1
|
Jayabharathi J, Karthikeyan B, Vishnu B, Sriram S. Research on engineered electrocatalysts for efficient water splitting: a comprehensive review. Phys Chem Chem Phys 2023; 25:8992-9019. [PMID: 36928479 DOI: 10.1039/d2cp05522h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Water electrolysis plays an interesting role toward hydrogen generation for overcoming global environmental crisis and solving the energy storage problem. However, there is still a deficiency of efficient electrocatalysts to overcome sluggish kinetics for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Great efforts have been employed to produce potential catalysts with low overpotential, rapid kinetics, and excellent stability for HER and OER. At present, hydrogen economy is driven by electrocatalysts with excellent characteristics; thus, systematic design strategy has become the driving force to exploit earth-abundant transition metal-based electrocatalysts toward H2 economy. In this review, the recent progress on newer materials including metals, alloys, and transition metal oxides (manganese oxides, cobalt oxides, nickel oxides, PBA-derived metal oxides, and metal complexes) as photocatalysts/electrocatalysts has been overviewed together with some methodologies for efficient water splitting. Metal-organic framework (MOF)-based electrocatalysts have been highly exploited owing to their interesting functionalities. The photovoltaic-electrocatalytic (PV-EC) process focused on harvesting high solar-to-hydrogen efficiency (STH) among various solar energy conversion as well as storage systems. Electrocatalysts/photocatalysts with high efficiency have become an urgent need for overall water splitting. Also, cutting-edge achievements in the fabrication of electrocatalysts along with theoretical consideration have been discussed.
Collapse
Affiliation(s)
- Jayaraman Jayabharathi
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalainagar, Tamilnadu 608002, India.
| | - Balakrishnan Karthikeyan
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalainagar, Tamilnadu 608002, India.
| | - Bakthavachalam Vishnu
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalainagar, Tamilnadu 608002, India.
| | - Sundarraj Sriram
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalainagar, Tamilnadu 608002, India.
| |
Collapse
|
2
|
Munsif F, Kong X, Khan A, Shah T, Arif M, Jahangir M, Akhtar K, Tang D, Zheng J, Liao X, Faisal S, Ali I, Iqbal A, Ahmad P, Zhou R. Identification of differentially expressed genes and pathways in isonuclear kenaf genotypes under salt stress. PHYSIOLOGIA PLANTARUM 2021; 173:1295-1308. [PMID: 33135207 DOI: 10.1111/ppl.13253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/27/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Salinity is a potential abiotic stress and globally threatens crop productivity. However, the molecular mechanisms underlying salt stress tolerance with respect to cytoplasmic effect, gene expression, and metabolism pathway under salt stress have not yet been reported in isonuclear kenaf genotypes. To fill this knowledge gap, growth, physiological, biochemical, transcriptome, and cytoplasm changes in kenaf cytoplasmic male sterile (CMS) line (P3A) and its iso-nuclear maintainer line (P3B) under 200 mM sodium chloride (NaCl) stress and control conditions were analyzed. Salt stress significantly reduced leaf soluble protein, soluble sugars, proline, chlorophyll content, antioxidant enzymatic activity, and induced oxidative damage in terms of higher MDA contents in both genotypes. The reduction of these parameters resulted in a reduced plant growth compared with control. However, P3A was relatively more tolerant to salt stress than P3B. This tolerance of P3A was further confirmed by improved physio-biochemical traits under salt stress conditions. Transcriptome analysis showed that 4256 differentially expressed genes (DEGs) between the two genotypes under salt stress were identified. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that photosynthesis, photosynthesis antenna-protein, and plant hormone signal transduction pathways might be associated with the improved NaCl stress tolerance in P3A. Conclusively, P3A cytoplasmic male sterile could be a potential salt-tolerant material for future breeding program of kenaf and can be used for phytoremediation of salt-affected soils. These data provide a valuable resource on the cytoplasmic effect of salt-responsive genes in kenaf and salt stress tolerance in kenaf.
Collapse
Affiliation(s)
- Fazal Munsif
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, 530005, China
- Department of Agronomy, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, 25000, Pakistan
| | - Xiangjun Kong
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, 530005, China
| | - Aziz Khan
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, 530005, China
| | - Tariq Shah
- Department of Agronomy, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, 25000, Pakistan
| | - Muhammad Arif
- Department of Agronomy, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, 25000, Pakistan
| | - Muhammad Jahangir
- Department of Horticulture, The University of Agriculture Peshawar, Peshawar, 25000, Pakistan
| | - Kashif Akhtar
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Danfeng Tang
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, 530005, China
| | - Jie Zheng
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, 530005, China
| | - Xiaofang Liao
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, 530005, China
| | - Shah Faisal
- College of Agronomy Northwest Agriculture and Forestry University, Yangling, 71200, China
| | - Izhar Ali
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, 530005, China
| | - Anas Iqbal
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, 530005, China
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saudi University, Riyadh, 11362, Saudi Arabia
- Department of Botany, S.P. College, Jammu and Kashmir, 190006, India
| | - Ruiyang Zhou
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, 530005, China
| |
Collapse
|
3
|
Conlan B, Messinger J. Thomas John Wydrzynski (8 July 1947-16 March 2018). PHOTOSYNTHESIS RESEARCH 2019; 140:253-261. [PMID: 30478710 PMCID: PMC6509086 DOI: 10.1007/s11120-018-0606-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
With this Tribute, we remember and honor Thomas John (Tom) Wydrzynski. Tom was a highly innovative, independent and committed researcher, who had, early in his career, defined his life-long research goal. He was committed to understand how Photosystem II produces molecular oxygen from water, using the energy of sunlight, and to apply this knowledge towards making artificial systems. In this tribute, we summarize his research journey, which involved working on 'soft money' in several laboratories around the world for many years, as well as his research achievements. We also reflect upon his approach to life, science and student supervision, as we perceive it. Tom was not only a thoughtful scientist that inspired many to enter this field of research, but also a wonderful supervisor and friend, who is deeply missed (see footnote*).
Collapse
Affiliation(s)
- Brendon Conlan
- Research School of Biological Sciences, Australian Capital Territory, Australian National University, Acton, ACT, 0200, Australia
| | - Johannes Messinger
- Department of Chemistry - Ångström, Uppsala University, Lägerhyddsvägen 1, 75120, Uppsala, Sweden.
- Department of Chemistry, Umeå University, Linnaeus väg 6, 90187, Umeå, Sweden.
| |
Collapse
|
4
|
Dudhate A, Shinde H, Tsugama D, Liu S, Takano T. Transcriptomic analysis reveals the differentially expressed genes and pathways involved in drought tolerance in pearl millet [Pennisetum glaucum (L.) R. Br]. PLoS One 2018; 13:e0195908. [PMID: 29652907 PMCID: PMC5898751 DOI: 10.1371/journal.pone.0195908] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/02/2018] [Indexed: 12/17/2022] Open
Abstract
Pearl millet is a cereal crop known for its high tolerance to drought, heat and salinity stresses as well as for its nutritional quality. The molecular mechanism of drought tolerance in pearl millet is unknown. Here we attempted to unravel the molecular basis of drought tolerance in two pearl millet inbred lines, ICMB 843 and ICMB 863 using RNA sequencing. Under greenhouse condition, ICMB 843 was found to be more tolerant to drought than ICMB 863. We sequenced the root transcriptome from both lines under control and drought conditions using an Illumina Hi-Seq platform, generating 139.1 million reads. Mapping of sequenced reads against the foxtail millet genome, which has been relatively well-annotated, led to the identification of several differentially expressed genes under drought stress. Total of 6799 and 1253 differentially expressed genes were found in ICMB 843 and ICMB 863, respectively. Pathway and gene function analysis by KEGG online tool revealed that the drought response in pearl millet is mainly regulated by pathways related to photosynthesis, plant hormone signal transduction and mitogen-activated protein kinase signaling. The changes in expression of drought-responsive genes determined by RNA sequencing were confirmed by reverse-transcription PCR for 7 genes. These results are a first step to understanding the molecular mechanisms of drought tolerance in pearl millet and lay a foundation for its genetic improvement.
Collapse
Affiliation(s)
- Ambika Dudhate
- Asian Natural Environmental Science Center (ANESC), the University of Tokyo, Nishitokyo-shi, Tokyo, Japan
| | - Harshraj Shinde
- Asian Natural Environmental Science Center (ANESC), the University of Tokyo, Nishitokyo-shi, Tokyo, Japan
| | | | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A and F University, Lin’an, Hangzhou, China
| | - Tetsuo Takano
- Asian Natural Environmental Science Center (ANESC), the University of Tokyo, Nishitokyo-shi, Tokyo, Japan
| |
Collapse
|
5
|
Liu K, Zhang H, Xing R, Zou Q, Yan X. Biomimetic Oxygen-Evolving Photobacteria Based on Amino Acid and Porphyrin Hierarchical Self-Organization. ACS NANO 2017; 11:12840-12848. [PMID: 29195044 DOI: 10.1021/acsnano.7b08215] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Biomimetic organization provides a promising strategy to develop functional materials and understand biological processes. However, how to mimic complex biological systems using simple biomolecular units remains a great challenge. Herein, we design and fabricate a biomimetic cyanobacteria model based on self-integration of small bioinspired molecules, including amphiphilic amino acid, 3,4-dihydroxyphenylalanine (DOPA), and metalloporphyrin and cobalt oxide nanoparticles (Co3O4 NPs), with the assistance of chemical conjugation and molecular self-assembly. The assembled amino acid fiber can be modified by DOPA to form covalently bound DOPA melanin containing hydroxyl and quinone species via Schiff base reaction. The adhering template can further tune the self-assembly of metalloporphyrin and Co3O4 NPs into J-aggregation and dispersive distribution, respectively, mainly via coordination binding. Metalloporphyrin molecules in the resulting hybrid fibers capture light; quinone species accept the excited electrons, and Co3O4 NPs catalyze water oxidation. Thus, the essential components of the photosystem-II protein complex in cyanobacteria are simplified and engineered into a simple framework, still retaining a similar photosynthetic mechanism. In addition, this architecture leads to efficient coupling of antenna, quinone-type reaction center, and photocatalyst, which increases the flux of light energy from antenna to reaction center for charge separation, resulting in enhanced oxygen evolution rate with excellent sustainability.
Collapse
Affiliation(s)
- Kai Liu
- University of Chinese Academy of Sciences , 100190 Beijing, China
| | | | | | | | - Xuehai Yan
- University of Chinese Academy of Sciences , 100190 Beijing, China
| |
Collapse
|
6
|
Olson TL, Espiritu E, Edwardraja S, Canarie E, Flores M, Williams JC, Ghirlanda G, Allen JP. Biochemical and spectroscopic characterization of dinuclear Mn-sites in artificial four-helix bundle proteins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2017; 1858:945-954. [PMID: 28882760 DOI: 10.1016/j.bbabio.2017.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/28/2017] [Accepted: 08/31/2017] [Indexed: 01/18/2023]
Abstract
To better understand metalloproteins with Mn-clusters, we have designed artificial four-helix bundles to have one, two, or three dinuclear metal centers able to bind Mn(II). Circular dichroism measurements showed that the Mn-proteins have substantial α-helix content, and analysis of electron paramagnetic resonance spectra is consistent with the designed number of bound Mn-clusters. The Mn-proteins were shown to catalyze the conversion of hydrogen peroxide into molecular oxygen. The loss of hydrogen peroxide was dependent upon the concentration of protein with bound Mn, with the proteins containing multiple Mn-clusters showing greater activity. Using an oxygen sensor, the oxygen concentration was found to increase with a rate up to 0.4μM/min, which was dependent upon the concentrations of hydrogen peroxide and the Mn-protein. In addition, the Mn-proteins were shown to serve as electron donors to bacterial reaction centers using optical spectroscopy. Similar binding of the Mn-proteins to reaction centers was observed with an average dissociation constant of 2.3μM. The Mn-proteins with three metal centers were more effective at this electron transfer reaction than the Mn-proteins with one or two metal centers. Thus, multiple Mn-clusters can be incorporated into four-helix bundles with the capability of performing catalysis and electron transfer to a natural protein.
Collapse
Affiliation(s)
- Tien L Olson
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Eduardo Espiritu
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | | | - Elizabeth Canarie
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Marco Flores
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - JoAnn C Williams
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Giovanna Ghirlanda
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - James P Allen
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA.
| |
Collapse
|
7
|
Olson TL, Espiritu E, Edwardraja S, Simmons CR, Williams JC, Ghirlanda G, Allen JP. Design of dinuclear manganese cofactors for bacterial reaction centers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:539-547. [PMID: 26392146 DOI: 10.1016/j.bbabio.2015.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/14/2015] [Indexed: 12/28/2022]
Abstract
A compelling target for the design of electron transfer proteins with novel cofactors is to create a model for the oxygen-evolving complex, a Mn4Ca cluster, of photosystem II. A mononuclear Mn cofactor can be added to the bacterial reaction center, but the addition of multiple metal centers is constrained by the native protein architecture. Alternatively, metal centers can be incorporated into artificial proteins. Designs for the addition of dinuclear metal centers to four-helix bundles resulted in three artificial proteins with ligands for one, two, or three dinuclear metal centers able to bind Mn. The three-dimensional structure determined by X-ray crystallography of one of the Mn-proteins confirmed the design features and revealed details concerning coordination of the Mn center. Electron transfer between these artificial Mn-proteins and bacterial reaction centers was investigated using optical spectroscopy. After formation of a light-induced, charge-separated state, the experiments showed that the Mn-proteins can donate an electron to the oxidized bacteriochlorophyll dimer of modified reaction centers, with the Mn-proteins having additional metal centers being more effective at this electron transfer reaction. Modeling of the structure of the Mn-protein docked to the reaction center showed that the artificial protein likely binds on the periplasmic surface similarly to cytochrome c2, the natural secondary donor. Combining reaction centers with exogenous artificial proteins provides the opportunity to create ligands and investigate the influence of inhomogeneous protein environments on multinuclear redox-active metal centers. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.
Collapse
Affiliation(s)
- Tien L Olson
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Eduardo Espiritu
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | | | - Chad R Simmons
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - JoAnn C Williams
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Giovanna Ghirlanda
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - James P Allen
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA.
| |
Collapse
|
8
|
Najafpour MM, Moghaddam AN, Allakhverdiev SI, Govindjee. Biological water oxidation: lessons from nature. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1110-21. [PMID: 22507946 DOI: 10.1016/j.bbabio.2012.04.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 04/02/2012] [Accepted: 04/04/2012] [Indexed: 01/03/2023]
Abstract
Hydrogen production by water splitting may be an appealing solution for future energy needs. To evolve hydrogen efficiently in a sustainable manner, it is necessary first to synthesize what we may call a 'super catalyst' for water oxidation, which is the more challenging half reaction of water splitting. An efficient system for water oxidation exists in the water oxidizing complex in cyanobacteria, algae and plants; further, recently published data on the Manganese-calcium cluster have provided details on the mechanism and structure of the water oxidizing complex. Here, we have briefly reviewed the characteristics of the natural system from the standpoint of what we could learn from it to produce an efficient artificial system. In short, to design an efficient water oxidizing complex for artificial photosynthesis, we must learn and use wisely the knowledge about water oxidation and the water oxidizing complex in the natural system. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
|
9
|
Najafpour MM, Moghaddam AN. Nano-sized manganese oxide: a proposed catalyst for water oxidation in the reaction of some manganese complexes and cerium(iv) ammonium nitrate. Dalton Trans 2012; 41:10292-7. [DOI: 10.1039/c2dt30965c] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Abstract
This paper presents an overview of the prospects for bio-solar energy conversion. The Global Artificial Photosynthesis meeting at Lord Howe Island (14–18 August 2011) underscored the dependence that the world has placed on non-renewable energy supplies, particularly for transport fuels, and highlighted the potential of solar energy. Biology has used solar energy for free energy gain to drive chemical reactions for billions of years. The principal conduits for energy conversion on earth are photosynthetic reaction centres – but can they be harnessed, copied and emulated? In this communication, we initially discuss algal-based biofuels before investigating bio-inspired solar energy conversion in artificial and engineered systems. We show that the basic design and engineering principles for assembling photocatalytic proteins can be used to assemble nanocatalysts for solar fuel production.
Collapse
|
11
|
Najafpour MM. Calcium-manganese oxides as structural and functional models for active site in oxygen evolving complex in photosystem II: Lessons from simple models. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:111-7. [DOI: 10.1016/j.jphotobiol.2010.12.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/10/2010] [Accepted: 12/13/2010] [Indexed: 01/12/2023]
|
12
|
Williamson A, Conlan B, Hillier W, Wydrzynski T. The evolution of Photosystem II: insights into the past and future. PHOTOSYNTHESIS RESEARCH 2011; 107:71-86. [PMID: 20512415 DOI: 10.1007/s11120-010-9559-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 05/07/2010] [Indexed: 05/29/2023]
Abstract
This article attempts to address the molecular origin of Photosystem II (PSII), the central component in oxygenic photosynthesis. It discusses the possible evolution of the relevant cofactors needed for splitting water into molecular O2 with respect to the following functional domains in PSII: the reaction center (RC), the oxygen evolving complex (OEC), and the manganese stabilizing protein (MSP). Possible ancestral sources of the relevant cofactors are considered, as are scenarios of how these components may have been brought together to produce the intermediate steps in the evolution of PSII. Most importantly, the driving forces that maintained these intermediates for continued adaptation are considered. We then apply our understanding of the evolution of PSII to the bioengineering of a water oxidizing catalyst for utilization of solar energy.
Collapse
Affiliation(s)
- Adele Williamson
- Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT, 0200, Australia
| | | | | | | |
Collapse
|
13
|
Najafpour MM, Govindjee. Oxygen evolving complex in Photosystem II: Better than excellent. Dalton Trans 2011; 40:9076-84. [DOI: 10.1039/c1dt10746a] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Conlan B, Cox N, Su JH, Hillier W, Messinger J, Lubitz W, Dutton PL, Wydrzynski T. Photo-catalytic oxidation of a di-nuclear manganese centre in an engineered bacterioferritin ‘reaction centre’. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1112-21. [DOI: 10.1016/j.bbabio.2009.04.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 04/16/2009] [Accepted: 04/21/2009] [Indexed: 11/15/2022]
|
15
|
Johnson ET, Schmidt-Dannert C. Light-energy conversion in engineered microorganisms. Trends Biotechnol 2008; 26:682-9. [PMID: 18951642 DOI: 10.1016/j.tibtech.2008.09.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 09/05/2008] [Accepted: 09/11/2008] [Indexed: 11/19/2022]
Abstract
Increasing interest in renewable resources by the energy and chemical industries has spurred new technologies both to capture solar energy and to develop biologically derived chemical feedstocks and fuels. Advances in molecular biology and metabolic engineering have provided new insights and techniques for increasing biomass and biohydrogen production, and recent efforts in synthetic biology have demonstrated that complex regulatory and metabolic networks can be designed and engineered in microorganisms. Here, we explore how light-driven processes may be incorporated into nonphotosynthetic microbes to boost metabolic capacity for the production of industrial and fine chemicals. Progress towards the introduction of light-driven proton pumping or anoxygenic photosynthesis into Escherichia coli to increase the efficiency of metabolically-engineered biosynthetic pathways is highlighted.
Collapse
Affiliation(s)
- Ethan T Johnson
- Department of Biochemistry, Molecular Biology and Biophysics, 1479 Gortner Avenue, 140 Gortner Laboratory, University of Minnesota, St. Paul, MN 55108, USA
| | | |
Collapse
|
16
|
Razeghifard R. Artificial photoactive proteins. PHOTOSYNTHESIS RESEARCH 2008; 98:677-685. [PMID: 18830805 DOI: 10.1007/s11120-008-9367-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2008] [Accepted: 09/09/2008] [Indexed: 05/26/2023]
Abstract
Solar power is the most abundant source of renewable energy. In this respect, the goal of making photoactive proteins is to utilize this energy to generate an electron flow. Photosystems have provided the blueprint for making such systems, since they are capable of converting the energy of light into an electron flow using a series of redox cofactors. Protein tunes the redox potential of the cofactors and arranges them such that their distance and orientation are optimal for the creation of a stable charge separation. The aim of this review is to present an overview of the literature with regard to some elegant functional structures that protein designers have created by introducing cofactors and photoactivity into synthetic proteins.
Collapse
Affiliation(s)
- Reza Razeghifard
- Division of Math, Science, and Technology, Farquhar College of Arts & Science, Nova Southeastern University, Fort Lauderdale, FL 33314, USA.
| |
Collapse
|
17
|
Williamson AK. Structural and functional aspects of the MSP (PsbO) and study of its differences in thermophilic versus mesophilic organisms. PHOTOSYNTHESIS RESEARCH 2008; 98:365-89. [PMID: 18780158 DOI: 10.1007/s11120-008-9353-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 08/06/2008] [Indexed: 05/16/2023]
Abstract
The Manganese Stabilizing Protein (MSP) of Photosystem II (PSII) is a so-called extrinsic subunit, which reversibly associates with the other membrane-bound PSII subunits. The MSP is essential for maximum rates of O(2) production under physiological conditions as stabilizes the catalytic [Mn(4)Ca] cluster, which is the site of water oxidation. The function of the MSP subunit in the PSII complex has been extensively studied in higher plants, and the structure of non-PSII associated MSP has been studied by low-resolution biophysical techniques. Recently, crystal structures of PSII from the thermophilic cyanobacterium Thermosynechococcus elongatus have resolved the MSP subunit in its PSII-associated state. However, neither any crystal structure is available yet for MSP from mesophilic organisms, higher plants or algae nor has the non-PSII associated form of MSP been crystallized. This article reviews the current understanding of the structure, dynamics, and function of MSP, with a particular focus on properties of the MSP from T. elongatus that may be attributable to the thermophilic ecology of this organism rather than being general features of MSP.
Collapse
Affiliation(s)
- Adele K Williamson
- Research School of Biological Sciences, the Australian National University, Canberra 0200, Australia.
| |
Collapse
|
18
|
Conlan B. Designing photosystem II: molecular engineering of photo-catalytic proteins. PHOTOSYNTHESIS RESEARCH 2008; 98:687-700. [PMID: 18777102 DOI: 10.1007/s11120-008-9355-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 08/11/2008] [Indexed: 05/26/2023]
Abstract
Biological photosynthesis utilizes membrane-bound pigment/protein complexes to convert light into chemical energy through a series of electron-transfer events. In the unique photosystem II (PSII) complex these electron-transfer events result in the oxidation of water to molecular oxygen. PSII is an extremely complex enzyme and in order to exploit its unique ability to convert sunlight into chemical energy it will be necessary to make a minimal model. Here we will briefly describe how PSII functions and identify those aspects that are essential in order to catalyze the oxidation of water into O(2), and review previous attempts to design simple photo-catalytic proteins and summarize our current research exploiting the E. coli bacterioferritin protein as a scaffold into which multiple cofactors can be bound, to oxidize a manganese metal center upon illumination. Through the reverse engineering of PSII and light driven water splitting reactions it may be possible to provide a blueprint for catalysts that can produce clean green fuel for human energy needs.
Collapse
Affiliation(s)
- Brendon Conlan
- Research School of Biological Science, Australian National University, Canberra, ACT 0200, Australia.
| |
Collapse
|
19
|
Wydrzynski TJ. Water splitting by Photosystem II--where do we go from here? PHOTOSYNTHESIS RESEARCH 2008; 98:43-51. [PMID: 19037741 DOI: 10.1007/s11120-008-9391-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 11/10/2008] [Indexed: 05/27/2023]
Abstract
As this special issue shows, we know quite a lot about the workings of Photosystem II and the oxidation of water to molecular O(2). However, there are still many questions and details that remain to be answered. In this article, I very briefly outline some aspects of Photosystem II electron transport that are crucial for the efficient oxidation of water and require further studies. To fully understand Photosystem II reactions is not only a satisfying intellectual pursuit, but is also an important goal as we develop new solar technologies for the splitting of water into pure O(2) and H(2) for use as a potential fuel source. "As Students of the Past, We Send Greetings to the Students of the Future".
Collapse
Affiliation(s)
- Thomas J Wydrzynski
- School of Biology, College of Medicine, Biology and Environment, Australian National University, Canberrra, ACT 0200, Australia.
| |
Collapse
|
20
|
Govindjee. Recollections of Thomas John Wydrzynski. PHOTOSYNTHESIS RESEARCH 2008; 98:13-31. [PMID: 18770010 DOI: 10.1007/s11120-008-9341-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 07/23/2008] [Indexed: 05/26/2023]
Abstract
In appreciation of his contribution to the Photosystsem II research and commemoration of the book Photosystem II: The Light-Driven Water-Plastoquinone Oxido-Reductase, co-edited with Kimiyuki Satoh, I present here some of my recollections of Thomas John Wydrzynski and by several others with whom he has associated over the years at Urbana (Illinois), Berkeley (California), Standard Oil Company-Indiana (Illinois), Berlin (Germany), Gothenburg (Sweden), and Canberra (Australia). We not only recognize him for his unique career path in Photosystem II research, but also for his qualities as a collaborative scientist working on the only system on Earth that has the ability to oxidize water to molecular oxygen using the energy of sunlight.
Collapse
|