research Center (Y.-M.C., W.-Y.L., M.-N.S., M.-Y.J.L., T.-Y.W., W.-H.L.), Genomics Research Center (Y.-M.C., W.-Y.L., S.M.C., W.-H.L.), and Institute of Information Science (A.C.-C.S., C.-H.L.), Academia Sinica, Taipei, Taiwan 115; Institute of Bioagricultural Science, National Chiayi University, Chiayi, Taiwan 600 (H.-W.Y., M.S.B.K.); Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637 (S.C.-C.C., W.-H.L.); and School of Biological Sciences, Washington State University, Pullman, Washington 99164–4238 (M.S.B.K.)
| | - Meng-Ni Shen
- Biodiversity Research Center (Y.-M.C., W.-Y.L., M.-N.S., M.-Y.J.L., T.-Y.W., W.-H.L.), Genomics Research Center (Y.-M.C., W.-Y.L., S.M.C., W.-H.L.), and Institute of Information Science (A.C.-C.S., C.-H.L.), Academia Sinica, Taipei, Taiwan 115; Institute of Bioagricultural Science, National Chiayi University, Chiayi, Taiwan 600 (H.-W.Y., M.S.B.K.); Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637 (S.C.-C.C., W.-H.L.); and School of Biological Sciences, Washington State University, Pullman, Washington 99164–4238 (M.S.B.K.)
| | - Chen-Hua Lu
- Biodiversity Research Center (Y.-M.C., W.-Y.L., M.-N.S., M.-Y.J.L., T.-Y.W., W.-H.L.), Genomics Research Center (Y.-M.C., W.-Y.L., S.M.C., W.-H.L.), and Institute of Information Science (A.C.-C.S., C.-H.L.), Academia Sinica, Taipei, Taiwan 115; Institute of Bioagricultural Science, National Chiayi University, Chiayi, Taiwan 600 (H.-W.Y., M.S.B.K.); Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637 (S.C.-C.C., W.-H.L.); and School of Biological Sciences, Washington State University, Pullman, Washington 99164–4238 (M.S.B.K.)
| | - Mei-Yeh Jade Lu
- Biodiversity Research Center (Y.-M.C., W.-Y.L., M.-N.S., M.-Y.J.L., T.-Y.W., W.-H.L.), Genomics Research Center (Y.-M.C., W.-Y.L., S.M.C., W.-H.L.), and Institute of Information Science (A.C.-C.S., C.-H.L.), Academia Sinica, Taipei, Taiwan 115; Institute of Bioagricultural Science, National Chiayi University, Chiayi, Taiwan 600 (H.-W.Y., M.S.B.K.); Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637 (S.C.-C.C., W.-H.L.); and School of Biological Sciences, Washington State University, Pullman, Washington 99164–4238 (M.S.B.K.)
| | - Hui-Wen Yang
- Biodiversity Research Center (Y.-M.C., W.-Y.L., M.-N.S., M.-Y.J.L., T.-Y.W., W.-H.L.), Genomics Research Center (Y.-M.C., W.-Y.L., S.M.C., W.-H.L.), and Institute of Information Science (A.C.-C.S., C.-H.L.), Academia Sinica, Taipei, Taiwan 115; Institute of Bioagricultural Science, National Chiayi University, Chiayi, Taiwan 600 (H.-W.Y., M.S.B.K.); Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637 (S.C.-C.C., W.-H.L.); and School of Biological Sciences, Washington State University, Pullman, Washington 99164–4238 (M.S.B.K.)
| | - Tzi-Yuan Wang
- Biodiversity Research Center (Y.-M.C., W.-Y.L., M.-N.S., M.-Y.J.L., T.-Y.W., W.-H.L.), Genomics Research Center (Y.-M.C., W.-Y.L., S.M.C., W.-H.L.), and Institute of Information Science (A.C.-C.S., C.-H.L.), Academia Sinica, Taipei, Taiwan 115; Institute of Bioagricultural Science, National Chiayi University, Chiayi, Taiwan 600 (H.-W.Y., M.S.B.K.); Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637 (S.C.-C.C., W.-H.L.); and School of Biological Sciences, Washington State University, Pullman, Washington 99164–4238 (M.S.B.K.)
| | - Sean C.-C. Chen
- Biodiversity Research Center (Y.-M.C., W.-Y.L., M.-N.S., M.-Y.J.L., T.-Y.W., W.-H.L.), Genomics Research Center (Y.-M.C., W.-Y.L., S.M.C., W.-H.L.), and Institute of Information Science (A.C.-C.S., C.-H.L.), Academia Sinica, Taipei, Taiwan 115; Institute of Bioagricultural Science, National Chiayi University, Chiayi, Taiwan 600 (H.-W.Y., M.S.B.K.); Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637 (S.C.-C.C., W.-H.L.); and School of Biological Sciences, Washington State University, Pullman, Washington 99164–4238 (M.S.B.K.)
| | - Stella Maris Chen
- Biodiversity Research Center (Y.-M.C., W.-Y.L., M.-N.S., M.-Y.J.L., T.-Y.W., W.-H.L.), Genomics Research Center (Y.-M.C., W.-Y.L., S.M.C., W.-H.L.), and Institute of Information Science (A.C.-C.S., C.-H.L.), Academia Sinica, Taipei, Taiwan 115; Institute of Bioagricultural Science, National Chiayi University, Chiayi, Taiwan 600 (H.-W.Y., M.S.B.K.); Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637 (S.C.-C.C., W.-H.L.); and School of Biological Sciences, Washington State University, Pullman, Washington 99164–4238 (M.S.B.K.)
| | - Wen-Hsiung Li
- Biodiversity Research Center (Y.-M.C., W.-Y.L., M.-N.S., M.-Y.J.L., T.-Y.W., W.-H.L.), Genomics Research Center (Y.-M.C., W.-Y.L., S.M.C., W.-H.L.), and Institute of Information Science (A.C.-C.S., C.-H.L.), Academia Sinica, Taipei, Taiwan 115; Institute of Bioagricultural Science, National Chiayi University, Chiayi, Taiwan 600 (H.-W.Y., M.S.B.K.); Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637 (S.C.-C.C., W.-H.L.); and School of Biological Sciences, Washington State University, Pullman, Washington 99164–4238 (M.S.B.K.)
| | - Maurice S.B. Ku
- Biodiversity Research Center (Y.-M.C., W.-Y.L., M.-N.S., M.-Y.J.L., T.-Y.W., W.-H.L.), Genomics Research Center (Y.-M.C., W.-Y.L., S.M.C., W.-H.L.), and Institute of Information Science (A.C.-C.S., C.-H.L.), Academia Sinica, Taipei, Taiwan 115; Institute of Bioagricultural Science, National Chiayi University, Chiayi, Taiwan 600 (H.-W.Y., M.S.B.K.); Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637 (S.C.-C.C., W.-H.L.); and School of Biological Sciences, Washington State University, Pullman, Washington 99164–4238 (M.S.B.K.)
| |
Collapse
|
13
|
Peeva VN, Tóth SZ, Cornic G, Ducruet JM. Thermoluminescence and P700 redox kinetics as complementary tools to investigate the cyclic/chlororespiratory electron pathways in stress conditions in barley leaves. PHYSIOLOGIA PLANTARUM 2012; 144:83-97. [PMID: 21910736 DOI: 10.1111/j.1399-3054.2011.01519.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Cyclic electron flow around photosystem I drives additional proton pumping into the thylakoid lumen, which enhances the protective non-photochemical quenching and increases ATP synthesis. It involves several pathways activated independently. In whole barley leaves, P700 oxidation under far-red illumination and subsequent P700(+) dark reduction kinetics provide a major probe of the activation of cyclic pathways. Two 'intermediate' and 'slow' exponential reduction phases are always observed and they become faster after high light illumination, but dark inactivation of the Benson-Calvin cycle causes the emergence of both a transient in the P700 oxidation and a 'fast' phase in the P700(+) reduction. We investigate here the afterglow (AG) thermoluminescence emission as another tool to detect the activation of cyclic electron pathways from stroma reductants to the acceptor side of photosystem II. This transfer is activated by warming, yielding an AG band at about 45°C. However, treatments that accelerate the 'intermediate' and 'slow' P700(+) reduction phases (brief anoxia, hexose infiltration, fast dehydration of excised leaves) also produced a downshift of this AG band. This pathway ascribable to NADPH dehydrogenase (NDH) would be triggered by a deficit in ATP, while the 'fast' reduction phase corresponding to the ferredoxin plastoquinone reductase pathway is triggered by an overreduction of the photosystem I acceptor pool and is undetected in thermoluminescence. Contrastingly, slow dehydration of unwatered plants did not cause faster reduction of P700(+) nor temperature downshift of the AG band, that is no induction of the NDH pathway, whereas an increased intensity of the AG band indicated a strong NADPH + ATP assimilatory potential.
Collapse
Affiliation(s)
- Violeta N Peeva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, G Bonchev Str., Bl. 21, Sofia 1113, Bulgaria
| | | | | | | |
Collapse
|
14
|
Wu Y, Zheng F, Ma W, Han Z, Gu Q, Shen Y, Mi H. Regulation of NAD(P)H dehydrogenase-dependent cyclic electron transport around PSI by NaHSO₃ at low concentrations in tobacco chloroplasts. PLANT & CELL PHYSIOLOGY 2011; 52:1734-43. [PMID: 21828103 DOI: 10.1093/pcp/pcr109] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Although bisulfite at low concentrations (L-NaHSO₃) has been found to increase the cyclic electron transport around PSI (CET), its regulative mechanism remains unknown. In this work, the role of L-NaHSO₃ (0.1-500 μM) in NAD(P)H dehydrogenase-dependent CET (the NDH pathway) was investigated. After treatment of tobacco leaves with L-NaHSO₃, the NDH pathway, as reflected by a transient post-illumination increase in Chl fluorescence, the dark reduction of P700+ after far-red light and the amount of NDH, was increased after the light-dark-light transition, but was slightly lowered under continuous light. Meanwhile, the linear electron transport (LET) was accelerated by L-NaHSO₃ under both the light regimes. Experiments in thylakoids further demonstrated that both LET, monitored by light-dependent oxygen uptake, and CET, as determined from the NADPH-dependent oxygen uptake and dark reduction of P700+, were enhanced by L-NaHSO₃ and the enhancements were abolished by superoxide dismutase. Furthermore, L-NaHSO₃-induced CET was partially impaired in thylakoids of the ΔndhCKJ mutant, while L-NaHSO₃-induced LET was not affected. Based on these results, we propose that the photooxidation of L-NaHSO₃ initiated by superoxide anions in PSI regulates NDH pathway to maintain efficient photosynthesis.
Collapse
Affiliation(s)
- Yanxia Wu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, PR China
| | | | | | | | | | | | | |
Collapse
|
15
|
Plöscher M, Reisinger V, Eichacker LA. Proteomic comparison of etioplast and chloroplast protein complexes. J Proteomics 2011; 74:1256-65. [PMID: 21440687 DOI: 10.1016/j.jprot.2011.03.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/01/2011] [Accepted: 03/16/2011] [Indexed: 11/16/2022]
Abstract
Angiosperms grown in darkness develop etioplasts during skotomorphogenesis. It is well known that etioplasts accumulate large quantities of protochlorophyllideoxidoreductase, are devoid of chlorophyll and are the site to assemble the photosynthetic machinery during photomorphogenesis. Proteomic investigation of the membrane protein complexes by Native PAGE, in combination with CyDye labelling and mass spectrometric analysis revealed that etioplasts and chloroplasts share a number of membrane protein complexes characteristic for electron transport, chlorophyll and protein synthesis as well as fatty acid biosynthesis. The complex regulatory function in both developmental states is discussed.
Collapse
|
16
|
Kiirats O, Kramer DM, Edwards GE. Co-regulation of dark and light reactions in three biochemical subtypes of C(4) species. PHOTOSYNTHESIS RESEARCH 2010; 105:89-99. [PMID: 20549356 DOI: 10.1007/s11120-010-9561-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 05/12/2010] [Indexed: 05/23/2023]
Abstract
Regulation of light harvesting in response to changes in light intensity, CO(2) and O(2) concentration was studied in C(4) species representing three different metabolic subtypes: Sorghum bicolor (NADP-malic enzyme), Amaranthus edulis (NAD-malic enzyme), and Panicum texanum (PEP-carboxykinase). Several photosynthetic parameters were measured on the intact leaf level including CO(2) assimilation rates, O(2) evolution, photosystem II activities, thylakoid proton circuit and dissipation of excitation energy. Gross rates of O(2) evolution (J(O)₂'), measured by analysis of chlorophyll fluorescence), net rates of O(2) evolution and CO(2) assimilation responded in parallel to changes in light and CO(2) levels. The C(4) subtypes had similar energy requirements for photosynthesis since there were no significant differences in maximal quantum efficiencies for gross rates of O(2) evolution (average value = 0.072 O(2)/quanta absorbed, approximately 14 quanta per O(2) evolved). At saturating actinic light intensities, when photosynthesis was suppressed by decreasing CO(2), ATP synthase proton conductivity (g (H) (+)) responded strongly to changes in electron flow, decreasing linearly with J(O)₂', which was previously observed in C(3) plants. It is proposed that g (H) (+) is controlled at the substrate level by inorganic phosphate availability. The results suggest development of nonphotochemical quenching in C(4) plants is controlled by a decrease in g (H) (+), which causes an increase in proton motive force by restricting proton efflux from the lumen, rather than by cyclic or pseudocyclic electron flow.
Collapse
Affiliation(s)
- Olavi Kiirats
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | | | | |
Collapse
|
17
|
Wrzaczek M, Brosché M, Salojärvi J, Kangasjärvi S, Idänheimo N, Mersmann S, Robatzek S, Karpiński S, Karpińska B, Kangasjärvi J. Transcriptional regulation of the CRK/DUF26 group of receptor-like protein kinases by ozone and plant hormones in Arabidopsis. BMC PLANT BIOLOGY 2010; 10:95. [PMID: 20500828 PMCID: PMC3095361 DOI: 10.1186/1471-2229-10-95] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 05/25/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plant Receptor-like/Pelle kinases (RLK) are a group of conserved signalling components that regulate developmental programs and responses to biotic and abiotic stresses. One of the largest RLK groups is formed by the Domain of Unknown Function 26 (DUF26) RLKs, also called Cysteine-rich Receptor-like Kinases (CRKs), which have been suggested to play important roles in the regulation of pathogen defence and programmed cell death. Despite the vast number of RLKs present in plants, however, only a few of them have been functionally characterized. RESULTS We examined the transcriptional regulation of all Arabidopsis CRKs by ozone (O3), high light and pathogen/elicitor treatment - conditions known to induce the production of reactive oxygen species (ROS) in various subcellular compartments. Several CRKs were transcriptionally induced by exposure to O3 but not by light stress. O3 induces an extracellular oxidative burst, whilst light stress leads to ROS production in chloroplasts. Analysis of publicly available microarray data revealed that the transcriptional responses of the CRKs to O3 were very similar to responses to microbes or pathogen-associated molecular patterns (PAMPs). Several mutants altered in hormone biosynthesis or signalling showed changes in basal and O3-induced transcriptional responses. CONCLUSIONS Combining expression analysis from multiple treatments with mutants altered in hormone biosynthesis or signalling suggest a model in which O3 and salicylic acid (SA) activate separate signaling pathways that exhibit negative crosstalk. Although O3 is classified as an abiotic stress to plants, transcriptional profiling of CRKs showed strong similarities between the O3 and biotic stress responses.
Collapse
Affiliation(s)
- Michael Wrzaczek
- Plant Biology Division, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Mikael Brosché
- Plant Biology Division, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Jarkko Salojärvi
- Plant Biology Division, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| | | | - Niina Idänheimo
- Plant Biology Division, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Sophia Mersmann
- Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, DE-50829 Cologne, Germany
| | - Silke Robatzek
- Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, DE-50829 Cologne, Germany
- The Sainsbury Laboratories, Norwich Research Park, Colney Lane, NR4 7UH, Norwich, UK
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Plant Biotechnology, Warsaw University of Life Sciences, Nowoursynowska st. 159, PL 02-776, Warsaw, Poland
| | - Barbara Karpińska
- Department of Life Sciences, Södertörn University College, SE-141 89 Huddinge, Sweden
| | - Jaakko Kangasjärvi
- Plant Biology Division, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
18
|
Munekage YN, Eymery F, Rumeau D, Cuiné S, Oguri M, Nakamura N, Yokota A, Genty B, Peltier G. Elevated Expression of PGR5 and NDH-H in Bundle Sheath Chloroplasts in C4Flaveria Species. ACTA ACUST UNITED AC 2010; 51:664-8. [DOI: 10.1093/pcp/pcq030] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Majeran W, van Wijk KJ. Cell-type-specific differentiation of chloroplasts in C4 plants. TRENDS IN PLANT SCIENCE 2009; 14:100-9. [PMID: 19162526 DOI: 10.1016/j.tplants.2008.11.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 11/21/2008] [Accepted: 11/25/2008] [Indexed: 05/10/2023]
Abstract
In leaves of C4 grasses such as maize, photosynthetic activities are partitioned between bundle-sheath and mesophyll cells, leading to increased photosynthetic yield, particularly under stress conditions. As we discuss here, recent comparative chloroplast proteome analyses in maize have shown specific adaptation to C4-cell-specific differentiation of the photosynthetic apparatus, primary and secondary metabolism and metabolite transporters, as well as the chloroplast protein homeostasis machinery. Furthermore, a novel bundle-sheath-enriched 1000-kDa NADPH dehydrogenase 'supercomplex' has been identified, and we discuss its possible role in inorganic carbon concentration. These breakthroughs provide new opportunities to further unravel C4 pathways and to increase crop productivity through metabolic engineering of C4 pathways into C3 plants, such as rice.
Collapse
Affiliation(s)
- Wojciech Majeran
- Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
20
|
Leaf C4 Photosynthesis in silico: The CO2 Concentrating Mechanism. PHOTOSYNTHESIS IN SILICO 2009. [DOI: 10.1007/978-1-4020-9237-4_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
21
|
Majeran W, Zybailov B, Ytterberg AJ, Dunsmore J, Sun Q, van Wijk KJ. Consequences of C4 differentiation for chloroplast membrane proteomes in maize mesophyll and bundle sheath cells. Mol Cell Proteomics 2008; 7:1609-38. [PMID: 18453340 DOI: 10.1074/mcp.m800016-mcp200] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chloroplasts of maize leaves differentiate into specific bundle sheath (BS) and mesophyll (M) types to accommodate C(4) photosynthesis. Chloroplasts contain thylakoid and envelope membranes that contain the photosynthetic machineries and transporters but also proteins involved in e.g. protein homeostasis. These chloroplast membranes must be specialized within each cell type to accommodate C(4) photosynthesis and regulate metabolic fluxes and activities. This quantitative study determined the differentiated state of BS and M chloroplast thylakoid and envelope membrane proteomes and their oligomeric states using innovative gel-based and mass spectrometry-based protein quantifications. This included native gels, iTRAQ, and label-free quantification using an LTQ-Orbitrap. Subunits of Photosystems I and II, the cytochrome b(6)f, and ATP synthase complexes showed average BS/M accumulation ratios of 1.6, 0.45, 1.0, and 1.33, respectively, whereas ratios for the light-harvesting complex I and II families were 1.72 and 0.68, respectively. A 1000-kDa BS-specific NAD(P)H dehydrogenase complex with associated proteins of unknown function containing more than 15 proteins was observed; we speculate that this novel complex possibly functions in inorganic carbon concentration when carboxylation rates by ribulose-bisphosphate carboxylase/oxygenase are lower than decarboxylation rates by malic enzyme. Differential accumulation of thylakoid proteases (Egy and DegP), state transition kinases (STN7,8), and Photosystem I and II assembly factors was observed, suggesting that cell-specific photosynthetic electron transport depends on post-translational regulatory mechanisms. BS/M ratios for inner envelope transporters phosphoenolpyruvate/P(i) translocator, Dit1, Dit2, and Mex1 were determined and reflect metabolic fluxes in carbon metabolism. A wide variety of hundreds of other proteins showed differential BS/M accumulation. Mass spectral information and functional annotations are available through the Plant Proteome Database. These data are integrated with previous data, resulting in a model for C(4) photosynthesis, thereby providing new rationales for metabolic engineering of C(4) pathways and targeted analysis of genetic networks that coordinate C(4) differentiation.
Collapse
Affiliation(s)
- Wojciech Majeran
- Department of Plant Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|