1
|
Sun X, LaVoie M, Lefebvre PA, Gallaher SD, Glaesener AG, Strenkert D, Mehta R, Merchant SS, Silflow CD. Mutation of negative regulatory gene CEHC1 encoding an FBXO3 protein results in normoxic expression of HYDA genes in Chlamydomonas reinhardtii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586359. [PMID: 38586028 PMCID: PMC10996464 DOI: 10.1101/2024.03.22.586359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Oxygen is known to prevent hydrogen production in Chlamydomonas, both by inhibiting the hydrogenase enzyme and by preventing the accumulation of HYDA-encoding transcripts. We developed a screen for mutants showing constitutive accumulation of HYDA1 transcripts in the presence of oxygen. A reporter gene required for ciliary motility, placed under the control of the HYDA1 promoter, conferred motility only in hypoxic conditions. By selecting for mutants able to swim even in the presence of oxygen we obtained strains that express the reporter gene constitutively. One mutant identified a gene encoding an F-box only protein 3 (FBXO3), known to participate in ubiquitylation and proteasomal degradation pathways in other eukaryotes. Transcriptome profiles revealed that the mutation, termed cehc1-1 , leads to constitutive expression of HYDA1 and other genes regulated by hypoxia, and of many genes known to be targets of CRR1, a transcription factor in the nutritional copper signaling pathway. CRR1 was required for the constitutive expression of the HYDA1 reporter gene in cehc1-1 mutants. The CRR1 protein, which is normally degraded in Cu-supplemented cells, was stabilized in cehc1-1 cells, supporting the conclusion that CEHC1 acts to facilitate the degradation of CRR1. Our results reveal a novel negative regulator in the CRR1 pathway and possibly other pathways leading to complex metabolic changes associated with response to hypoxia.
Collapse
|
2
|
Alavi G, Engelbrecht V, Hemschemeier A, Happe T. The Alga Uronema belkae Has Two Structural Types of [FeFe]-Hydrogenases with Different Biochemical Properties. Int J Mol Sci 2023; 24:17311. [PMID: 38139142 PMCID: PMC10744039 DOI: 10.3390/ijms242417311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Several species of microalgae can convert light energy into molecular hydrogen (H2) by employing enzymes of early phylogenetic origin, [FeFe]-hydrogenases, coupled to the photosynthetic electron transport chain. Bacterial [FeFe]-hydrogenases consist of a conserved domain that harbors the active site cofactor, the H-domain, and an additional domain that binds electron-conducting FeS clusters, the F-domain. In contrast, most algal hydrogenases characterized so far have a structurally reduced, so-termed M1-type architecture, which consists only of the H-domain that interacts directly with photosynthetic ferredoxin PetF as an electron donor. To date, only a few algal species are known to contain bacterial-type [FeFe]-hydrogenases, and no M1-type enzymes have been identified in these species. Here, we show that the chlorophycean alga Uronema belkae possesses both bacterial-type and algal-type [FeFe]-hydrogenases. Both hydrogenase genes are transcribed, and the cells produce H2 under hypoxic conditions. The biochemical analyses show that the two enzymes show features typical for each of the two [FeFe]-hydrogenase types. Most notable in the physiological context is that the bacterial-type hydrogenase does not interact with PetF proteins, suggesting that the two enzymes are integrated differently into the alga's metabolism.
Collapse
Affiliation(s)
| | | | - Anja Hemschemeier
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr University Bochum, 44801 Bochum, Germany; (G.A.); (V.E.)
| | - Thomas Happe
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr University Bochum, 44801 Bochum, Germany; (G.A.); (V.E.)
| |
Collapse
|
3
|
Ubando AT, Chen WH, Hurt DA, Conversion A, Rajendran S, Lin SL. Biohydrogen in a circular bioeconomy: A critical review. BIORESOURCE TECHNOLOGY 2022; 366:128168. [PMID: 36283666 DOI: 10.1016/j.biortech.2022.128168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Hydrogen produced from biomass feedstocks is considered an effective solution in moving toward a decarbonized economy. Biohydrogen is a clean energy source that has gained global attention for adoption as it promises to mitigate climate change and human environmental damage. Through the circular economy framework, sustainable biohydrogen production with other bioproducts while addressing issues such as waste management is possible. This study presents a comprehensive review of the various biomass feedstocks and processing technologies associated with biohydrogen generation, as well as the possible integration of existing industries into a circular bioeconomy framework. The currently standing challenges and future perspectives are also discussed.
Collapse
Affiliation(s)
- Aristotle T Ubando
- Department of Mechanical Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Thermomechanical Laboratory, De La Salle University, Laguna Campus, LTI Spine Road, Laguna Blvd, Biñan, Laguna 4024, Philippines; Center for Engineering and Sustainable Development Research, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung, 411, Taiwan.
| | - Dennis A Hurt
- Department of Mechanical Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Ariel Conversion
- Department of Mechanical Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Thermomechanical Laboratory, De La Salle University, Laguna Campus, LTI Spine Road, Laguna Blvd, Biñan, Laguna 4024, Philippines
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile
| | - Sheng-Lun Lin
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
4
|
Liu P, Ye DM, Chen M, Zhang J, Huang XH, Shen LL, Xia KK, Xu XJ, Xu YC, Guo YL, Wang YC, Huang F. Scaling-up and proteomic analysis reveals photosynthetic and metabolic insights toward prolonged H 2 photoproduction in Chlamydomonas hpm91 mutant lacking proton gradient regulation 5 (PGR5). PHOTOSYNTHESIS RESEARCH 2022; 154:397-411. [PMID: 35974136 PMCID: PMC9722884 DOI: 10.1007/s11120-022-00945-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Clean and sustainable H2 production is crucial to a carbon-neutral world. H2 generation by Chlamydomonas reinhardtii is an attractive approach for solar-H2 from H2O. However, it is currently not large-scalable because of lacking desirable strains with both optimal H2 productivity and sufficient knowledge of underlying molecular mechanism. We hereby carried out extensive and in-depth investigations of H2 photoproduction of hpm91 mutant lacking PGR5 (Proton Gradient Regulation 5) toward its up-scaling and fundamental mechanism issues. We show that hpm91 is at least 100-fold scalable (up to 10 L) with continuous H2 collection of 7287 ml H2/10L-HPBR in averagely 26 days under sulfur deprivation. Also, we show that hpm91 is robust and active during sustained H2 photoproduction, most likely due to decreased intracellular ROS relative to wild type. Moreover, we obtained quantitative proteomic profiles of wild type and hpm91 at four representing time points of H2 evolution, leading to 2229 and 1350 differentially expressed proteins, respectively. Compared to wild type, major proteome alterations of hpm91 include not only core subunits of photosystems and those related to anti-oxidative responses but also essential proteins in photosynthetic antenna, C/N metabolic balance, and sulfur assimilation toward both cysteine biosynthesis and sulfation of metabolites during sulfur-deprived H2 production. These results reveal not only new insights of cellular and molecular basis of enhanced H2 production in hpm91 but also provide additional candidate gene targets and modules for further genetic modifications and/or in artificial photosynthesis mimics toward basic and applied research aiming at advancing solar-H2 technology.
Collapse
Affiliation(s)
- Peng Liu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - De-Min Ye
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mei Chen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jin Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xia-He Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li-Li Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ke-Ke Xia
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Xiao-Jing Xu
- BGI-Shenzhen, Shenzhen, 518083, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong-Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Ying-Chun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Fang Huang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
5
|
Tasnim Sahrin N, Shiong Khoo K, Wei Lim J, Shamsuddin R, Musa Ardo F, Rawindran H, Hassan M, Kiatkittipong W, Alaaeldin Abdelfattah E, Da Oh W, Kui Cheng C. Current perspectives, future challenges and key technologies of biohydrogen production for building a carbon-neutral future: A review. BIORESOURCE TECHNOLOGY 2022; 364:128088. [PMID: 36216282 DOI: 10.1016/j.biortech.2022.128088] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The ever-increasing quantity of greenhouse gases in the atmosphere can be attributed to the rapid increase in the world population as well as the expansion of globalization. Hence, achieving carbon neutrality by 2050 stands as a challenging task to accomplish. Global industrialization had necessitated the need to enhance the current production systems to reduce greenhouse gases emission, whilst promoting the capture of carbon dioxide from atmosphere. Hydrogen is often touted as the fuel of future via substituting fossil-based fuels. In this regard, renewable hydrogen happens to be a niche sector of novel technologies in achieving carbon neutrality. Microalgae-based biohydrogen technologies could be a sustainable and economical approach to produce hydrogen from a renewable source, while simultaneously promoting the absorption of carbon dioxide. This review highlights the current perspectives of biohydrogen production as an alternate source of energy. In addition, future challenges associated with biohydrogen production at large-scale application, storage and transportation are included. Key technologies in producing biohydrogen are finally described in building a carbon-neutral future.
Collapse
Affiliation(s)
- Nurul Tasnim Sahrin
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| | - Rashid Shamsuddin
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Fatima Musa Ardo
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Hemamalini Rawindran
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Muzamil Hassan
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Worapon Kiatkittipong
- Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Eman Alaaeldin Abdelfattah
- Lecturer of Biochemistry and Molecular Science, Entomology Department, Faculty of Science, Cairo University, Egypt
| | - Wen Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia
| | - Chin Kui Cheng
- Center for Catalysis and Separation (CeCaS), Department of Chemical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
6
|
Jiang Q, Chen H, Fu Z, Fu X, Wang J, Liang Y, Yin H, Yang J, Jiang J, Yang X, Wang H, Liu Z, Su R. Current Progress, Challenges and Perspectives in the Microalgal-Bacterial Aerobic Granular Sludge Process: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13950. [PMID: 36360829 PMCID: PMC9655209 DOI: 10.3390/ijerph192113950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Traditional wastewater treatment technologies have become increasingly inefficient to meet the needs of low-consumption and sustainable wastewater treatment. Researchers are committed to seeking new wastewater treatment technologies, to reduce the pressure on the environment caused by resource shortages. Recently, a microalgal-bacterial granular sludge (MBGS) technology has attracted widespread attention due to its high efficiency wastewater treatment capacity, low energy consumption, low CO2 emissions, potentially high added values, and resource recovery capabilities. This review focused primarily on the following aspects of microalgal-bacterial granular sludge technology: (1) MBGS culture and maintenance operating parameters, (2) MBGS application in different wastewaters, (3) MBGS additional products: biofuels and bioproducts, (4) MBGS energy saving and consumption reduction: greenhouse gas emission reduction, and (5) challenges and prospects. The information in this review will help us better understand the current progress and future direction of the MBGS technology development. It is expected that this review will provide a sound theoretical basis for the practical applications of a MBGS technology in environmentally sustainable wastewater treatment, resource recovery, and system optimization.
Collapse
Affiliation(s)
- Qianrong Jiang
- Ecological Environment Management and Assessment Center, Central South University of Forestry and Technology, Changsha 410004, China
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Honglei Chen
- Ecological Environment Management and Assessment Center, Central South University of Forestry and Technology, Changsha 410004, China
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zeding Fu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Xiaohua Fu
- Ecological Environment Management and Assessment Center, Central South University of Forestry and Technology, Changsha 410004, China
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jiacheng Wang
- Ecological Environment Management and Assessment Center, Central South University of Forestry and Technology, Changsha 410004, China
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yingqi Liang
- Ecological Environment Management and Assessment Center, Central South University of Forestry and Technology, Changsha 410004, China
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hailong Yin
- Ecological Environment Management and Assessment Center, Central South University of Forestry and Technology, Changsha 410004, China
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Junbo Yang
- Ecological Environment Management and Assessment Center, Central South University of Forestry and Technology, Changsha 410004, China
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jie Jiang
- Ecological Environment Management and Assessment Center, Central South University of Forestry and Technology, Changsha 410004, China
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xinxin Yang
- Ecological Environment Management and Assessment Center, Central South University of Forestry and Technology, Changsha 410004, China
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - He Wang
- Ecological Environment Management and Assessment Center, Central South University of Forestry and Technology, Changsha 410004, China
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhiming Liu
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA
| | - Rongkui Su
- Ecological Environment Management and Assessment Center, Central South University of Forestry and Technology, Changsha 410004, China
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
7
|
Calijuri ML, Silva TA, Magalhães IB, Pereira ASADP, Marangon BB, Assis LRD, Lorentz JF. Bioproducts from microalgae biomass: Technology, sustainability, challenges and opportunities. CHEMOSPHERE 2022; 305:135508. [PMID: 35777544 DOI: 10.1016/j.chemosphere.2022.135508] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Microalgae are a potential feedstock for several bioproducts, mainly from its primary and secondary metabolites. Lipids can be converted in high-value polyunsaturated fatty acids (PUFA) such as omega-3, carbohydrates are potential biohydrogen (bioH2) sources, proteins can be converted into biopolymers (such as bioplastics) and pigments can achieve high concentrations of valuable carotenoids. This work comprehends the current practices for the production of such products from microalgae biomass, with insights on technical performance, environmental and economical sustainability. For each bioproduct, discussion includes insights on bioprocesses, productivity, commercialization, environmental impacts and major challenges. Opportunities for future research, such as wastewater cultivation, arise as environmentally attractive alternatives for sustainable production with high potential for resource recovery and valorization. Still, microalgae biotechnology stands out as an attractive topic for it research and market potential.
Collapse
Affiliation(s)
- Maria Lúcia Calijuri
- Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Department of Civil Engineering, Advanced Environmental Research Group - NPA, Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - Thiago Abrantes Silva
- Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Department of Civil Engineering, Advanced Environmental Research Group - NPA, Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Iara Barbosa Magalhães
- Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Department of Civil Engineering, Advanced Environmental Research Group - NPA, Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - Alexia Saleme Aona de Paula Pereira
- Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Department of Civil Engineering, Advanced Environmental Research Group - NPA, Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Bianca Barros Marangon
- Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Department of Civil Engineering, Advanced Environmental Research Group - NPA, Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Letícia Rodrigues de Assis
- Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Department of Civil Engineering, Advanced Environmental Research Group - NPA, Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Juliana Ferreira Lorentz
- Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Department of Civil Engineering, Advanced Environmental Research Group - NPA, Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| |
Collapse
|
8
|
Catalytic systems mimicking the [FeFe]-hydrogenase active site for visible-light-driven hydrogen production. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214172] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Yu Q, He J, Zhao Q, Wang X, Zhi Y, Li X, Li X, Li L, Ge B. Regulation of nitrogen source for enhanced photobiological H2 production by co-culture of Chlamydomonas reinhardtii and Mesorhizobium sangaii. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Autenrieth C, Shaw S, Ghosh R. New Approach for the Construction and Calibration of Gas-Tight Setups for Biohydrogen Production at the Small Laboratory Scale. Metabolites 2021; 11:metabo11100667. [PMID: 34677382 PMCID: PMC8541310 DOI: 10.3390/metabo11100667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 11/25/2022] Open
Abstract
Biohydrogen production in small laboratory scale culture vessels is often difficult to perform and quantitate. One problem is that commonly used silicon tubing and improvised plastic connections used for constructing apparatus are cheap and easy to connect but are generally not robust for gases such as hydrogen. In addition, this type of apparatus presents significant safety concerns. Here, we demonstrate the construction of hydrogen-tight apparatus using a commercially available modular system, where plastic tubing and connections are made of explosion-proof dissipative plastic material. Using this system, we introduce a gas chromatograph calibration procedure, which can be easily performed without necessarily resorting to expensive commercial gas standards for the calibration of hydrogen gas concentrations. In this procedure, the amount of hydrogen produced by the reaction of sodium borohydride with water in a closed air-filled bottle is deduced from the observed decrease of the oxygen partial pressure, using the ideal gas law. Finally, the determined calibration coefficients and the gas-tight apparatus are used for the analysis of simultaneous oxygen consumption and hydrogen production of the purple photosynthetic bacterium, Rhodospirillum rubrum, during semi-aerobic growth in the dark.
Collapse
Affiliation(s)
- Caroline Autenrieth
- Institute of Biomaterials and Biomolecular Systems, Department of Bioenergetics, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany; (S.S.); (R.G.)
- Correspondence: ; Tel.: +49-711-685-65048
| | - Shreya Shaw
- Institute of Biomaterials and Biomolecular Systems, Department of Bioenergetics, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany; (S.S.); (R.G.)
- School of Molecular Sciences, Tempe Campus, Mailcode 1604, Arizona State University, Tempe, AZ 85281, USA
| | - Robin Ghosh
- Institute of Biomaterials and Biomolecular Systems, Department of Bioenergetics, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany; (S.S.); (R.G.)
| |
Collapse
|
11
|
Paul S, Bravo Vázquez LA, Márquez Nafarrate M, Gutiérrez Reséndiz AI, Srivastava A, Sharma A. The regulatory activities of microRNAs in non-vascular plants: a mini review. PLANTA 2021; 254:57. [PMID: 34424349 DOI: 10.1007/s00425-021-03707-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/14/2021] [Indexed: 05/21/2023]
Abstract
MicroRNA-mediated gene regulation in non-vascular plants is potentially involved in several unique biological functions, including biosynthesis of several highly valuable exclusive bioactive compounds, and those small RNAs could be manipulated for the overproduction of essential bioactive compounds in the future. MicroRNAs (miRNAs) are a class of endogenous, small (20-24 nucleotides), non-coding RNA molecules that regulate gene expression through the miRNA-mediated mechanisms of either translational inhibition or messenger RNA (mRNA) cleavage. In the past years, studies have mainly focused on elucidating the roles of miRNAs in vascular plants as compared to non-vascular plants. However, non-vascular plant miRNAs have been predicted to be involved in a wide variety of specific biological mechanisms; nevertheless, some of them have been demonstrated explicitly, thus showing that the research field of this plant group owns a noteworthy potential to develop novel investigations oriented towards the functional characterization of these miRNAs. Furthermore, the insights into the roles of miRNAs in non-vascular plants might be of great importance for designing the miRNA-based genetically modified plants for valuable secondary metabolites, active compounds, and biofuels in the future. Therefore, in this current review, we provide an overview of the potential roles of miRNAs in different groups of non-vascular plants such as algae and bryophytes.
Collapse
Affiliation(s)
- Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130, Querétaro, Mexico.
| | - Luis Alberto Bravo Vázquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130, Querétaro, Mexico
| | - Marilyn Márquez Nafarrate
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Av. Eugenio Garza Sada, No. 2501 Tecnologico, CP 64849, Monterrey, Mexico
| | - Ana Isabel Gutiérrez Reséndiz
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130, Querétaro, Mexico
| | - Aashish Srivastava
- Section of Bioinformatics, Clinical Laboratory, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Science, University of Bergen, 5021, Bergen, Norway
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130, Querétaro, Mexico.
| |
Collapse
|
12
|
Nagy V, Podmaniczki A, Vidal-Meireles A, Kuntam S, Herman É, Kovács L, Tóth D, Scoma A, Tóth SZ. Thin cell layer cultures of Chlamydomonas reinhardtii L159I-N230Y, pgrl1 and pgr5 mutants perform enhanced hydrogen production at sunlight intensity. BIORESOURCE TECHNOLOGY 2021; 333:125217. [PMID: 33951580 DOI: 10.1016/j.biortech.2021.125217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 05/27/2023]
Abstract
Photobiological hydrogen (H2) production is a promising renewable energy source. HydA hydrogenases of green algae are efficient but O2-sensitive and compete for electrons with CO2-fixation. Recently, we established a photoautotrophic H2 production system based on anaerobic induction, where the Calvin-Benson cycle is inactive and O2 scavenged by an absorbent. Here, we employed thin layer cultures, resulting in a three-fold increase in H2 production relative to bulk CC-124 cultures (50 µg chlorophyll/ml, 350 µmol photons m-2 s-1). Productivity was maintained when increasing the light intensity to 1000 µmol photons m-2s-1 and the cell density to 150 µg chlorophyll/ml. Remarkably, the L159I-N230Y photosystem II mutant and the pgrl1 photosystem I cyclic electron transport mutant produced 50% more H2 than CC-124, while the pgr5 mutant generated 250% more (1.2 ml H2/ml culture in six days). The photosynthetic apparatus of the pgr5 mutant and its in vitro HydA activity remained remarkably stable.
Collapse
Affiliation(s)
- Valéria Nagy
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726 Szeged, Hungary
| | - Anna Podmaniczki
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726 Szeged, Hungary; Doctoral School of Biology, University of Szeged, Közép fasor 52, H-6722 Szeged, Hungary
| | - André Vidal-Meireles
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726 Szeged, Hungary
| | - Soujanya Kuntam
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726 Szeged, Hungary
| | - Éva Herman
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726 Szeged, Hungary
| | - László Kovács
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726 Szeged, Hungary
| | - Dávid Tóth
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726 Szeged, Hungary; Doctoral School of Biology, University of Szeged, Közép fasor 52, H-6722 Szeged, Hungary
| | - Alberto Scoma
- Engineered Microbial Systems Laboratory (EMS-Lab), Department of Biological and Chemical Engineering, Aarhus University, Hangøvej 2, 8200 Aarhus, Denmark
| | - Szilvia Z Tóth
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726 Szeged, Hungary.
| |
Collapse
|
13
|
Aquatic Toxicity of Photocatalyst Nanoparticles to Green Microalgae Chlorella vulgaris. WATER 2020. [DOI: 10.3390/w13010077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the last years, nanoparticles such as TiO2, ZnO, NiO, CuO and Fe2O3 were mainly used in wastewater applications. In addition to the positive aspects concerning using nanoparticles in the advanced oxidation process of wastewater containing pollutants, the impact of these nanoparticles on the environment must also be investigated. The toxicity of nanoparticles is generally investigated by the nanomaterials’ effect on green algae, especially on Chlorella vulgaris. In this review, several aspects are reviewed: the Chlorella vulgaris culture monitoring and growth parameters, the effect of different nanoparticles on Chlorella vulgaris, the toxicity of photocatalyst nanoparticles, and the mechanism of photocatalyst during oxidative stress on the photosynthetic mechanism of Chlorella vulgaris. The Bold basal medium (BBM) is generally recognized as an excellent standard cultivation medium for Chlorella vulgaris in the known environmental conditions such as temperature in the range 20–30 °C and light intensity of around 150 μE·m2·s−1 under a 16/8 h light/dark cycle. The nanoparticles synthesis methods influence the particle size, morphology, density, surface area to generate growth inhibition and further algal deaths at the nanoparticle-dependent concentration. Moreover, the results revealed that nanoparticles caused a more potent inhibitory effect on microalgal growth and severely disrupted algal cells’ membranes.
Collapse
|
14
|
Fan Q, Neubauer P, Lenz O, Gimpel M. Heterologous Hydrogenase Overproduction Systems for Biotechnology-An Overview. Int J Mol Sci 2020; 21:E5890. [PMID: 32824336 PMCID: PMC7460606 DOI: 10.3390/ijms21165890] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/06/2020] [Accepted: 08/14/2020] [Indexed: 01/16/2023] Open
Abstract
Hydrogenases are complex metalloenzymes, showing tremendous potential as H2-converting redox catalysts for application in light-driven H2 production, enzymatic fuel cells and H2-driven cofactor regeneration. They catalyze the reversible oxidation of hydrogen into protons and electrons. The apo-enzymes are not active unless they are modified by a complicated post-translational maturation process that is responsible for the assembly and incorporation of the complex metal center. The catalytic center is usually easily inactivated by oxidation, and the separation and purification of the active protein is challenging. The understanding of the catalytic mechanisms progresses slowly, since the purification of the enzymes from their native hosts is often difficult, and in some case impossible. Over the past decades, only a limited number of studies report the homologous or heterologous production of high yields of hydrogenase. In this review, we emphasize recent discoveries that have greatly improved our understanding of microbial hydrogenases. We compare various heterologous hydrogenase production systems as well as in vitro hydrogenase maturation systems and discuss their perspectives for enhanced biohydrogen production. Additionally, activities of hydrogenases isolated from either recombinant organisms or in vivo/in vitro maturation approaches were systematically compared, and future perspectives for this research area are discussed.
Collapse
Affiliation(s)
- Qin Fan
- Institute of Biotechnology, Technical University of Berlin, Ackerstraße 76, 13355 Berlin, Germany; (Q.F.); (P.N.)
| | - Peter Neubauer
- Institute of Biotechnology, Technical University of Berlin, Ackerstraße 76, 13355 Berlin, Germany; (Q.F.); (P.N.)
| | - Oliver Lenz
- Department of Chemistry, Technical University of Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany;
| | - Matthias Gimpel
- Institute of Biotechnology, Technical University of Berlin, Ackerstraße 76, 13355 Berlin, Germany; (Q.F.); (P.N.)
| |
Collapse
|
15
|
Rezvani F, Sarrafzadeh MH. Autotrophic granulation of hydrogen consumer denitrifiers and microalgae for nitrate removal from drinking water resources at different hydraulic retention times. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 268:110674. [PMID: 32383647 DOI: 10.1016/j.jenvman.2020.110674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/27/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
To avoid hydrogen injection and to enhance the settleability of microbial biomass in biological treatment of nitrate-contaminated drinking water resources, a new method based on granulation of a mixture of hydrogen consumer denitrifiers (HCD) and microalgae is introduced. Decreasing hydraulic retention time (HRT) was applied as the selection pressure in an up-flow photobioreactor to increase the speed of granulation and nitrate removal under autotrophic condition during a 50-day operation. Formation of granules occurred at three phases including granule nucleation, growth of granule, and mature granule, with decreasing the values of ζ-potential from -19 mV to -4 mV. Enhancement of microbial attachment within granule formation could reduce the presence of total suspended solids in the effluent. Developed granules of HCD and microalgae could settle down with velocity of 40 ± 0.6 m/h when reaching the average size of 1.2 mm at day 40. Complete NO3--N removal from drinking water was achieved from the initial stage of granulation until the end of operation at all HRTs of 3 days-5 h. The clear treated water was obtained at the growth phase when the chemical oxygen demand and phosphate were undetectable. Therefore, the application of HCD-microalgae granule is a promising way for nitrate removal from water.
Collapse
Affiliation(s)
- Fariba Rezvani
- UNESCO Chair on Water Reuse, Biotechnology Group, School of Chemical Engineering, College of Engineering, University of Tehran, Iran
| | - Mohammad-Hossein Sarrafzadeh
- UNESCO Chair on Water Reuse, Biotechnology Group, School of Chemical Engineering, College of Engineering, University of Tehran, Iran.
| |
Collapse
|
16
|
Mona S, Kumar SS, Kumar V, Parveen K, Saini N, Deepak B, Pugazhendhi A. Green technology for sustainable biohydrogen production (waste to energy): A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138481. [PMID: 32361358 DOI: 10.1016/j.scitotenv.2020.138481] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Perceiving and detecting a sustainable source of energy is very critical issue for current modern society. Hydrogen on combustion releases energy and water as a byproduct and has been considered as an environmental pollution free energy carrier. From the last decade, most of the researchers have recommended hydrogen as one of the cleanest fuels and its demand is rising ever since. Hydrogen having the highest energy density is more advantageous than any other fuel. Hydrogen obtained from the fossil fuels produces carbon dioxide as a byproduct and creates environment negative effect. Therefore, biohydrogen production from green algae and cyanobacteria is an attractive option that generates a benign renewable energy carrier. Microalgal feedstocks show a high potential for the generation of fuel such as biohydrogen, bioethanol and biodiesel. This article has reviewed the different methods of biohydrogen production while also trying to find out the most economical and ecofriendly method for its production. A thorough review process has been carried out to study the methods, enzymes involved, factors affecting the rate of hydrogen production, dual nature of algae, challenges and commercialization potential of algal biohydrogen.
Collapse
Affiliation(s)
- Sharma Mona
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science & Technology, Hisar 125001, Haryana, India
| | - Smita S Kumar
- Centre for Rural Development & Technology, Indian Institute of Technology Delhi, Hauz Khas, 110016 Delhi, India; Department of Environmental Studies, J.C. Bose University of Science and Technology, YMCA, Faridabad 121006, Haryana, India
| | - Vivek Kumar
- Centre for Rural Development & Technology, Indian Institute of Technology Delhi, Hauz Khas, 110016 Delhi, India
| | - Khalida Parveen
- Department of Environmental Sciences, University of Jammu, J&K, India
| | - Neha Saini
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science & Technology, Hisar 125001, Haryana, India
| | | | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
17
|
Rezvani F, Sarrafzadeh MH, Oh HM. Hydrogen producer microalgae in interaction with hydrogen consumer denitrifiers as a novel strategy for nitrate removal from groundwater and biomass production. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101747] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Regulation of biohydrogen production by protonophores in novel green microalgae Parachlorella kessleri. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 199:111597. [PMID: 31450130 DOI: 10.1016/j.jphotobiol.2019.111597] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 07/27/2019] [Accepted: 08/16/2019] [Indexed: 02/05/2023]
Abstract
The green microalgae Parachlorella kessleri RA-002 isolated in Armenia can produce biohydrogen (H2) during oxygenic photosynthesis. Addition of protonophores, carbonyl cyanide m-chlorophenylhydrazone (CCCP) and 2,4-dinitrophenol (DNF) enhances H2 yield in P. kessleri. The maximal H2 yield of ~2.20 and 2.08 mmol L-1 was obtained in the presence of 15 μM CCCP and 50 μM DNF, respectively. During dark conditions H2 production by P. kessleri was not observed even in the presence of protonophores, indicating that H2 formation in these algae was mediated by light conditions. The enhancing effect of protonophores can be coupled with dissipation of proton motive force across thylakoid membrane in P. kessleri, facilitating the availability of protons and electrons to [Fe-Fe]-hydrogenase, which led to formation of H2. At the same time H2 production was not observed in the presence of diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea), a specific inhibitor of PS II. Moreover, diuron inhibits H2 yield in P. kessleri in the presence of protonophores. The inhibitory effect of diuron coupled with suppression of electron transfer from PS II. The results showed that in these algae operates PS II-dependent pathway of H2 generation. This study is important for understanding of the mechanisms of H2 production by green microalgae P. kessleri and developing of its biotechnology.
Collapse
|
19
|
Karpagam R, Rani K, Gunaseelan S, Ashokkumar B, Varalakshmi P. Transcript analysis of hydrogenase A in an indigenous microalga, Coelastrella sp. M-60. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Judith Martínez E, Blanco D, Gómez X. Two-Stage Process to Enhance Bio-hydrogen Production. BIOFUEL AND BIOREFINERY TECHNOLOGIES 2019. [DOI: 10.1007/978-3-030-10516-7_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Kertess L, Wittkamp F, Sommer C, Esselborn J, Rüdiger O, Reijerse EJ, Hofmann E, Lubitz W, Winkler M, Happe T, Apfel UP. Chalcogenide substitution in the [2Fe] cluster of [FeFe]-hydrogenases conserves high enzymatic activity. Dalton Trans 2018; 46:16947-16958. [PMID: 29177350 DOI: 10.1039/c7dt03785f] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
[FeFe]-Hydrogenases efficiently catalyze the uptake and evolution of H2 due to the presence of an inorganic [6Fe-6S]-cofactor (H-cluster). This cofactor is comprised of a [4Fe-4S] cluster coupled to a unique [2Fe] cluster where the catalytic turnover of H2/H+ takes place. We herein report on the synthesis of a selenium substituted [2Fe] cluster [Fe2{μ(SeCH2)2NH}(CO)4(CN)2]2- (ADSe) and its successful in vitro integration into the native protein scaffold of [FeFe]-hydrogenases HydA1 from Chlamydomonas reinhardtii and CpI from Clostridium pasteurianum yielding fully active enzymes (HydA1-ADSe and CpI-ADSe). FT-IR spectroscopy and X-ray structure analysis confirmed the presence of structurally intact ADSe at the active site. Electrochemical assays reveal that the selenium containing enzymes are more biased towards hydrogen production than their native counterparts. In contrast to previous chalcogenide exchange studies, the S to Se exchange herein is not based on a simple reconstitution approach using ionic cluster constituents but on the in vitro maturation with a pre-synthesized selenium-containing [2Fe] mimic. The combination of biological and chemical methods allowed for the creation of a novel [FeFe]-hydrogenase with a [2Fe2Se]-active site which confers individual catalytic features.
Collapse
Affiliation(s)
- L Kertess
- Ruhr-Universität Bochum, Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie, Universitätsstraße 150, 44801 Bochum, Germany.
| | - F Wittkamp
- Ruhr-Universität Bochum, Anorganische Chemie I/Bioanorganische Chemie, Universitätsstraße 150, 44801 Bochum, Germany.
| | - C Sommer
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - J Esselborn
- Ruhr-Universität Bochum, Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie, Universitätsstraße 150, 44801 Bochum, Germany.
| | - O Rüdiger
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - E J Reijerse
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - E Hofmann
- Ruhr-Universität Bochum, Lehrstuhl für Biophysik, AG Röntgenstrukturanalyse an Proteinen, Universitätsstraße 150, 44801 Bochum, Germany
| | - W Lubitz
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - M Winkler
- Ruhr-Universität Bochum, Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie, Universitätsstraße 150, 44801 Bochum, Germany.
| | - T Happe
- Ruhr-Universität Bochum, Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie, Universitätsstraße 150, 44801 Bochum, Germany.
| | - U-P Apfel
- Ruhr-Universität Bochum, Anorganische Chemie I/Bioanorganische Chemie, Universitätsstraße 150, 44801 Bochum, Germany.
| |
Collapse
|
22
|
Weiner I, Shahar N, Feldman Y, Landman S, Milrad Y, Ben-Zvi O, Avitan M, Dafni E, Schweitzer S, Eilenberg H, Atar S, Diament A, Tuller T, Yacoby I. Overcoming the expression barrier of the ferredoxin‑hydrogenase chimera in Chlamydomonas reinhardtii supports a linear increment in photosynthetic hydrogen output. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Zalutskaya Z, Minaeva E, Filina V, Ostroukhova M, Ermilova E. Regulation of sulfur deprivation-induced expression of the ferredoxin-encoding FDX5 gene Chlamydomonas reinhardtii in aerobic conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:18-23. [PMID: 29220735 DOI: 10.1016/j.plaphy.2017.11.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 06/07/2023]
Abstract
The unicellular green alga Chlamydomonas reinhardtii reacts to sulfur (S) starvation with the increased expression of numerous genes. One gene which is induced in illuminated anaerobic S-deprived cells is the ferredoxin-5 gene (FDX5). To test FDX5 transcriptional regulation in aerobic cultures, we used a real-time PCR analysis and an artificial microRNA approach. We demonstrated that FDX5 gene is controlled by S deprivation independently of anoxia-treatment. The Ser/Thr kinase SNRK2.1 is necessary for expression of FDX5 during deprivation to S. Copper response regulator 1 (CRR1) is not involved in FDX5 up-regulation in S-deficient cells under aerobic conditions. Furthermore, expression of FDX5 is negatively regulated by nitric oxide (NO). Moreover, truncated hemoglobin 1 (THB1) underexpression resulted in the decrease in FDX5 transcript abundance in S-deficient cells under aerobic conditions. Together, our results imply that the FDX5 gene is controlled by NO in THB1-dependent pathway under conditions of depleted S supply.
Collapse
Affiliation(s)
- Zhanneta Zalutskaya
- Biological Faculty, Saint-Petersburg State University, Universitetskaya nab. 7/9, Saint-Petersburg 199034, Russia.
| | - Ekaterina Minaeva
- Biological Faculty, Saint-Petersburg State University, Universitetskaya nab. 7/9, Saint-Petersburg 199034, Russia.
| | - Valentina Filina
- Biological Faculty, Saint-Petersburg State University, Universitetskaya nab. 7/9, Saint-Petersburg 199034, Russia.
| | - Mariya Ostroukhova
- Biological Faculty, Saint-Petersburg State University, Universitetskaya nab. 7/9, Saint-Petersburg 199034, Russia.
| | - Elena Ermilova
- Biological Faculty, Saint-Petersburg State University, Universitetskaya nab. 7/9, Saint-Petersburg 199034, Russia.
| |
Collapse
|
24
|
Rühle T, Reiter B, Leister D. Chlorophyll Fluorescence Video Imaging: A Versatile Tool for Identifying Factors Related to Photosynthesis. FRONTIERS IN PLANT SCIENCE 2018; 9:55. [PMID: 29472935 PMCID: PMC5810273 DOI: 10.3389/fpls.2018.00055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/10/2018] [Indexed: 05/12/2023]
Abstract
Measurements of chlorophyll fluorescence provide an elegant and non-invasive means of probing the dynamics of photosynthesis. Advances in video imaging of chlorophyll fluorescence have now made it possible to study photosynthesis at all levels from individual cells to entire crop populations. Since the technology delivers quantitative data, is easily scaled up and can be readily combined with other approaches, it has become a powerful phenotyping tool for the identification of factors relevant to photosynthesis. Here, we review genetic chlorophyll fluorescence-based screens of libraries of Arabidopsis and Chlamydomonas mutants, discuss its application to high-throughput phenotyping in quantitative genetics and highlight potential future developments.
Collapse
Affiliation(s)
- Thilo Rühle
- Plant Molecular Biology, Department of Biology, Ludwig Maximilian University of Munich, Munich, Germany
| | | | | |
Collapse
|
25
|
|
26
|
Nagy V, Podmaniczki A, Vidal-Meireles A, Tengölics R, Kovács L, Rákhely G, Scoma A, Tóth SZ. Water-splitting-based, sustainable and efficient H 2 production in green algae as achieved by substrate limitation of the Calvin-Benson-Bassham cycle. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:69. [PMID: 29560024 PMCID: PMC5858145 DOI: 10.1186/s13068-018-1069-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/07/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND Photobiological H2 production has the potential of becoming a carbon-free renewable energy source, because upon the combustion of H2, only water is produced. The [Fe-Fe]-type hydrogenases of green algae are highly active, although extremely O2-sensitive. Sulphur deprivation is a common way to induce H2 production, which, however, relies substantially on organic substrates and imposes a severe stress effect resulting in the degradation of the photosynthetic apparatus. RESULTS We report on the establishment of an alternative H2 production method by green algae that is based on a short anaerobic induction, keeping the Calvin-Benson-Bassham cycle inactive by substrate limitation and preserving hydrogenase activity by applying a simple catalyst to remove the evolved O2. Cultures remain photosynthetically active for several days, with the electrons feeding the hydrogenases mostly derived from water. The amount of H2 produced is higher as compared to the sulphur-deprivation procedure and the process is photoautotrophic. CONCLUSION Our protocol demonstrates that it is possible to sustainably use algal cells as whole-cell catalysts for H2 production, which enables industrial application of algal biohydrogen production.
Collapse
Affiliation(s)
- Valéria Nagy
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Temesvári krt. 62, 6726 Szeged, Hungary
| | - Anna Podmaniczki
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Temesvári krt. 62, 6726 Szeged, Hungary
| | - André Vidal-Meireles
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Temesvári krt. 62, 6726 Szeged, Hungary
| | - Roland Tengölics
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Temesvári krt. 62, 6726 Szeged, Hungary
| | - László Kovács
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Temesvári krt. 62, 6726 Szeged, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
- Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Temesvári krt. 62, 6726 Szeged, Hungary
| | - Alberto Scoma
- Center for Geomicrobiology, Aarhus University, Ny Munkegade 116, 8000 Aarhus, Denmark
| | - Szilvia Z. Tóth
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Temesvári krt. 62, 6726 Szeged, Hungary
| |
Collapse
|
27
|
Kertess L, Adamska-Venkatesh A, Rodríguez-Maciá P, Rüdiger O, Lubitz W, Happe T. Influence of the [4Fe-4S] cluster coordinating cysteines on active site maturation and catalytic properties of C. reinhardtii [FeFe]-hydrogenase. Chem Sci 2017; 8:8127-8137. [PMID: 29568461 PMCID: PMC5855289 DOI: 10.1039/c7sc03444j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/05/2017] [Indexed: 11/24/2022] Open
Abstract
Alteration of the [4Fe–4S] cluster coordinating cysteines reveals their individual importance for [4Fe–4S] cluster binding, [2Fe] insertion and catalytic turnover.
[FeFe]-Hydrogenases catalyze the evolution and oxidation of hydrogen using a characteristic cofactor, termed the H-cluster. This comprises an all cysteine coordinated [4Fe–4S] cluster and a unique [2Fe] moiety, coupled together via a single cysteine. The coordination of the [4Fe–4S] cluster in HydA1 from Chlamydomonas reinhardtii was altered by single exchange of each cysteine (C115, C170, C362, and C366) with alanine, aspartate, or serine using site-directed mutagenesis. In contrast to cysteine 115, the other three cysteines were found to be dispensable for stable [4Fe–4S] cluster incorporation based on iron determination, UV/vis spectroscopy and electron paramagnetic resonance. However, the presence of a preformed [4Fe–4S] cluster alone does not guarantee stable incorporation of the [2Fe] cluster. Only variants C170D, C170S, C362D, and C362S showed characteristic signals for an inserted [2Fe] cluster in Fourier-transform infrared spectroscopy. Hydrogen evolution and oxidation were observed for these variants in solution based assays and protein-film electrochemistry. Catalytic activity was lowered for all variants and the ability to operate in either direction was also influenced.
Collapse
Affiliation(s)
- Leonie Kertess
- AG Photobiotechnologie , Lehrstuhl für Biochemie der Pflanzen , Ruhr Universität Bochum , Universitätsstr. 150 , 44801 Bochum , Germany .
| | - Agnieszka Adamska-Venkatesh
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany
| | - Patricia Rodríguez-Maciá
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany
| | - Thomas Happe
- AG Photobiotechnologie , Lehrstuhl für Biochemie der Pflanzen , Ruhr Universität Bochum , Universitätsstr. 150 , 44801 Bochum , Germany .
| |
Collapse
|
28
|
Sensi M, Baffert C, Fradale L, Gauquelin C, Soucaille P, Meynial-Salles I, Bottin H, de Gioia L, Bruschi M, Fourmond V, Léger C, Bertini L. Photoinhibition of FeFe Hydrogenase. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02252] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Matteo Sensi
- Aix Marseille University, CNRS, BIP UMR 7281, 13402 CEDEX 20 Marseille, France
- Department
of Biotechnologies and Biosciences, University of Milano-Bicocca, Piazza
della Scienza 2, 20126 Milan, Italy
| | - Carole Baffert
- Aix Marseille University, CNRS, BIP UMR 7281, 13402 CEDEX 20 Marseille, France
| | - Laura Fradale
- Aix Marseille University, CNRS, BIP UMR 7281, 13402 CEDEX 20 Marseille, France
| | - Charles Gauquelin
- Université de Toulouse, INSA, UPS, INP, LISBP, INRA:UMR792,135
CNRS:UMR 5504, Avenue
de Rangueil, 31077 Toulouse, France
| | - Philippe Soucaille
- Université de Toulouse, INSA, UPS, INP, LISBP, INRA:UMR792,135
CNRS:UMR 5504, Avenue
de Rangueil, 31077 Toulouse, France
| | - Isabelle Meynial-Salles
- Université de Toulouse, INSA, UPS, INP, LISBP, INRA:UMR792,135
CNRS:UMR 5504, Avenue
de Rangueil, 31077 Toulouse, France
| | - Hervé Bottin
- Institut
de Biologie Intégrative de la Cellule (I2BC), Institut Frédéric
Joliot, CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, F-91198 CEDEX Gif-Sur-Yvette, France
| | - Luca de Gioia
- Department
of Biotechnologies and Biosciences, University of Milano-Bicocca, Piazza
della Scienza 2, 20126 Milan, Italy
| | - Maurizio Bruschi
- Department
of Earth and Environmental Sciences, Milano-Bicocca University, Piazza della
Scienza 1, 20126 Milan, Italy
- Department
of Biotechnologies and Biosciences, University of Milano-Bicocca, Piazza
della Scienza 2, 20126 Milan, Italy
| | - Vincent Fourmond
- Aix Marseille University, CNRS, BIP UMR 7281, 13402 CEDEX 20 Marseille, France
| | - Christophe Léger
- Aix Marseille University, CNRS, BIP UMR 7281, 13402 CEDEX 20 Marseille, France
| | - Luca Bertini
- Department
of Biotechnologies and Biosciences, University of Milano-Bicocca, Piazza
della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
29
|
The structurally unique photosynthetic Chlorella variabilis NC64A hydrogenase does not interact with plant-type ferredoxins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017. [DOI: 10.1016/j.bbabio.2017.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
Scoma A, Hemschemeier A. The hydrogen metabolism of sulfur deprived Chlamydomonas reinhardtii cells involves hydrogen uptake activities. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Sawyer A, Bai Y, Lu Y, Hemschemeier A, Happe T. Compartmentalisation of [FeFe]-hydrogenase maturation in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:1134-1143. [PMID: 28295776 DOI: 10.1111/tpj.13535] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/01/2017] [Accepted: 03/06/2017] [Indexed: 06/06/2023]
Abstract
Molecular hydrogen (H2 ) can be produced in green microalgae by [FeFe]-hydrogenases as a direct product of photosynthesis. The Chlamydomonas reinhardtii hydrogenase HYDA1 contains a catalytic site comprising a classic [4Fe4S] cluster linked to a unique 2Fe sub-cluster. From in vitro studies it appears that the [4Fe4S] cluster is incorporated first by the housekeeping FeS cluster assembly machinery, followed by the 2Fe sub-cluster, whose biosynthesis requires the specific maturases HYDEF and HYDG. To investigate the maturation process in vivo, we expressed HYDA1 from the C. reinhardtii chloroplast and nuclear genomes (with and without a chloroplast transit peptide) in a hydrogenase-deficient mutant strain, and examined the cellular enzymatic hydrogenase activity, as well as in vivo H2 production. The transformants expressing HYDA1 from the chloroplast genome displayed levels of H2 production comparable to the wild type, as did the transformants expressing full-length HYDA1 from the nuclear genome. In contrast, cells equipped with cytoplasm-targeted HYDA1 produced inactive enzyme, which could only be activated in vitro after reconstitution of the [4Fe4S] cluster. This indicates that the HYDA1 FeS cluster can only be built by the chloroplastic FeS cluster assembly machinery. Further, the expression of a bacterial hydrogenase gene, CPI, from the C. reinhardtii chloroplast genome resulted in H2 -producing strains, demonstrating that a hydrogenase with a very different structure can fulfil the role of HYDA1 in vivo and that overexpression of foreign hydrogenases in C. reinhardtii is possible. All chloroplast transformants were stable and no toxic effects were seen from HYDA1 or CPI expression.
Collapse
Affiliation(s)
- Anne Sawyer
- AG Photobiotechnologie, Lehrstuhl für Biochemie der Pflanzen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44801, Bochum, Germany
| | - Yu Bai
- AG Photobiotechnologie, Lehrstuhl für Biochemie der Pflanzen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44801, Bochum, Germany
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yinghua Lu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Anja Hemschemeier
- AG Photobiotechnologie, Lehrstuhl für Biochemie der Pflanzen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44801, Bochum, Germany
| | - Thomas Happe
- AG Photobiotechnologie, Lehrstuhl für Biochemie der Pflanzen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44801, Bochum, Germany
| |
Collapse
|
32
|
Ostroukhova M, Zalutskaya Z, Ermilova E. New insights into AOX2 transcriptional regulation in Chlamydomonas reinhardtii. Eur J Protistol 2017; 58:1-8. [DOI: 10.1016/j.ejop.2016.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/06/2016] [Accepted: 11/08/2016] [Indexed: 11/29/2022]
|
33
|
Wen M, Wu HL, Jian JX, Wang XZ, Li XB, Chen B, Tung CH, Wu LZ. Integrating CdSe Quantum Dots with a [FeFe]-Hydrogenase Mimic into a Photocathode for Hydrogen Evolution at a Low Bias Voltage. CHEMPHOTOCHEM 2017. [DOI: 10.1002/cptc.201700041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Min Wen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Bejing 100049 P. R. China
| | - Hao-Lin Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Bejing 100049 P. R. China
| | - Jing-Xin Jian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Bejing 100049 P. R. China
| | - Xu-Zhe Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Bejing 100049 P. R. China
| | - Xu-Bing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Bejing 100049 P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Bejing 100049 P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Bejing 100049 P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Bejing 100049 P. R. China
| |
Collapse
|
34
|
Adam D, Bösche L, Castañeda-Losada L, Winkler M, Apfel UP, Happe T. Sunlight-Dependent Hydrogen Production by Photosensitizer/Hydrogenase Systems. CHEMSUSCHEM 2017; 10:894-902. [PMID: 27976835 DOI: 10.1002/cssc.201601523] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/05/2016] [Indexed: 06/06/2023]
Abstract
We report a sustainable in vitro system for enzyme-based photohydrogen production. The [FeFe]-hydrogenase HydA1 from Chlamydomonas reinhardtii was tested for photohydrogen production as a proton-reducing catalyst in combination with eight different photosensitizers. Using the organic dye 5-carboxyeosin as a photosensitizer and plant-type ferredoxin PetF as an electron mediator, HydA1 achieves the highest light-driven turnover number (TONHydA1 ) yet reported for an enzyme-based in vitro system (2.9×106 mol(H2 ) mol(cat)-1 ) and a maximum turnover frequency (TOFHydA1 ) of 550 mol(H2 ) mol(HydA1)-1 s-1 . The system is fueled very effectively by ambient daylight and can be further simplified by using 5-carboxyeosin and HydA1 as a two-component photosensitizer/biocatalyst system without an additional redox mediator.
Collapse
Affiliation(s)
- David Adam
- Department of Biology and Biotechnology, AG Photobiotechnology, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Lisa Bösche
- Department of Biology and Biotechnology, AG Photobiotechnology, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Leonardo Castañeda-Losada
- Department of Chemistry and Biochemistry, Ruhr-University Bochum, Chair of Inorganic Chemistry I, Universitätsstraße 150, 44801, Bochum, Germany
| | - Martin Winkler
- Department of Biology and Biotechnology, AG Photobiotechnology, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Ulf-Peter Apfel
- Department of Chemistry and Biochemistry, Ruhr-University Bochum, Chair of Inorganic Chemistry I, Universitätsstraße 150, 44801, Bochum, Germany
| | - Thomas Happe
- Department of Biology and Biotechnology, AG Photobiotechnology, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
35
|
Secondary coordination sphere accelerates hole transfer for enhanced hydrogen photogeneration from [FeFe]-hydrogenase mimic and CdSe QDs in water. Sci Rep 2016; 6:29851. [PMID: 27417065 PMCID: PMC4945928 DOI: 10.1038/srep29851] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 06/24/2016] [Indexed: 11/22/2022] Open
Abstract
Achieving highly efficient hydrogen (H2) evolution via artificial photosynthesis is a great ambition pursued by scientists in recent decades because H2 has high specific enthalpy of combustion and benign combustion product. [FeFe]-Hydrogenase ([FeFe]-H2ase) mimics have been demonstrated to be promising catalysts for H2 photoproduction. However, the efficient photocatalytic H2 generation system, consisting of PAA-g-Fe2S2, CdSe QDs and H2A, suffered from low stability, probably due to the hole accumulation induced photooxidation of CdSe QDs and the subsequent crash of [FeFe]-H2ase mimics. In this work, we take advantage of supramolecular interaction for the first time to construct the secondary coordination sphere of electron donors (HA−) to CdSe QDs. The generated secondary coordination sphere helps realize much faster hole removal with a ~30-fold increase, thus leading to higher stability and activity for H2 evolution. The unique photocatalytic H2 evolution system features a great increase of turnover number to 83600, which is the highest one obtained so far for photocatalytic H2 production by using [FeFe]-H2ase mimics as catalysts.
Collapse
|
36
|
Abstract
Abstract
Efforts were made to demonstrate that in biorefineries it is possible to manufacture all the commodities required for maintaining human civilisation on the current level. Biorefineries are based on processing biomass resulting from photosynthesis. From sugars, oils and proteins, a variety of food, feed, nutrients, pharmaceuticals, polymers, chemicals and fuels can further be produced. Production in biorefineries must be based on a few rules to fulfil sustainable development: all raw materials are derived from biomass, all products are biodegradable and production methods are in accordance with the principles of Green Chemistry and Clean Technology. The paper presents a summary of state-of-the-art concerning biorefineries, production methods and product range of leading companies in the world that are already implemented. Potential risks caused by the development of biorefineries, such as: insecurities of food and feed production, uncontrolled changes in global production profiles, monocultures, eutrophication, etc., were also highlighted in this paper. It was stressed that the sustainable development is not only an alternative point of view but is our condition to survive.
Collapse
|
37
|
Esmieu C, Berggren G. Characterization of a monocyanide model of FeFe hydrogenases – highlighting the importance of the bridgehead nitrogen for catalysis. Dalton Trans 2016; 45:19242-19248. [DOI: 10.1039/c6dt02061e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cyanide containing mimic of the [FeFe]-hydrogenase cofactor has been characterized, highlighting the importance of the bridgehead nitrogen for proton reduction catalysis.
Collapse
Affiliation(s)
- C. Esmieu
- Molecular Biomimetics
- Department of Chemistry – Ångström Laboratory
- Uppsala University
- 75120 Uppsala
- Sweden
| | - G. Berggren
- Molecular Biomimetics
- Department of Chemistry – Ångström Laboratory
- Uppsala University
- 75120 Uppsala
- Sweden
| |
Collapse
|
38
|
Nath K, Najafpour MM, Voloshin RA, Balaghi SE, Tyystjärvi E, Timilsina R, Eaton-Rye JJ, Tomo T, Nam HG, Nishihara H, Ramakrishna S, Shen JR, Allakhverdiev SI. Photobiological hydrogen production and artificial photosynthesis for clean energy: from bio to nanotechnologies. PHOTOSYNTHESIS RESEARCH 2015; 126:237-247. [PMID: 25899392 DOI: 10.1007/s11120-015-0139-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/02/2015] [Indexed: 06/04/2023]
Abstract
Global energy demand is increasing rapidly and due to intensive consumption of different forms of fuels, there are increasing concerns over the reduction in readily available conventional energy resources. Because of the deleterious atmospheric effects of fossil fuels and the uncertainties of future energy supplies, there is a surge of interest to find environmentally friendly alternative energy sources. Hydrogen (H2) has attracted worldwide attention as a secondary energy carrier, since it is the lightest carbon-neutral fuel rich in energy per unit mass and easy to store. Several methods and technologies have been developed for H2 production, but none of them are able to replace the traditional combustion fuel used in automobiles so far. Extensively modified and renovated methods and technologies are required to introduce H2 as an alternative efficient, clean, and cost-effective future fuel. Among several emerging renewable energy technologies, photobiological H2 production by oxygenic photosynthetic microbes such as green algae and cyanobacteria or by artificial photosynthesis has attracted significant interest. In this short review, we summarize the recent progress and challenges in H2-based energy production by means of biological and artificial photosynthesis routes.
Collapse
Affiliation(s)
- K Nath
- Research Institute for Next Generation (RING), Kalanki, Kathmandu-14, Kathmandu, Nepal
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49006, USA
| | - M M Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 45137-66731, Zanjan, Iran
- Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), 45137-66731, Zanjan, Iran
| | - R A Voloshin
- Controlled Photobiosynthesis Laboratory, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia
| | - S E Balaghi
- Young Researchers and Elite Club, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - E Tyystjärvi
- Department of Biochemistry / Molecular Plant Biology, University of Turku, 20014, Turku, Finland
| | - R Timilsina
- Center for Plant Aging Research, Institute for Basic Science, and Department of New Biology, DGIST, Daegu, 711-873, Republic of Korea
| | - J J Eaton-Rye
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - T Tomo
- Department of Biology, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-Ku, Tokyo, 162-8601, Japan
- PRESTO, Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan
| | - H G Nam
- Center for Plant Aging Research, Institute for Basic Science, and Department of New Biology, DGIST, Daegu, 711-873, Republic of Korea
| | - H Nishihara
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
| | - S Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, 117576, Singapore
| | - J-R Shen
- Photosynthesis Research Center, Graduate School of Natural Science and Technology, Faculty of Science, Okayama University, Okayama, 700-8530, Japan
| | - S I Allakhverdiev
- Controlled Photobiosynthesis Laboratory, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia.
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
- Department of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow, 119991, Russia.
| |
Collapse
|
39
|
Tan CH, Show PL, Chang JS, Ling TC, Lan JCW. Novel approaches of producing bioenergies from microalgae: A recent review. Biotechnol Adv 2015; 33:1219-27. [DOI: 10.1016/j.biotechadv.2015.02.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 02/17/2015] [Accepted: 02/22/2015] [Indexed: 11/28/2022]
|
40
|
Photoautotrophic hydrogen production by eukaryotic microalgae under aerobic conditions. Nat Commun 2015; 5:3234. [PMID: 24492668 DOI: 10.1038/ncomms4234] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 01/10/2014] [Indexed: 11/08/2022] Open
Abstract
Eukaryotic algae and cyanobacteria produce hydrogen under anaerobic and limited aerobic conditions. Here we show that novel microalgal strains (Chlorella vulgaris YSL01 and YSL16) upregulate the expression of the hydrogenase gene (HYDA) and simultaneously produce hydrogen through photosynthesis, using CO2 as the sole source of carbon under aerobic conditions with continuous illumination. We employ dissolved oxygen regimes that represent natural aquatic conditions for microalgae. The experimental expression of HYDA and the specific activity of hydrogenase demonstrate that C. vulgaris YSL01 and YSL16 enzymatically produce hydrogen, even under atmospheric conditions, which was previously considered infeasible. Photoautotrophic H2 production has important implications for assessing ecological and algae-based photolysis.
Collapse
|
41
|
Esselborn J, Muraki N, Klein K, Engelbrecht V, Metzler-Nolte N, Apfel UP, Hofmann E, Kurisu G, Happe T. A structural view of synthetic cofactor integration into [FeFe]-hydrogenases. Chem Sci 2015; 7:959-968. [PMID: 29896366 PMCID: PMC5954619 DOI: 10.1039/c5sc03397g] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/26/2015] [Indexed: 12/20/2022] Open
Abstract
Crystal structures of semisynthetic [FeFe]-hydrogenases with variations in the [2Fe] cluster show little structural differences despite strong effects on activity.
[FeFe]-hydrogenases are nature's fastest catalysts for the evolution or oxidation of hydrogen. Numerous synthetic model complexes for the [2Fe] subcluster (2FeH) of their active site are known, but so far none of these could compete with the enzymes. The complex Fe2[μ-(SCH2)2X](CN)2(CO)42– with X = NH was shown to integrate into the apo-form of [FeFe]-hydrogenases to yield a fully active enzyme. Here we report the first crystal structures of the apo-form of the bacterial [FeFe]-hydrogenase CpI from Clostridium pasteurianum at 1.60 Å and the active semisynthetic enzyme, CpIADT, at 1.63 Å. The structures illustrate the significant changes in ligand coordination upon integration and activation of the [2Fe] complex. These changes are induced by a rigid 2FeH cavity as revealed by the structure of apoCpI, which is remarkably similar to CpIADT. Additionally we present the high resolution crystal structures of the semisynthetic bacterial [FeFe]-hydrogenases CpIPDT (X = CH2), CpIODT (X = O) and CpISDT (X = S) with changes in the headgroup of the dithiolate bridge in the 2FeH cofactor. The structures of these inactive enzymes demonstrate that the 2FeH-subcluster and its protein environment remain largely unchanged when compared to the active enzyme CpIADT. As the active site shows an open coordination site in all structures, the absence of catalytic activity is probably not caused by steric obstruction. This demonstrates that the chemical properties of the dithiolate bridge are essential for enzyme activity.
Collapse
Affiliation(s)
- J Esselborn
- AG Photobiotechnologie , Fakultät für Biologie und Biotechnologie , Ruhr-Universität Bochum , Universitätsstraße 150 , 44801 Bochum , Germany .
| | - N Muraki
- Laboratory of Protein Crystallography , Institute for Protein Research , Osaka University , Suita , Osaka 565-0871 , Japan .
| | - K Klein
- Lehrstuhl für Anorganische Chemie I-Bioanorganische Chemie , Fakultät für Chemie und Biochemie , Ruhr-Universität Bochum , Universitätsstraße 150 , 44801 Bochum , Germany .
| | - V Engelbrecht
- AG Photobiotechnologie , Fakultät für Biologie und Biotechnologie , Ruhr-Universität Bochum , Universitätsstraße 150 , 44801 Bochum , Germany .
| | - N Metzler-Nolte
- Lehrstuhl für Anorganische Chemie I-Bioanorganische Chemie , Fakultät für Chemie und Biochemie , Ruhr-Universität Bochum , Universitätsstraße 150 , 44801 Bochum , Germany .
| | - U-P Apfel
- Lehrstuhl für Anorganische Chemie I-Bioanorganische Chemie , Fakultät für Chemie und Biochemie , Ruhr-Universität Bochum , Universitätsstraße 150 , 44801 Bochum , Germany .
| | - E Hofmann
- AG Proteinkristallographie , Fakultät für Biologie und Biotechnologie , Ruhr-Universität Bochum , Universitätsstraße 150 , 44801 Bochum , Germany
| | - G Kurisu
- Laboratory of Protein Crystallography , Institute for Protein Research , Osaka University , Suita , Osaka 565-0871 , Japan .
| | - T Happe
- AG Photobiotechnologie , Fakultät für Biologie und Biotechnologie , Ruhr-Universität Bochum , Universitätsstraße 150 , 44801 Bochum , Germany .
| |
Collapse
|
42
|
Structural Insight into the Complex of Ferredoxin and [FeFe] Hydrogenase fromChlamydomonas reinhardtii. Chembiochem 2015; 16:1663-9. [DOI: 10.1002/cbic.201500130] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Indexed: 01/01/2023]
|
43
|
Cornish AJ, Green R, Gärtner K, Mason S, Hegg EL. Characterization of Hydrogen Metabolism in the Multicellular Green Alga Volvox carteri. PLoS One 2015; 10:e0125324. [PMID: 25927230 PMCID: PMC4416025 DOI: 10.1371/journal.pone.0125324] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 03/19/2015] [Indexed: 01/13/2023] Open
Abstract
Hydrogen gas functions as a key component in the metabolism of a wide variety of microorganisms, often acting as either a fermentative end-product or an energy source. The number of organisms reported to utilize hydrogen continues to grow, contributing to and expanding our knowledge of biological hydrogen processes. Here we demonstrate that Volvox carteri f. nagariensis, a multicellular green alga with differentiated cells, evolves H2 both when supplied with an abiotic electron donor and under physiological conditions. The genome of Volvox carteri contains two genes encoding putative [FeFe]-hydrogenases (HYDA1 and HYDA2), and the transcripts for these genes accumulate under anaerobic conditions. The HYDA1 and HYDA2 gene products were cloned, expressed, and purified, and both are functional [FeFe]-hydrogenases. Additionally, within the genome the HYDA1 and HYDA2 genes cluster with two putative genes which encode hydrogenase maturation proteins. This gene cluster resembles operon-like structures found within bacterial genomes and may provide further insight into evolutionary relationships between bacterial and algal [FeFe]-hydrogenase genes.
Collapse
Affiliation(s)
- Adam J. Cornish
- Great Lakes Bioenergy Research Center and the Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Robin Green
- Great Lakes Bioenergy Research Center and the Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Katrin Gärtner
- Great Lakes Bioenergy Research Center and the Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Saundra Mason
- Great Lakes Bioenergy Research Center and the Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Eric L. Hegg
- Great Lakes Bioenergy Research Center and the Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
44
|
Bachmeier A, Esselborn J, Hexter SV, Krämer T, Klein K, Happe T, McGrady JE, Myers WK, Armstrong FA. How Formaldehyde Inhibits Hydrogen Evolution by [FeFe]-Hydrogenases: Determination by ¹³C ENDOR of Direct Fe-C Coordination and Order of Electron and Proton Transfers. J Am Chem Soc 2015; 137:5381-9. [PMID: 25871921 DOI: 10.1021/ja513074m] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Formaldehyde (HCHO), a strong electrophile and a rapid and reversible inhibitor of hydrogen production by [FeFe]-hydrogenases, is used to identify the point in the catalytic cycle at which a highly reactive metal-hydrido species is formed. Investigations of the reaction of Chlamydomonas reinhardtii [FeFe]-hydrogenase with formaldehyde using pulsed-EPR techniques including electron-nuclear double resonance spectroscopy establish that formaldehyde binds close to the active site. Density functional theory calculations support an inhibited super-reduced state having a short Fe-(13)C bond in the 2Fe subsite. The adduct forms when HCHO is available to compete with H(+) transfer to a vacant, nucleophilic Fe site: had H(+) transfer already occurred, the reaction of HCHO with the Fe-hydrido species would lead to methanol, release of which is not detected. Instead, Fe-bound formaldehyde is a metal-hydrido mimic, a locked, inhibited form analogous to that in which two electrons and only one proton have transferred to the H-cluster. The results provide strong support for a mechanism in which the fastest pathway for H2 evolution involves two consecutive proton transfer steps to the H-cluster following transfer of a second electron to the active site.
Collapse
Affiliation(s)
- Andreas Bachmeier
- †Inorganic Chemistry Laboratory and ‡Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.,§Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie and ∥Lehrstuhl für Anorganische Chemie I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Julian Esselborn
- †Inorganic Chemistry Laboratory and ‡Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.,§Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie and ∥Lehrstuhl für Anorganische Chemie I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Suzannah V Hexter
- †Inorganic Chemistry Laboratory and ‡Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.,§Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie and ∥Lehrstuhl für Anorganische Chemie I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Tobias Krämer
- †Inorganic Chemistry Laboratory and ‡Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.,§Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie and ∥Lehrstuhl für Anorganische Chemie I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Kathrin Klein
- †Inorganic Chemistry Laboratory and ‡Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.,§Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie and ∥Lehrstuhl für Anorganische Chemie I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Thomas Happe
- †Inorganic Chemistry Laboratory and ‡Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.,§Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie and ∥Lehrstuhl für Anorganische Chemie I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - John E McGrady
- †Inorganic Chemistry Laboratory and ‡Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.,§Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie and ∥Lehrstuhl für Anorganische Chemie I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - William K Myers
- †Inorganic Chemistry Laboratory and ‡Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.,§Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie and ∥Lehrstuhl für Anorganische Chemie I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Fraser A Armstrong
- †Inorganic Chemistry Laboratory and ‡Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.,§Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie and ∥Lehrstuhl für Anorganische Chemie I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| |
Collapse
|
45
|
Zhang L, He M, Liu J, Li L. Role of the mitochondrial alternative oxidase pathway in hydrogen photoproduction in Chlorella protothecoides. PLANTA 2015; 241:1005-1014. [PMID: 25544543 DOI: 10.1007/s00425-014-2231-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 12/14/2014] [Indexed: 06/04/2023]
Abstract
The AOX pathway in C. protothecoides plays an important role in the photoprotection of PSII by alleviating the inhibition of the repair of the photodamaged PSII during H2 photoproduction. We had demonstrated that nitrogen limitation (LN) substantially enhanced H2 photoproduction in Chlorella protothecoides. In the present study, the mitochondrial alternative oxidase (AOX) pathway capacity was found to increase significantly during H2 photoproduction under LN or under LN simultaneously with sulfur deprivation (LNS) conditions. The purpose of this study was to clarify the role of the AOX pathway during H2 photoproduction in C. protothecoides. The AOX pathway can affect H2 photoproduction in the following ways: (1) consuming O2, which is favorable for the establishment of anaerobiosis; (2) consuming NADPH and competing with hydrogenase for photosynthetic electrons, which would decrease the H2 photoproduction; (3) protecting photosystem (PS) II, which is a direct electron source for H2 photoproduction, from photoinhibition. In LN and LNS cultures, the inhibition of the AOX pathway reduced the H2 photoproduction significantly, and did not increase the amount of O2. But, the inhibition of the AOX pathway decreased the maximal photochemical efficiency of PSII (F v/F m) and the actual photochemical efficiency of PSII (Φ PSII) significantly, leading to photoinhibition, which would decrease the photosynthetic electrons transferred to hydrogenase. And, the inhibition of the AOX pathway did not change the level of photoinhibition in the presence of D1 protein synthesis inhibitor chloramphenicol, indicating that the inhibition of the AOX pathway did not accelerate the photodamage to PSII directly but inhibited the repair of the photodamaged PSII. Therefore, the mitochondrial AOX pathway in C. protothecoides plays an important role in the photoprotection of PSII by alleviating the inhibition of the repair of the photodamaged PSII during H2 photoproduction, which is thus able to supply more electrons to hydrogenase under LN and LNS conditions.
Collapse
Affiliation(s)
- Litao Zhang
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, Shandong, People's Republic of China
| | | | | | | |
Collapse
|
46
|
Clowez S, Godaux D, Cardol P, Wollman FA, Rappaport F. The involvement of hydrogen-producing and ATP-dependent NADPH-consuming pathways in setting the redox poise in the chloroplast of Chlamydomonas reinhardtii in anoxia. J Biol Chem 2015; 290:8666-76. [PMID: 25691575 DOI: 10.1074/jbc.m114.632588] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photosynthetic microalgae are exposed to changing environmental conditions. In particular, microbes found in ponds or soils often face hypoxia or even anoxia, and this severely impacts their physiology. Chlamydomonas reinhardtii is one among such photosynthetic microorganisms recognized for its unusual wealth of fermentative pathways and the extensive remodeling of its metabolism upon the switch to anaerobic conditions. As regards the photosynthetic electron transfer, this remodeling encompasses a strong limitation of the electron flow downstream of photosystem I. Here, we further characterize the origin of this limitation. We show that it stems from the strong reducing pressure that builds up upon the onset of anoxia, and this pressure can be relieved either by the light-induced synthesis of ATP, which promotes the consumption of reducing equivalents, or by the progressive activation of the hydrogenase pathway, which provides an electron transfer pathway alternative to the CO2 fixation cycle.
Collapse
Affiliation(s)
- Sophie Clowez
- From the Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 Rue P et M Curie, 75005 Paris, France, and
| | - Damien Godaux
- the Laboratoire de Génétique et Physiologie des Microalgues, Phytosystems, Department of Life Sciences, Institute of Botany, 27 Bld. du Rectorat, University of Liège, B-4000 Liège, Belgium
| | - Pierre Cardol
- the Laboratoire de Génétique et Physiologie des Microalgues, Phytosystems, Department of Life Sciences, Institute of Botany, 27 Bld. du Rectorat, University of Liège, B-4000 Liège, Belgium
| | - Francis-André Wollman
- From the Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 Rue P et M Curie, 75005 Paris, France, and
| | - Fabrice Rappaport
- From the Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 Rue P et M Curie, 75005 Paris, France, and
| |
Collapse
|
47
|
Steinbeck J, Nikolova D, Weingarten R, Johnson X, Richaud P, Peltier G, Hermann M, Magneschi L, Hippler M. Deletion of Proton Gradient Regulation 5 (PGR5) and PGR5-Like 1 (PGRL1) proteins promote sustainable light-driven hydrogen production in Chlamydomonas reinhardtii due to increased PSII activity under sulfur deprivation. FRONTIERS IN PLANT SCIENCE 2015; 6:892. [PMID: 26579146 PMCID: PMC4621405 DOI: 10.3389/fpls.2015.00892] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/07/2015] [Indexed: 05/19/2023]
Abstract
Continuous hydrogen photo-production under sulfur deprivation was studied in the Chlamydomonas reinhardtii pgr5 pgrl1 double mutant and respective single mutants. Under medium light conditions, the pgr5 exhibited the highest performance and produced about eight times more hydrogen than the wild type, making pgr5 one of the most efficient hydrogen producer reported so far. The pgr5 pgrl1 double mutant showed an increased hydrogen burst at the beginning of sulfur deprivation under high light conditions, but in this case the overall amount of hydrogen produced by pgr5 pgrl1 as well as pgr5 was diminished due to photo-inhibition and increased degradation of PSI. In contrast, the pgrl1 was effective in hydrogen production in both high and low light. Blocking photosynthetic electron transfer by DCMU stopped hydrogen production almost completely in the mutant strains, indicating that the main pathway of electrons toward enhanced hydrogen production is via linear electron transport. Indeed, PSII remained more active and stable in the pgr mutant strains as compared to the wild type. Since transition to anaerobiosis was faster and could be maintained due to an increased oxygen consumption capacity, this likely preserves PSII from photo-oxidative damage in the pgr mutants. Hence, we conclude that increased hydrogen production under sulfur deprivation in the pgr5 and pgrl1 mutants is caused by an increased stability of PSII permitting sustainable light-driven hydrogen production in Chlamydomonas reinhardtii.
Collapse
Affiliation(s)
- Janina Steinbeck
- Institute of Plant Biology and Biotechnology, University of MünsterMünster, Germany
| | - Denitsa Nikolova
- Institute of Plant Biology and Biotechnology, University of MünsterMünster, Germany
| | - Robert Weingarten
- Institute of Plant Biology and Biotechnology, University of MünsterMünster, Germany
| | - Xenie Johnson
- Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Institut de Biologie Environnementale et de Biotechnologie, Direction des Sciences du Vivant, Commissariat à l’Energie Atomique et aux Energies AlternativesSaint-Paul-lez-Durance, France
- CNRS, UMR 7265, Biologie Végétale et Microbiologie EnvironnementaleSaint-Paul-lez-Durance, France
- Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Aix Marseille UniversitéSaint-Paul-lez-Durance, France
| | - Pierre Richaud
- Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Institut de Biologie Environnementale et de Biotechnologie, Direction des Sciences du Vivant, Commissariat à l’Energie Atomique et aux Energies AlternativesSaint-Paul-lez-Durance, France
- CNRS, UMR 7265, Biologie Végétale et Microbiologie EnvironnementaleSaint-Paul-lez-Durance, France
- Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Aix Marseille UniversitéSaint-Paul-lez-Durance, France
| | - Gilles Peltier
- Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Institut de Biologie Environnementale et de Biotechnologie, Direction des Sciences du Vivant, Commissariat à l’Energie Atomique et aux Energies AlternativesSaint-Paul-lez-Durance, France
- CNRS, UMR 7265, Biologie Végétale et Microbiologie EnvironnementaleSaint-Paul-lez-Durance, France
- Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Aix Marseille UniversitéSaint-Paul-lez-Durance, France
| | - Marita Hermann
- Institute of Plant Biology and Biotechnology, University of MünsterMünster, Germany
| | - Leonardo Magneschi
- Institute of Plant Biology and Biotechnology, University of MünsterMünster, Germany
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, University of MünsterMünster, Germany
- *Correspondence: Michael Hippler,
| |
Collapse
|
48
|
Scoma A, Durante L, Bertin L, Fava F. Acclimation to hypoxia in Chlamydomonas reinhardtii: can biophotolysis be the major trigger for long-term H2 production? THE NEW PHYTOLOGIST 2014; 204:890-900. [PMID: 25103459 DOI: 10.1111/nph.12964] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 07/04/2014] [Indexed: 05/10/2023]
Abstract
In anaerobiosis, the microalga Chlamydomonas reinhardtii is able to produce H2 gas. Electrons mainly derive from mobilization of internal reserves or from water through biophotolysis. However, the exact mechanisms triggering this process are still unclear. Our hypothesis was that, once a proper redox state has been achieved, H2 production is eventually observed. To avoid nutrient depletion, which would result in enhanced fermentative pathways, we aimed to induce long-lasting H2 production solely through a photosynthesis : respiration equilibrium. Thus, growing cells were incubated in Tris Acetate Phosphate (TAP) medium under low light and high chlorophyll content. After a 250-h acclimation phase, a 350-h H2 production phase was observed. The light-to-H2 conversion efficiency was comparable to that given in some reports operating under sulphur starvation. Electron sources were found to be water, through biophotolysis, and proteins, particularly through photofermentation. Nonetheless, a substantial contribution from acetate could not be ruled out. In addition, photosystem II (PSII) inhibition by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) showed that it actively contributed to maintaining a redox balance during cell acclimation. In appropriate conditions, PSII may represent the major source of reducing power to feed the H2 evolution process, by inducing and maintaining an ideal excess of reducing power.
Collapse
Affiliation(s)
- Alberto Scoma
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), School of Engineering and Architecture, Alma Mater Studiorum, University of Bologna, Via U. Terracini 28, I-40131, Bologna, Italy
| | | | | | | |
Collapse
|
49
|
|
50
|
Shen Y. Carbon dioxide bio-fixation and wastewater treatment via algae photochemical synthesis for biofuels production. RSC Adv 2014. [DOI: 10.1039/c4ra06441k] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Utilizing the energy, nutrients and CO2held within residual waste materials to provide all necessary inputs except for sunlight, the cultivation of algae becomes a closed-loop engineered ecosystem. Developing this green biotechnology is a tangible step towards a waste-free sustainable society.
Collapse
Affiliation(s)
- Yafei Shen
- Department of Environmental Science and Technology
- Interdisciplinary Graduate School of Science and Engineering
- Tokyo Institute of Technology
- Yokohama, Japan
| |
Collapse
|