1
|
Gelzinis A, Chmeliov J, Tutkus M, Vitulskienė E, Franckevičius M, Büchel C, Robert B, Valkunas L. Fluorescence quenching in aggregates of fucoxanthin-chlorophyll protein complexes: Interplay of fluorescing and dark states. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149030. [PMID: 38163538 DOI: 10.1016/j.bbabio.2023.149030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/29/2023] [Revised: 11/29/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Diatoms, a major group of algae, account for about a quarter of the global primary production on Earth. These photosynthetic organisms face significant challenges due to light intensity variations in their underwater habitat. To avoid photodamage, they have developed very efficient non-photochemical quenching (NPQ) mechanisms. These mechanisms originate in their light-harvesting antenna - the fucoxanthin-chlorophyll protein (FCP) complexes. Spectroscopic studies of NPQ in vivo are often hindered by strongly overlapping signals from the photosystems and their antennae. Fortunately, in vitro FCP aggregates constitute a useful model system to study fluorescence (FL) quenching in diatoms. In this work, we present streak-camera FL measurements on FCPa and FCPb complexes, isolated from a centric diatom Cyclotella meneghiniana, and their aggregates. We find that spectra of non-aggregated FCP are dominated by a single fluorescing species, but the FL spectra of FCP aggregates additionally contain contributions from a redshifted emissive state. We relate this red state to a charge transfer state between chlorophyll c and chlorophyll a molecules. The FL quenching, on the other hand, is due to an additional dark state that involves incoherent energy transfer to the fucoxanthin carotenoids. Overall, the global picture of energy transfer and quenching in FCP aggregates is very similar to that of major light-harvesting complexes in higher plants (LHCII), but microscopic details between FCPs and LHCIIs differ significantly.
Collapse
Affiliation(s)
- Andrius Gelzinis
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Saulėtekio Ave. 3, 10257 Vilnius, Lithuania; Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Ave. 9-III, 10222 Vilnius, Lithuania
| | - Jevgenij Chmeliov
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Saulėtekio Ave. 3, 10257 Vilnius, Lithuania; Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Ave. 9-III, 10222 Vilnius, Lithuania
| | - Marijonas Tutkus
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Saulėtekio Ave. 3, 10257 Vilnius, Lithuania; Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio Ave. 7, 10257 Vilnius, Lithuania
| | - Ernesta Vitulskienė
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Saulėtekio Ave. 3, 10257 Vilnius, Lithuania
| | - Marius Franckevičius
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Saulėtekio Ave. 3, 10257 Vilnius, Lithuania
| | - Claudia Büchel
- Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Straße 9, 60438 Frankfurt, Germany
| | - Bruno Robert
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Leonas Valkunas
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Saulėtekio Ave. 3, 10257 Vilnius, Lithuania; Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Ave. 9-III, 10222 Vilnius, Lithuania.
| |
Collapse
|
2
|
Krysiak S, Gotić M, Madej E, Moreno Maldonado AC, Goya GF, Spiridis N, Burda K. The effect of ultrafine WO 3 nanoparticles on the organization of thylakoids enriched in photosystem II and energy transfer in photosystem II complexes. Microsc Res Tech 2023; 86:1583-1598. [PMID: 37534550 DOI: 10.1002/jemt.24394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023]
Abstract
In this work, a new approach to construct self-assembled hybrid systems based on natural PSII-enriched thylakoid membranes (PSII BBY) is demonstrated. Superfine m-WO3 NPs (≈1-2 nm) are introduced into PSII BBY. Transmission electron microscopy (TEM) measurements showed that even the highest concentrations of NPs used did not degrade the PSII BBY membranes. Using atomic force microscopy (AFM), it is shown that the organization of PSII BBY depends strongly on the concentration of NPs applied. This proved that the superfine NPs can easily penetrate the thylakoid membrane and interact with its components. These changes are also related to the modified energy transfer between the external light-harvesting antennas and the PSII reaction center, shown by absorption and fluorescence experiments. The biohybrid system shows stability at pH 6.5, the native operating environment of PSII, so a high rate of O2 evolution is expected. In addition, the light-induced water-splitting process can be further stimulated by the direct interaction of superfine WO3 NPs with the donor and acceptor sides of PSII. The water-splitting activity and stability of this colloidal system are under investigation. RESEARCH HIGHLIGHTS: The phenomenon of the self-organization of a biohybrid system composed of thylakoid membranes enriched in photosystem II and superfine WO3 nanoparticles is studied using AFM and TEM. A strong dependence of the organization of PSII complexes within PSII BBY membranes on the concentration of NPs applied is observed. This observation turns out to be crucial to understand the complexity of the mechanism of the action of WO3 NPs on modifications of energy transfer from external antenna complexes to the PSII reaction center.
Collapse
Affiliation(s)
- S Krysiak
- Faculty of Physics and Applied Computer Science, AGH - University of Krakow, Krakow, Poland
| | - M Gotić
- Division of Materials Physics, Ruđer Bošković Institute, Zagreb, Croatia
| | - E Madej
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland
| | - A C Moreno Maldonado
- Condensed Matter Physics Department and Instituto de Nanociencia y Materiales de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - G F Goya
- Condensed Matter Physics Department and Instituto de Nanociencia y Materiales de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - N Spiridis
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland
| | - K Burda
- Faculty of Physics and Applied Computer Science, AGH - University of Krakow, Krakow, Poland
| |
Collapse
|
3
|
Yao HD, Li DH, Gao RY, Zhou C, Wang W, Wang P, Shen JR, Kuang T, Zhang JP. A Possible Mechanism for Aggregation-Induced Chlorophyll Fluorescence Quenching in Light-Harvesting Complex II from the Marine Green Alga Bryopsis corticulans. J Phys Chem B 2022; 126:9580-9590. [PMID: 36356234 DOI: 10.1021/acs.jpcb.2c05823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022]
Abstract
The light-harvesting complex II of a green alga Bryopsis corticulans (B-LHCII) is peculiar in that it contains siphonein and siphonaxathin as carotenoid (Car). Since the S1 state of siphonein and siphonaxathin lies substantially higher than the Qy state of chlorophyll a (Chl a), the Chl a(Qy)-to-Car(S1) excitation energy transfer is unfeasible. To understand the photoprotective mechanism of algal photosynthesis, we investigated the influence of temperature on the excitation dynamics of B-LHCII in trimeric and aggregated forms. At room temperature, the aggregated form showed a 10-fold decrease in fluorescence intensity and lifetime than the trimeric form. Upon lowering the temperature, the characteristic 680 nm fluorescence (F-680) of B-LHCII in both forms exhibited systematic intensity enhancement and spectral narrowing; however, only the aggregated form showed a red emission extending over 690-780 nm (F-RE) with pronounced blueshift, lifetime prolongation, and intensity boost. The remarkable T-dependence of F-RE is ascribed to the Chl-Chl charge transfer (CT) species involved directly in the aggregation-induced Chl deactivation. The CT-quenching mechanism, which is considered to be crucial for B. corticulans photoprotection, draws strong support from the positive correlation of the Chl deactivation rate with the CT state population, as revealed by comparing the fluorescence dynamics of B-LHCII with that of the plant LHCII.
Collapse
Affiliation(s)
- Hai-Dan Yao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, 100872 Beijing, China
| | - Dan-Hong Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, 100872 Beijing, China
| | - Rong-Yao Gao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, 100872 Beijing, China
| | - Cuicui Zhou
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
| | - Wenda Wang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
| | - Peng Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, 100872 Beijing, China
| | - Jian-Ren Shen
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China.,Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Tingyun Kuang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
| | - Jian-Ping Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, 100872 Beijing, China
| |
Collapse
|
4
|
Shukla MK, Watanabe A, Wilson S, Giovagnetti V, Moustafa EI, Minagawa J, Ruban AV. A novel method produces native light-harvesting complex II aggregates from the photosynthetic membrane revealing their role in nonphotochemical quenching. J Biol Chem 2021; 295:17816-17826. [PMID: 33454016 DOI: 10.1074/jbc.ra120.016181] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/25/2020] [Revised: 10/15/2020] [Indexed: 01/31/2023] Open
Abstract
Nonphotochemical quenching (NPQ) is a mechanism of regulating light harvesting that protects the photosynthetic apparatus from photodamage by dissipating excess absorbed excitation energy as heat. In higher plants, the major light-harvesting antenna complex (LHCII) of photosystem (PS) II is directly involved in NPQ. The aggregation of LHCII is proposed to be involved in quenching. However, the lack of success in isolating native LHCII aggregates has limited the direct interrogation of this process. The isolation of LHCII in its native state from thylakoid membranes has been problematic because of the use of detergent, which tends to dissociate loosely bound proteins, and the abundance of pigment-protein complexes (e.g. PSI and PSII) embedded in the photosynthetic membrane, which hinders the preparation of aggregated LHCII. Here, we used a novel purification method employing detergent and amphipols to entrap LHCII in its natural states. To enrich the photosynthetic membrane with the major LHCII, we used Arabidopsis thaliana plants lacking the PSII minor antenna complexes (NoM), treated with lincomycin to inhibit the synthesis of PSI and PSII core proteins. Using sucrose density gradients, we succeeded in isolating the trimeric and aggregated forms of LHCII antenna. Violaxanthin- and zeaxanthin-enriched complexes were investigated in dark-adapted, NPQ, and dark recovery states. Zeaxanthin-enriched antenna complexes showed the greatest amount of aggregated LHCII. Notably, the amount of aggregated LHCII decreased upon relaxation of NPQ. Employing this novel preparative method, we obtained a direct evidence for the role of in vivo LHCII aggregation in NPQ.
Collapse
Affiliation(s)
- Mahendra K Shukla
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Akimasa Watanabe
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, Japan; Department of Basic Biology, School of Life Science, SOKENDAI, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Sam Wilson
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Vasco Giovagnetti
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Ece Imam Moustafa
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, Japan; Department of Basic Biology, School of Life Science, SOKENDAI, The Graduate University for Advanced Studies, Okazaki, Japan.
| | - Alexander V Ruban
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
5
|
Antenna Protein Clustering In Vitro Unveiled by Fluorescence Correlation Spectroscopy. Int J Mol Sci 2021; 22:ijms22062969. [PMID: 33804002 PMCID: PMC8000295 DOI: 10.3390/ijms22062969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/10/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/26/2022] Open
Abstract
Antenna protein aggregation is one of the principal mechanisms considered effective in protecting phototrophs against high light damage. Commonly, it is induced, in vitro, by decreasing detergent concentration and pH of a solution of purified antennas; the resulting reduction in fluorescence emission is considered to be representative of non-photochemical quenching in vivo. However, little is known about the actual size and organization of antenna particles formed by this means, and hence the physiological relevance of this experimental approach is questionable. Here, a quasi-single molecule method, fluorescence correlation spectroscopy (FCS), was applied during in vitro quenching of LHCII trimers from higher plants for a parallel estimation of particle size, fluorescence, and antenna cluster homogeneity in a single measurement. FCS revealed that, below detergent critical micelle concentration, low pH promoted the formation of large protein oligomers of sizes up to micrometers, and therefore is apparently incompatible with thylakoid membranes. In contrast, LHCII clusters formed at high pH were smaller and homogenous, and yet still capable of efficient quenching. The results altogether set the physiological validity limits of in vitro quenching experiments. Our data also support the idea that the small, moderately quenching LHCII oligomers found at high pH could be relevant with respect to non-photochemical quenching in vivo.
Collapse
|
6
|
Kondo M, Matsuda H, Noji T, Nango M, Dewa T. Photocatalytic activity of the light-harvesting complex of photosystem II (LHCII) monomer. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.112926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/24/2023]
|
7
|
Ostroumov EE, Götze JP, Reus M, Lambrev PH, Holzwarth AR. Characterization of fluorescent chlorophyll charge-transfer states as intermediates in the excited state quenching of light-harvesting complex II. PHOTOSYNTHESIS RESEARCH 2020; 144:171-193. [PMID: 32307623 DOI: 10.1007/s11120-020-00745-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/02/2020] [Accepted: 03/31/2020] [Indexed: 05/20/2023]
Abstract
Light-harvesting complex II (LHCII) is the major antenna complex in higher plants and green algae. It has been suggested that a major part of the excited state energy dissipation in the so-called "non-photochemical quenching" (NPQ) is located in this antenna complex. We have performed an ultrafast kinetics study of the low-energy fluorescent states related to quenching in LHCII in both aggregated and the crystalline form. In both sample types the chlorophyll (Chl) excited states of LHCII are strongly quenched in a similar fashion. Quenching is accompanied by the appearance of new far-red (FR) fluorescence bands from energetically low-lying Chl excited states. The kinetics of quenching, its temperature dependence down to 4 K, and the properties of the FR-emitting states are very similar both in LHCII aggregates and in the crystal. No such FR-emitting states are found in unquenched trimeric LHCII. We conclude that these states represent weakly emitting Chl-Chl charge-transfer (CT) states, whose formation is part of the quenching process. Quantum chemical calculations of the lowest energy exciton and CT states, explicitly including the coupling to the specific protein environment, provide detailed insight into the chemical nature of the CT states and the mechanism of CT quenching. The experimental data combined with the results of the calculations strongly suggest that the quenching mechanism consists of a sequence of two proton-coupled electron transfer steps involving the three quenching center Chls 610/611/612. The FR-emitting CT states are reaction intermediates in this sequence. The polarity-controlled internal reprotonation of the E175/K179 aa pair is suggested as the switch controlling quenching. A unified model is proposed that is able to explain all known conditions of quenching or non-quenching of LHCII, depending on the environment without invoking any major conformational changes of the protein.
Collapse
Affiliation(s)
- Evgeny E Ostroumov
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470, Mülheim a. d. Ruhr, Germany
- Quantum Matter Institute, University of British Columbia, 2355 East Mall, Vancouver, V6T 1Z1, Canada
| | - Jan P Götze
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470, Mülheim a. d. Ruhr, Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Michael Reus
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470, Mülheim a. d. Ruhr, Germany
| | - Petar H Lambrev
- Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Alfred R Holzwarth
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470, Mülheim a. d. Ruhr, Germany.
| |
Collapse
|
8
|
Pawlak K, Paul S, Liu C, Reus M, Yang C, Holzwarth AR. On the PsbS-induced quenching in the plant major light-harvesting complex LHCII studied in proteoliposomes. PHOTOSYNTHESIS RESEARCH 2020; 144:195-208. [PMID: 32266611 DOI: 10.1007/s11120-020-00740-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/02/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Non-photochemical quenching (NPQ) in photosynthetic organisms provides the necessary photoprotection that allows them to cope with largely and quickly varying light intensities. It involves deactivation of excited states mainly at the level of the antenna complexes of photosystem II using still largely unknown molecular mechanisms. In higher plants the main contribution to NPQ is the so-called qE-quenching, which can be switched on and off in a few seconds. This quenching mechanism is affected by the low pH-induced activation of the small membrane protein PsbS which interacts with the major light-harvesting complex of photosystem II (LHCII). We are reporting here on a mechanistic study of the PsbS-induced LHCII quenching using ultrafast time-resolved chlorophyll (Chl) fluorescence. It is shown that the PsbS/LHCII interaction in reconstituted proteoliposomes induces highly effective and specific quenching of the LHCII excitation by a factor ≥ 20 via Chl-Chl charge-transfer (CT) state intermediates which are weakly fluorescent. Their characteristics are very broad fluorescence bands pronouncedly red-shifted from the typical unquenched LHCII fluorescence maximum. The observation of PsbS-induced Chl-Chl CT-state emission from LHCII in the reconstituted proteoliposomes is highly reminiscent of the in vivo quenching situation and also of LHCII quenching in vitro in aggregated LHCII, indicating a similar quenching mechanism in all those situations. The PsbS mutant lacking the two proton sensing Glu residues induced significant, but much smaller, quenching than wild type. Added zeaxanthin had only minor effects on the yield of quenching in the proteoliposomes. Overall our study shows that PsbS co-reconstituted with LHCII in liposomes represents an excellent in vitro model system with characteristics that are reflecting closely the in vivo qE-quenching situation.
Collapse
Affiliation(s)
- Krzysztof Pawlak
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470, Mülheim, Germany
| | - Suman Paul
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470, Mülheim, Germany
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden
| | - Cheng Liu
- Key Laboratory of Plant Resources, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Michael Reus
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470, Mülheim, Germany
| | - Chunhong Yang
- Key Laboratory of Plant Resources, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Alfred R Holzwarth
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470, Mülheim, Germany.
| |
Collapse
|
9
|
Macroorganisation and flexibility of thylakoid membranes. Biochem J 2019; 476:2981-3018. [DOI: 10.1042/bcj20190080] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/20/2019] [Revised: 09/19/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
Abstract
The light reactions of photosynthesis are hosted and regulated by the chloroplast thylakoid membrane (TM) — the central structural component of the photosynthetic apparatus of plants and algae. The two-dimensional and three-dimensional arrangement of the lipid–protein assemblies, aka macroorganisation, and its dynamic responses to the fluctuating physiological environment, aka flexibility, are the subject of this review. An emphasis is given on the information obtainable by spectroscopic approaches, especially circular dichroism (CD). We briefly summarise the current knowledge of the composition and three-dimensional architecture of the granal TMs in plants and the supramolecular organisation of Photosystem II and light-harvesting complex II therein. We next acquaint the non-specialist reader with the fundamentals of CD spectroscopy, recent advances such as anisotropic CD, and applications for studying the structure and macroorganisation of photosynthetic complexes and membranes. Special attention is given to the structural and functional flexibility of light-harvesting complex II in vitro as revealed by CD and fluorescence spectroscopy. We give an account of the dynamic changes in membrane macroorganisation associated with the light-adaptation of the photosynthetic apparatus and the regulation of the excitation energy flow by state transitions and non-photochemical quenching.
Collapse
|
10
|
Application of decay- and evolution-associated spectra for molecular systems with spectral shifts or inherent inhomogeneities. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2019.110403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022]
|
11
|
Akhtar P, Görföl F, Garab G, Lambrev PH. Dependence of chlorophyll fluorescence quenching on the lipid-to-protein ratio in reconstituted light-harvesting complex II membranes containing lipid labels. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2019.03.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022]
|
12
|
Single-molecule microscopy studies of LHCII enriched in Vio or Zea. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:499-507. [DOI: 10.1016/j.bbabio.2019.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 11/20/2022]
|
13
|
Farooq S, Chmeliov J, Wientjes E, Koehorst R, Bader A, Valkunas L, Trinkunas G, van Amerongen H. Dynamic feedback of the photosystem II reaction centre on photoprotection in plants. NATURE PLANTS 2018; 4:225-231. [PMID: 29610535 DOI: 10.1038/s41477-018-0127-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/15/2017] [Accepted: 03/01/2018] [Indexed: 05/08/2023]
Abstract
Photosystem II of higher plants is protected against light damage by thermal dissipation of excess excitation energy, a process that can be monitored through non-photochemical quenching of chlorophyll fluorescence. When the light intensity is lowered, non-photochemical quenching largely disappears on a time scale ranging from tens of seconds to many minutes. With the use of picosecond fluorescence spectroscopy, we demonstrate that one of the underlying mechanisms is only functional when the reaction centre of photosystem II is closed, that is when electron transfer is blocked and the risk of photodamage is high. This is accompanied by the appearance of a long-wavelength fluorescence band. As soon as the reaction centre reopens, this quenching, together with the long-wavelength fluorescence, disappears instantaneously. This allows plants to maintain a high level of photosynthetic efficiency even in dangerous high-light conditions.
Collapse
Affiliation(s)
- Shazia Farooq
- Laboratory of Biophysics, Wageningen University and Research, Wageningen, the Netherlands
| | - Jevgenij Chmeliov
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Vilnius, Lithuania
- Department of Molecular Compound Physics, Centre for Physical Sciences and Technology, Vilnius, Lithuania
| | - Emilie Wientjes
- Laboratory of Biophysics, Wageningen University and Research, Wageningen, the Netherlands
| | - Rob Koehorst
- Laboratory of Biophysics, Wageningen University and Research, Wageningen, the Netherlands
| | - Arjen Bader
- Laboratory of Biophysics, Wageningen University and Research, Wageningen, the Netherlands
- MicroSpectroscopy Research Facility, Wageningen University and Research, Wageningen, the Netherlands
| | - Leonas Valkunas
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Vilnius, Lithuania
- Department of Molecular Compound Physics, Centre for Physical Sciences and Technology, Vilnius, Lithuania
| | - Gediminas Trinkunas
- Department of Molecular Compound Physics, Centre for Physical Sciences and Technology, Vilnius, Lithuania
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University and Research, Wageningen, the Netherlands.
- MicroSpectroscopy Research Facility, Wageningen University and Research, Wageningen, the Netherlands.
| |
Collapse
|
14
|
Janik E, Bednarska J, Sowinski K, Luchowski R, Zubik M, Grudzinski W, Gruszecki WI. Light-induced formation of dimeric LHCII. PHOTOSYNTHESIS RESEARCH 2017; 132:265-276. [PMID: 28425025 PMCID: PMC5443882 DOI: 10.1007/s11120-017-0387-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/24/2016] [Accepted: 04/11/2017] [Indexed: 05/14/2023]
Abstract
It emerges from numerous experiments that LHCII, the major photosynthetic antenna complex of plants, can appear not only in the trimeric or monomeric states but also as a dimer. We address the problem whether the dimeric form of the complex is just a simple intermediate element of the trimer-monomer transformation or if it can also be a physiologically relevant molecular organization form? Dimers of LHCII were analyzed with application of native electrophoresis, time-resolved fluorescence spectroscopy, and fluorescence correlation spectroscopy. The results reveal the appearance of two types of LHCII dimers: one formed by the dissociation of one monomer from the trimeric structure and the other formed by association of monomers into a distinctively different molecular organizational form, characterized by a high rate of chlorophyll excitation quenching. The hypothetical structure of such an energy quencher is proposed. The high light-induced LHCII dimerization is discussed as a potential element of the photoprotective response in plants.
Collapse
Affiliation(s)
- Ewa Janik
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, Pl. Marii Curie-Sklodowskiej 1, 20-031 Lublin, Poland
- Department of Cell Biology, Institute of Biology and Biochemistry, Maria Curie-Sklodowska University, ul. Akademicka 19, 20-033 Lublin, Poland
| | - Joanna Bednarska
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, Pl. Marii Curie-Sklodowskiej 1, 20-031 Lublin, Poland
- Department of Medicine, Imperial College London, Du Cane Road, London, W12 0NN UK
| | - Karol Sowinski
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, Pl. Marii Curie-Sklodowskiej 1, 20-031 Lublin, Poland
- Chair and Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University, ul. Chodzki 4a, 20-093 Lublin, Poland
| | - Rafal Luchowski
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, Pl. Marii Curie-Sklodowskiej 1, 20-031 Lublin, Poland
| | - Monika Zubik
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, Pl. Marii Curie-Sklodowskiej 1, 20-031 Lublin, Poland
- Department of Metrology and Modelling of Agrophysical Processes, Institute of Agrophysics of Polish Academy of Sciences, ul. Doswiadczalna 4, 20-290 Lublin, Poland
| | - Wojciech Grudzinski
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, Pl. Marii Curie-Sklodowskiej 1, 20-031 Lublin, Poland
| | - Wieslaw I. Gruszecki
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, Pl. Marii Curie-Sklodowskiej 1, 20-031 Lublin, Poland
| |
Collapse
|
15
|
Chmeliov J, Gelzinis A, Songaila E, Augulis R, Duffy CDP, Ruban AV, Valkunas L. The nature of self-regulation in photosynthetic light-harvesting antenna. NATURE PLANTS 2016; 2:16045. [PMID: 27243647 DOI: 10.1038/nplants.2016.45] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/09/2016] [Accepted: 03/09/2016] [Indexed: 05/08/2023]
Abstract
The photosynthetic apparatus of green plants is well known for its extremely high efficiency that allows them to operate under dim light conditions. On the other hand, intense sunlight may result in overexcitation of the light-harvesting antenna and the formation of reactive compounds capable of 'burning out' the whole photosynthetic unit. Non-photochemical quenching is a self-regulatory mechanism utilized by green plants on a molecular level that allows them to safely dissipate the detrimental excess excitation energy as heat. Although it is believed to take place in the plant's major light-harvesting complexes (LHC) II, there is still no consensus regarding its molecular nature. To get more insight into its physical origin, we performed high-resolution time-resolved fluorescence measurements of LHCII trimers and their aggregates across a wide temperature range. Based on simulations of the excitation energy transfer in the LHCII aggregate, we associate the red-emitting state, having fluorescence maximum at ∼700 nm, with the partial mixing of excitonic and chlorophyll-chlorophyll charge transfer states. On the other hand, the quenched state has a totally different nature and is related to the incoherent excitation transfer to the short-lived carotenoid excited states. Our results also show that the required level of photoprotection in vivo can be achieved by a very subtle change in the number of LHCIIs switched to the quenched state.
Collapse
Affiliation(s)
- Jevgenij Chmeliov
- Department of Theoretical Physics, Faculty of Physics, Vilnius University, Saulėtekio Avenue 9, LT-10222 Vilnius, Lithuania
- Department of Molecular Compound Physics, Centre for Physical Sciences and Technology, Saulėtekio Avenue 3, LT-10222 Vilnius, Lithuania
| | - Andrius Gelzinis
- Department of Theoretical Physics, Faculty of Physics, Vilnius University, Saulėtekio Avenue 9, LT-10222 Vilnius, Lithuania
- Department of Molecular Compound Physics, Centre for Physical Sciences and Technology, Saulėtekio Avenue 3, LT-10222 Vilnius, Lithuania
| | - Egidijus Songaila
- Department of Molecular Compound Physics, Centre for Physical Sciences and Technology, Saulėtekio Avenue 3, LT-10222 Vilnius, Lithuania
| | - Ramūnas Augulis
- Department of Molecular Compound Physics, Centre for Physical Sciences and Technology, Saulėtekio Avenue 3, LT-10222 Vilnius, Lithuania
| | - Christopher D P Duffy
- The School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
| | - Alexander V Ruban
- The School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
| | - Leonas Valkunas
- Department of Theoretical Physics, Faculty of Physics, Vilnius University, Saulėtekio Avenue 9, LT-10222 Vilnius, Lithuania
- Department of Molecular Compound Physics, Centre for Physical Sciences and Technology, Saulėtekio Avenue 3, LT-10222 Vilnius, Lithuania
| |
Collapse
|
16
|
Enriquez MM, Akhtar P, Zhang C, Garab G, Lambrev PH, Tan HS. Energy transfer dynamics in trimers and aggregates of light-harvesting complex II probed by 2D electronic spectroscopy. J Chem Phys 2016; 142:212432. [PMID: 26049452 DOI: 10.1063/1.4919239] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022] Open
Abstract
The pathways and dynamics of excitation energy transfer between the chlorophyll (Chl) domains in solubilized trimeric and aggregated light-harvesting complex II (LHCII) are examined using two-dimensional electronic spectroscopy (2DES). The LHCII trimers and aggregates exhibit the unquenched and quenched excitonic states of Chl a, respectively. 2DES allows direct correlation of excitation and emission energies of coupled states over population time delays, hence enabling mapping of the energy flow between Chls. By the excitation of the entire Chl b Qy band, energy transfer from Chl b to Chl a states is monitored in the LHCII trimers and aggregates. Global analysis of the two-dimensional (2D) spectra reveals that energy transfer from Chl b to Chl a occurs on fast and slow time scales of 240-270 fs and 2.8 ps for both forms of LHCII. 2D decay-associated spectra resulting from the global analysis identify the correlation between Chl states involved in the energy transfer and decay at a given lifetime. The contribution of singlet-singlet annihilation on the kinetics of Chl energy transfer and decay is also modelled and discussed. The results show a marked change in the energy transfer kinetics in the time range of a few picoseconds. Owing to slow energy equilibration processes, long-lived intermediate Chl a states are present in solubilized trimers, while in aggregates, the population decay of these excited states is significantly accelerated, suggesting that, overall, the energy transfer within the LHCII complexes is faster in the aggregated state.
Collapse
Affiliation(s)
- Miriam M Enriquez
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Parveen Akhtar
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary
| | - Cheng Zhang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Győző Garab
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary
| | - Petar H Lambrev
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary
| | - Howe-Siang Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| |
Collapse
|
17
|
Janik E, Bednarska J, Zubik M, Sowinski K, Luchowski R, Grudzinski W, Gruszecki WI. Is It Beneficial for the Major Photosynthetic Antenna Complex of Plants To Form Trimers? J Phys Chem B 2015; 119:8501-8. [DOI: 10.1021/acs.jpcb.5b04005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ewa Janik
- Department
of Biophysics, Institute of Physics, Maria Curie-Skłodowska University, Lublin 20-031, Poland
| | - Joanna Bednarska
- Department
of Biophysics, Institute of Physics, Maria Curie-Skłodowska University, Lublin 20-031, Poland
| | - Monika Zubik
- Department
of Biophysics, Institute of Physics, Maria Curie-Skłodowska University, Lublin 20-031, Poland
| | - Karol Sowinski
- Department
of Biophysics, Institute of Physics, Maria Curie-Skłodowska University, Lublin 20-031, Poland
- Faculty
of Pharmacy, Medical University, Lublin 20-093, Poland
| | - Rafal Luchowski
- Department
of Biophysics, Institute of Physics, Maria Curie-Skłodowska University, Lublin 20-031, Poland
| | - Wojciech Grudzinski
- Department
of Biophysics, Institute of Physics, Maria Curie-Skłodowska University, Lublin 20-031, Poland
| | - Wieslaw I. Gruszecki
- Department
of Biophysics, Institute of Physics, Maria Curie-Skłodowska University, Lublin 20-031, Poland
| |
Collapse
|
18
|
Yu D, Wang M, Zhu G, Ge B, Liu S, Huang F. Enhanced photocurrent production by bio-dyes of photosynthetic macromolecules on designed TiO2 film. Sci Rep 2015; 5:9375. [PMID: 25790735 PMCID: PMC4366820 DOI: 10.1038/srep09375] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2014] [Accepted: 03/02/2015] [Indexed: 11/19/2022] Open
Abstract
The macromolecular pigment-protein complex has the merit of high efficiency for light-energy capture and transfer after long-term photosynthetic evolution. Here bio-dyes of A. platensis photosystem I (PSI) and spinach light-harvesting complex II (LHCII) are spontaneously sensitized on three types of designed TiO2 films, to assess the effects of pigment-protein complex on the performance of bio-dye sensitized solar cells (SSC). Adsorption models of bio-dyes are proposed based on the 3D structures of PSI and LHCII, and the size of particles and inner pores in the TiO2 film. PSI shows its merit of high efficiency for captured energy transfer, charge separation and transfer in the electron transfer chain (ETC), and electron injection from FB to the TiO2 conducting band. After optimization, the best short current (JSC) and photoelectric conversion efficiency (η) of PSI-SSC and LHCII-SSC are 1.31 mA cm(-2) and 0.47%, and 1.51 mA cm(-2) and 0.52%, respectively. The potential for further improvement of this PSI based SSC is significant and could lead to better utilization of solar energy.
Collapse
Affiliation(s)
- Daoyong Yu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
- Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Mengfei Wang
- Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Guoliang Zhu
- Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
- Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Shuang Liu
- Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
- Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
19
|
An irradiation density dependent energy relaxation in plant photosystem II antenna assembly. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:286-293. [DOI: 10.1016/j.bbabio.2014.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/13/2014] [Revised: 10/28/2014] [Accepted: 11/24/2014] [Indexed: 11/22/2022]
|
20
|
Kell A, Feng X, Lin C, Yang Y, Li J, Reus M, Holzwarth AR, Jankowiak R. Charge-transfer character of the low-energy Chl a Q(y) absorption band in aggregated light harvesting complexes II. J Phys Chem B 2014; 118:6086-91. [PMID: 24838007 DOI: 10.1021/jp501735p] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Abstract
One of the key functions of the major light harvesting complex II (LHCII) of higher plants is to protect Photosystem II from photodamage at excessive light conditions in a process called "non-photochemical quenching" (NPQ). Using hole-burning (HB) spectroscopy, we investigated the nature of the low-energy absorption band in aggregated LHCII complexes - which are highly quenched and have been established as a good in vitro model for NPQ. Nonresonant holes reveal that the lowest energy state (located near 683.3 nm) is red-shifted by ~4 nm and significantly broader (by a factor of 4) as compared to nonaggregated trimeric LHCII. Resonant holes burned in the low-energy wing of the absorption spectrum (685-710 nm) showed a high electron-phonon (el-ph) coupling strength with a Huang-Rhys factor S of 3-4. This finding combined with the very low HB efficiency in the long-wavelength absorption tail is consistent with a dominant charge-transfer (CT) character of the lowest energy transition(s) in aggregated LHCII. The value of S decreases at shorter wavelengths (<685 nm), in agreement with previous studies (J. Pieper et al., J. Phys. Chem. B 1999, 103, 2422-2428), proving that the low-energy excitonic state is strongly mixed with the CT states. Our findings support the mechanistic model in which Chl-Chl CT states formed in aggregated LHCII are intermediates in the efficient excited state quenching process (M. G. Müller et al., Chem. Phys. Chem. 2010, 11, 1289-1296; Y. Miloslavina et al., FEBS Lett. 2008, 582, 3625-3631).
Collapse
Affiliation(s)
- Adam Kell
- Department of Chemistry and ‡Department of Physics, Kansas State University , Manhattan, Kansas 66505, United States
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Yang Y, Jankowiak R, Lin C, Pawlak K, Reus M, Holzwarth AR, Li J. Effect of the LHCII pigment–protein complex aggregation on photovoltaic properties of sensitized TiO2 solar cells. Phys Chem Chem Phys 2014; 16:20856-65. [DOI: 10.1039/c4cp03112a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
Chl–Chl charge transfer states formed in LHCII aggregates are observed to enhance the photocurrent generation in LHCII sensitized solar cell.
Collapse
Affiliation(s)
- Yiqun Yang
- Department of Chemistry
- Kansas State University
- Manhattan, USA
| | | | - Chen Lin
- Department of Chemistry
- Kansas State University
- Manhattan, USA
| | - Krzysztof Pawlak
- Max-Planck-Institute for Chemical Energy Conversion (MPI-CEC)
- , Germany
| | - Michael Reus
- Max-Planck-Institute for Chemical Energy Conversion (MPI-CEC)
- , Germany
| | | | - Jun Li
- Department of Chemistry
- Kansas State University
- Manhattan, USA
| |
Collapse
|