1
|
Subramanyam R, Tomo T, Eaton-Rye JJ, Yilmaz G, Allakhverdiev SI. International conference on "Photosynthesis and Hydrogen Energy Research for Sustainability-2023": in honor of Robert Blankenship, Győző Garab, Michael Grätzel, Norman Hüner and Gunnar Öquist. PHOTOSYNTHESIS RESEARCH 2024; 161:141-150. [PMID: 38502256 DOI: 10.1007/s11120-024-01087-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/06/2024] [Indexed: 03/21/2024]
Abstract
The 11th International Photosynthesis Conference on Hydrogen Energy Research and Sustainability 2023 was organized in honor of Robert Blankenship, Győző Garab, Michael Grätzel, Norman Hüner, and Gunnar Öquist, in Istanbul, Türkiye at Bahçeşehir University Future Campus from 03 to 09 July 2023. It was jointly supported by the International Society of Photosynthesis Research (ISPR) and the International Association for Hydrogen Energy (IAHE). In this article we provide brief details of the conference, its events, keynote speakers, and the scientific contribution of scientists honored at this conference. Further, we also describe the participation of young researchers, their talks, and their awards.
Collapse
Affiliation(s)
- Rajagopal Subramanyam
- Department of Plant Science, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Tatsuya Tomo
- Department of Physics, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Julian J Eaton-Rye
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Girayhan Yilmaz
- Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey
| | - Suleyman I Allakhverdiev
- Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey.
- К.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St. 35, Moscow, Russia, 127276.
| |
Collapse
|
2
|
Aliprandi E, Demaria S, Colpo A, Brestič M, Živčak M, Martina A, Pancaldi S, Baldisserotto C, Ferroni L. Thylakoid ultrastructural variations in chlorophyll-deficient wheat: aberrations or structural acclimation? PLANTA 2024; 259:90. [PMID: 38478121 PMCID: PMC10937782 DOI: 10.1007/s00425-024-04362-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/06/2024] [Indexed: 03/17/2024]
Abstract
MAIN CONCLUSION A structural re-modeling of the thylakoid system, including granum size and regularity, occurs in chlorophyll-deficient wheat mutants affected by photosynthetic membrane over-reduction. In the chloroplast of land plants, the thylakoid system is defined by appressed grana stacks and unstacked stroma lamellae. This study focuses on the variations of the grana organization occurring in outdoor-grown wheat mutants characterized by low chlorophyll content and a tendency for photosynthetic membrane over-reduction. Triticum aestivum ANK-32A and Triticum durum ANDW-7B were compared to their corresponding WT lines, NS67 and LD222, respectively. Electron micrographs of chloroplasts were used to calculate grana ultrastructural parameters. Photosynthetic parameters were obtained by modulated chlorophyll fluorescence and applying Light Curves (LC) and Rapid Light Curves (RLC) protocols. For each photosynthetic parameter, the difference Δ(RLC-LC) was calculated to evaluate the flexible response to light in the examined lines. In the mutants, fewer and smaller disks formed grana stacks characterized by a marked increase in lateral and cross-sectional irregularity, both negatively correlated with the number of layers per granum. A relationship was found between membrane over-reduction and granum structural irregularity. The possible acclimative significance of a greater proportion of stroma-exposed grana domains in relieving the excess electron pressure on PSI is discussed.
Collapse
Affiliation(s)
- Elisabetta Aliprandi
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I D'Este 32, 44121, Ferrara, Italy
| | - Sara Demaria
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I D'Este 32, 44121, Ferrara, Italy
| | - Andrea Colpo
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I D'Este 32, 44121, Ferrara, Italy
| | - Marian Brestič
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Trieda A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Marek Živčak
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Trieda A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Angela Martina
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I D'Este 32, 44121, Ferrara, Italy
| | - Simonetta Pancaldi
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I D'Este 32, 44121, Ferrara, Italy
| | - Costanza Baldisserotto
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I D'Este 32, 44121, Ferrara, Italy
| | - Lorenzo Ferroni
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I D'Este 32, 44121, Ferrara, Italy.
| |
Collapse
|
3
|
Colpo A, Molinari A, Boldrini P, Živčak M, Brestič M, Demaria S, Baldisserotto C, Pancaldi S, Ferroni L. Thylakoid membrane appression in the giant chloroplast of Selaginella martensii Spring: A lycophyte challenges grana paradigms in shade-adapted species. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111833. [PMID: 37595894 DOI: 10.1016/j.plantsci.2023.111833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/17/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
In vascular plants, the thylakoid architecture is dominated by the highly structured multiple membrane layers known as grana. The structural diversity of the thylakoid system among plant species is mainly determined by the adaptation to the growth light regime, according to a paradigm stating that shade-tolerant species are featured by a high membrane extension with an enhanced number of thylakoid layers per granum. In this study, the thylakoid system was analysed in Selaginella martensii Spring, a shade-adapted rainforest species belonging to lycophytes, a diminutive plant lineage, sister clade of all other vascular plants (euphyllophytes, including ferns and seed plants). The species is characterized by giant cup-shaped chloroplasts in the upper epidermis and, quantitatively less important, disk-shaped chloroplasts in the mesophyll and lower epidermis. The study aimed at the quantitative assessment of the thylakoid appression exploiting a combination of complementary methods, including electron microscopy, selective thylakoid solubilisation, electron paramagnetic resonance, and simultaneous analysis of fast chlorophyll a fluorescence and P700 redox state. With a chlorophyll a/b ratio of 2.6 and PSI/PSII ratio of 0.31, the plant confirmed two typical hallmarks of shade-adaptation. The morphometric analysis of electron micrographs revealed a 33% fraction of non-appressed thylakoid domains. However, contrasting with the structural paradigm of thylakoid shade-adaptation in angiosperms, S. martensii privileges the increase in the granum diameter in place of the increase in the number of layers building the granum. The very wide grana diameter, 727 nm on average, largely overcame the threshold of 500 nm currently hypothesized to allow an effective diffusion of long-range electron carriers. The fraction of non-appressed membranes based on the selective solubilisation of thylakoids with digitonin was 26%, lower than the morphometric determination, indicating the presence of non-appressed domains inaccessible to the detergent, most probably because of the high three-dimensional complexity of the thylakoid system in S. martensii. Particularly, strong irregularity of grana stacks is determined by assembling thylakoid layers of variable width that tend to slide apart from each other as the number of stacked layers increases.
Collapse
Affiliation(s)
- Andrea Colpo
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d'Este 32, 44121 Ferrara, Italy
| | - Alessandra Molinari
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Paola Boldrini
- Center of Electron Microscopy, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Marek Živčak
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, A. Hlinku 2, Nitra, 949 76, Slovak Republic
| | - Marian Brestič
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, A. Hlinku 2, Nitra, 949 76, Slovak Republic
| | - Sara Demaria
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d'Este 32, 44121 Ferrara, Italy
| | - Costanza Baldisserotto
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d'Este 32, 44121 Ferrara, Italy
| | - Simonetta Pancaldi
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d'Este 32, 44121 Ferrara, Italy
| | - Lorenzo Ferroni
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d'Este 32, 44121 Ferrara, Italy.
| |
Collapse
|
4
|
Guéguen N, Maréchal E. Origin of cyanobacterial thylakoids via a non-vesicular glycolipid phase transition and their impact on the Great Oxygenation Event. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2721-2734. [PMID: 35560194 DOI: 10.1093/jxb/erab429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/16/2021] [Indexed: 06/15/2023]
Abstract
The appearance of oxygenic photosynthesis in cyanobacteria is a major event in evolution. It had an irreversible impact on the Earth, promoting the Great Oxygenation Event (GOE) ~2.4 billion years ago. Ancient cyanobacteria predating the GOE were Gloeobacter-type cells lacking thylakoids, which hosted photosystems in their cytoplasmic membrane. The driver of the GOE was proposed to be the transition from unicellular to filamentous cyanobacteria. However, the appearance of thylakoids expanded the photosynthetic surface to such an extent that it introduced a multiplier effect, which would be more coherent with an impact on the atmosphere. Primitive thylakoids self-organize as concentric parietal uninterrupted multilayers. There is no robust evidence for an origin of thylakoids via a vesicular-based scenario. This review reports studies supporting that hexagonal II-forming glucolipids and galactolipids at the periphery of the cytosolic membrane could be turned, within nanoseconds and without any external source of energy, into membrane multilayers. Comparison of lipid biosynthetic pathways shows that ancient cyanobacteria contained only one anionic lamellar-forming lipid, phosphatidylglycerol. The acquisition of sulfoquinovosyldiacylglycerol biosynthesis correlates with thylakoid emergence, possibly enabling sufficient provision of anionic lipids to trigger a hexagonal II-to-lamellar phase transition. With this non-vesicular lipid-phase transition, a framework is also available to re-examine the role of companion proteins in thylakoid biogenesis.
Collapse
Affiliation(s)
- Nolwenn Guéguen
- Laboratoire de Physiologie Cellulaire et Végétale; INRAE, CNRS, CEA, Université Grenoble Alpes; IRIG; CEA Grenoble, 17 rue des Martyrs, 38000 Grenoble, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale; INRAE, CNRS, CEA, Université Grenoble Alpes; IRIG; CEA Grenoble, 17 rue des Martyrs, 38000 Grenoble, France
| |
Collapse
|
5
|
Karlický V, Kmecová Materová Z, Kurasová I, Nezval J, Štroch M, Garab G, Špunda V. Accumulation of geranylgeranylated chlorophylls in the pigment-protein complexes of Arabidopsis thaliana acclimated to green light: effects on the organization of light-harvesting complex II and photosystem II functions. PHOTOSYNTHESIS RESEARCH 2021; 149:233-252. [PMID: 33948813 PMCID: PMC8382614 DOI: 10.1007/s11120-021-00827-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Light quality significantly influences plant metabolism, growth and development. Recently, we have demonstrated that leaves of barley and other plant species grown under monochromatic green light (500-590 nm) accumulated a large pool of chlorophyll a (Chl a) intermediates with incomplete hydrogenation of their phytyl chains. In this work, we studied accumulation of these geranylgeranylated Chls a and b in pigment-protein complexes (PPCs) of Arabidopsis plants acclimated to green light and their structural-functional consequences on the photosynthetic apparatus. We found that geranylgeranylated Chls are present in all major PPCs, although their presence was more pronounced in light-harvesting complex II (LHCII) and less prominent in supercomplexes of photosystem II (PSII). Accumulation of geranylgeranylated Chls hampered the formation of PSII and PSI super- and megacomplexes in the thylakoid membranes as well as their assembly into chiral macrodomains; it also lowered the temperature stability of the PPCs, especially that of LHCII trimers, which led to their monomerization and an anomaly in the photoprotective mechanism of non-photochemical quenching. Role of geranylgeranylated Chls in adverse effects on photosynthetic apparatus of plants acclimated to green light is discussed.
Collapse
Affiliation(s)
- Václav Karlický
- Department of Physics, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic.
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic.
| | - Zuzana Kmecová Materová
- Department of Physics, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic
| | - Irena Kurasová
- Department of Physics, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic
| | - Jakub Nezval
- Department of Physics, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic
| | - Michal Štroch
- Department of Physics, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic
| | - Győző Garab
- Department of Physics, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic.
- Biological Research Center, Institute of Plant Biology, Temesvári körút 62, 6726, Szeged, Hungary.
| | - Vladimír Špunda
- Department of Physics, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic.
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic.
| |
Collapse
|
6
|
Ünnep R, Paul S, Zsiros O, Kovács L, Székely NK, Steinbach G, Appavou MS, Porcar L, Holzwarth AR, Garab G, Nagy G. Thylakoid membrane reorganizations revealed by small-angle neutron scattering of Monstera deliciosa leaves associated with non-photochemical quenching. Open Biol 2020; 10:200144. [PMID: 32931722 PMCID: PMC7536078 DOI: 10.1098/rsob.200144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022] Open
Abstract
Non-photochemical quenching (NPQ) is an important photoprotective mechanism in plants and algae. Although the process is extensively studied, little is known about its relationship with ultrastructural changes of the thylakoid membranes. In order to better understand this relationship, we studied the effects of illumination on the organization of thylakoid membranes in Monstera deliciosa leaves. This evergreen species is known to exhibit very large NPQ and to possess giant grana with dozens of stacked thylakoids. It is thus ideally suited for small-angle neutron scattering measurements (SANS)-a non-invasive technique, which is capable of providing spatially and statistically averaged information on the periodicity of the thylakoid membranes and their rapid reorganizations in vivo. We show that NPQ-inducing illumination causes a strong decrease in the periodic order of granum thylakoid membranes. Development of NPQ and light-induced ultrastructural changes, as well as the relaxation processes, follow similar kinetic patterns. Surprisingly, whereas NPQ is suppressed by diuron, it impedes only the relaxation of the structural changes and not its formation, suggesting that structural changes do not cause but enable NPQ. We also demonstrate that the diminishment of SANS peak does not originate from light-induced redistribution and reorientation of chloroplasts inside the cells.
Collapse
Affiliation(s)
- Renáta Ünnep
- Neutron Spectroscopy Department, Centre for Energy Research, H-1121 Budapest, Konkoly-Thege Miklós út 29-33, Hungary
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Suman Paul
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim a.d. Ruhr, Germany
| | - Ottó Zsiros
- Biological Research Centre, Institute of Plant Biology, 6726 Szeged, Hungary
| | - László Kovács
- Biological Research Centre, Institute of Plant Biology, 6726 Szeged, Hungary
| | - Noémi K. Székely
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science at MLZ, 85748 Garching, Germany
| | - Gábor Steinbach
- Biological Research Centre, Institute of Biophysics, Temesvári körút 62, 6726 Szeged, Hungary
| | - Marie-Sousai Appavou
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science at MLZ, 85748 Garching, Germany
| | - Lionel Porcar
- Institut Laue-Langevin, BP 156, 38042 Grenoble Cedex 9, France
| | - Alfred R. Holzwarth
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim a.d. Ruhr, Germany
| | - Győző Garab
- Biological Research Centre, Institute of Plant Biology, 6726 Szeged, Hungary
- Department of Physics, Faculty of Science, Ostrava University, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Gergely Nagy
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
- European Spallation Source ESS ERIC, PO Box 176, 221 00 Lund, Sweden
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, 1121 Budapest, Hungary
| |
Collapse
|
7
|
Mazur R, Gieczewska K, Kowalewska Ł, Kuta A, Proboszcz M, Gruszecki WI, Mostowska A, Garstka M. Specific Composition of Lipid Phases Allows Retaining an Optimal Thylakoid Membrane Fluidity in Plant Response to Low-Temperature Treatment. FRONTIERS IN PLANT SCIENCE 2020; 11:723. [PMID: 32582253 PMCID: PMC7291772 DOI: 10.3389/fpls.2020.00723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/06/2020] [Indexed: 05/15/2023]
Abstract
Thylakoid membranes isolated from leaves of two plant species, the chilling tolerant (CT) pea and chilling sensitive (CS) runner bean, were assessed for the composition of lipids, carotenoids as well as for the arrangement of photosynthetic complexes. The response to stress conditions was investigated in dark-chilled and subsequently photo-activated detached leaves of pea and bean. Thylakoids of both species have a similar level of monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), but different sulfoquinovosyldiacylglycerol to phosphatidylglycerol (PG) ratio. In pea thylakoid fraction, the MGDG, DGDG and PG, have a higher double bond index (DBI), whereas bean thylakoids contain higher levels of high melting point PG. Furthermore, the lutein to the β-carotene ratio is higher in bean thylakoids. Smaller protein/lipid ratio in pea than in bean thylakoids suggests different lipid-protein interactions in both species. The differences between species are also reflected by the course of temperature-dependent plots of chlorophyll fluorescence pointing various temperatures of the lipid phase transitions of pea and bean thylakoids. Our results showed higher fluidity of the thylakoid membrane network in pea than in bean in optimal temperature conditions. Dark-chilling decreases the photochemical activity and induces significant degradation of MGDG in bean but not in pea leaves. Similarly, substantial changes in the arrangement of photosynthetic complexes with increase in LHCII phosphorylation and disturbances of the thylakoid structure take place in bean thylakoids only. Changes in the physical properties of bean thylakoids are manifested by the conversion of a three-phase temperature-dependent plot to a one-phase plot. Subsequent photo-activation of chilled bean leaves caused a partial restoration of the photochemistry and of membrane physical properties, but not of the photosynthetic complexes arrangement nor the thylakoid network structure. Summarizing, the composition of the thylakoid lipid matrix of CT pea allows retaining the optimal fluidity of its chloroplast membranes under low temperatures. In contrast, the fluidity of CS bean thylakoids is drastically changed, leading to the reorganization of the supramolecular structure of the photosynthetic complexes and finally results in structural remodeling of the CS bean thylakoid network.
Collapse
Affiliation(s)
- Radosław Mazur
- Department of Metabolic Regulation, Faculty of Biology, Institute of Biochemistry, University of Warsaw, Warsaw, Poland
- *Correspondence: Radosław Mazur,
| | - Katarzyna Gieczewska
- Department of Plant Anatomy and Cytology, Faculty of Biology, Institute of Plant Experimental Biology and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Łucja Kowalewska
- Department of Plant Anatomy and Cytology, Faculty of Biology, Institute of Plant Experimental Biology and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Anna Kuta
- Department of Metabolic Regulation, Faculty of Biology, Institute of Biochemistry, University of Warsaw, Warsaw, Poland
| | - Małgorzata Proboszcz
- Department of Metabolic Regulation, Faculty of Biology, Institute of Biochemistry, University of Warsaw, Warsaw, Poland
| | - Wieslaw I. Gruszecki
- Department of Biophysics, Institute of Physics, Maria Curie-Skłodowska University, Lublin, Poland
| | - Agnieszka Mostowska
- Department of Plant Anatomy and Cytology, Faculty of Biology, Institute of Plant Experimental Biology and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Maciej Garstka
- Department of Metabolic Regulation, Faculty of Biology, Institute of Biochemistry, University of Warsaw, Warsaw, Poland
- Maciej Garstka,
| |
Collapse
|
8
|
Zsiros O, Ünnep R, Nagy G, Almásy L, Patai R, Székely NK, Kohlbrecher J, Garab G, Dér A, Kovács L. Role of Protein-Water Interface in the Stacking Interactions of Granum Thylakoid Membranes-As Revealed by the Effects of Hofmeister Salts. FRONTIERS IN PLANT SCIENCE 2020; 11:1257. [PMID: 32922427 PMCID: PMC7456932 DOI: 10.3389/fpls.2020.01257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/30/2020] [Indexed: 05/08/2023]
Abstract
The thylakoid membranes of vascular plants are differentiated into stacked granum and unstacked stroma regions. The formation of grana is triggered by the macrodomain formation of photosystem II and light-harvesting complex II (PSII-LHCII) and thus their lateral segregation from the photosystem I-light-harvesting complex I (PSI-LHCI) super-complexes and the ATP-synthase; which is then stabilized by stacking interactions of the adjacent PSII-LHCII enriched regions of the thylakoid membranes. The self-assembly and dynamics of this highly organized membrane system and the nature of forces acting between the PSII-LHCII macrodomains are not well understood. By using circular dichroism (CD) spectroscopy, small-angle neutron scattering (SANS) and transmission electron microscopy (TEM), we investigated the effects of Hofmeister salts on the organization of pigment-protein complexes and on the ultrastructure of thylakoid membranes. We found that the kosmotropic agent (NH4)2SO4 and the Hofmeister-neutral NaCl, up to 2 M concentrations, hardly affected the macro-organization of the protein complexes and the membrane ultrastructure. In contrast, chaotropic salts, NaClO4, and NaSCN destroyed the mesoscopic structures, the multilamellar organization of the thylakoid membranes and the chiral macrodomains of the protein complexes but without noticeably affecting the short-range, pigment-pigment excitonic interactions. Comparison of the concentration- and time-dependences of SANS, TEM and CD parameters revealed the main steps of the disassembly of grana in the presence of chaotropes. It begins with a rapid diminishment of the long-range periodic order of the grana membranes, apparently due to an increased stacking disorder of the thylakoid membranes, as reflected by SANS experiments. SANS measurements also allowed discrimination between the cationic and anionic effects-in stacking and disorder, respectively. This step is followed by a somewhat slower disorganization of the TEM ultrastructure, due to the gradual loss of stacked membrane pairs. Occurring last is the stepwise decrease and disappearance of the long-range chiral order of the protein complexes, the rate of which was faster in LHCII-deficient membranes. These data are interpreted in terms of a theory, from our laboratory, according to which Hofmeister salts primarily affect the hydrophylic-hydrophobic interactions of proteins, and the stroma-exposed regions of the intrinsic membrane proteins, in particular-pointing to the role of protein-water interface in the stacking interactions of granum thylakoid membranes.
Collapse
Affiliation(s)
- Ottó Zsiros
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Renáta Ünnep
- Neutron Spectroscopy Department, Centre for Energy Research, Budapest, Hungary
| | - Gergely Nagy
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, Villigen PSI, Switzerland
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Budapest, Hungary
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - László Almásy
- Neutron Spectroscopy Department, Centre for Energy Research, Budapest, Hungary
| | - Roland Patai
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Noémi K. Székely
- Jülich Centre for Neutron Science at MLZ, Forschungszentrum Jülich GmbH, Garching, Germany
| | - Joachim Kohlbrecher
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Győző Garab
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czechia
- *Correspondence: Győző Garab, ; András Dér, ; László Kovács,
| | - András Dér
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
- *Correspondence: Győző Garab, ; András Dér, ; László Kovács,
| | - László Kovács
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- *Correspondence: Győző Garab, ; András Dér, ; László Kovács,
| |
Collapse
|
9
|
Macroorganisation and flexibility of thylakoid membranes. Biochem J 2019; 476:2981-3018. [DOI: 10.1042/bcj20190080] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/19/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
Abstract
The light reactions of photosynthesis are hosted and regulated by the chloroplast thylakoid membrane (TM) — the central structural component of the photosynthetic apparatus of plants and algae. The two-dimensional and three-dimensional arrangement of the lipid–protein assemblies, aka macroorganisation, and its dynamic responses to the fluctuating physiological environment, aka flexibility, are the subject of this review. An emphasis is given on the information obtainable by spectroscopic approaches, especially circular dichroism (CD). We briefly summarise the current knowledge of the composition and three-dimensional architecture of the granal TMs in plants and the supramolecular organisation of Photosystem II and light-harvesting complex II therein. We next acquaint the non-specialist reader with the fundamentals of CD spectroscopy, recent advances such as anisotropic CD, and applications for studying the structure and macroorganisation of photosynthetic complexes and membranes. Special attention is given to the structural and functional flexibility of light-harvesting complex II in vitro as revealed by CD and fluorescence spectroscopy. We give an account of the dynamic changes in membrane macroorganisation associated with the light-adaptation of the photosynthetic apparatus and the regulation of the excitation energy flow by state transitions and non-photochemical quenching.
Collapse
|
10
|
Kowalewska Ł, Bykowski M, Mostowska A. Spatial organization of thylakoid network in higher plants. BOTANY LETTERS 2019. [PMID: 0 DOI: 10.1080/23818107.2019.1619195] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- Łucja Kowalewska
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Michał Bykowski
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Agnieszka Mostowska
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
11
|
Stamatakis K, Broussos PI, Panagiotopoulou A, Gast RJ, Pelecanou M, Papageorgiou GC. Light-adaptive state transitions in the Ross Sea haptophyte Phaeocystis antarctica and in dinoflagellate cells hosting kleptoplasts derived from it. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1860:102-110. [PMID: 30414926 DOI: 10.1016/j.bbabio.2018.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/11/2018] [Accepted: 11/07/2018] [Indexed: 11/19/2022]
Abstract
Light state transitions (STs) is a reversible physiological process that oxygenic photosynthetic organisms use in order to minimize imbalances in the electronic excitation delivery to the reaction centers of Photosystems I and II, and thus to optimize photosynthesis. STs have been studied extensively in plants, green algae, red algae and cyanobacteria, but sparsely in algae with secondary red algal plastids, such as diatoms and haptophytes, despite their immense ecological significance. In the present work, we examine whether the haptophyte alga Phaeocystis antarctica, and dinoflagellate cells that host kleptoplasts derived from P. antarctica, both endemic in the Ross Sea, Antarctica, are capable of light adaptive STs. In these organisms, Chl a fluorescence can be excited either by direct light absorption, or indirectly by electronic excitation (EE) transfer from ultraviolet light absorbing mycosporine-like amino acids (MAAs) to Chl a (Stamatakis et al., Biochim. Biophys. Acta 1858 [2017] 189-195). Here we show that, on adaptation to PS II-selective light, dark-adapted P. antarctica cells shift from light state 1 (ST1; more EE ending up in PS II) to light state 2 (ST2; more EE ending up in PS I), as revealed by the spectral distribution of directly-excited Chl a fluorescence and by changes in the macro-organization of pigment-protein complexes evidenced by circular dichroism (CD) spectroscopy. In contrast, no STs are clearly detected in the case of the kleptoplast-hosting dinoflagellate cells, and in the case of indirectly excited Chls a, via MAAs, in P. antarctica cells.
Collapse
Affiliation(s)
- Kostas Stamatakis
- Institute of Biosciences and Applications, NCSR "Demokritos", 15310, Aghia Paraskevi Attikis, Greece.
| | - Panayiotis-Ilias Broussos
- Institute of Biosciences and Applications, NCSR "Demokritos", 15310, Aghia Paraskevi Attikis, Greece
| | - Angeliki Panagiotopoulou
- Institute of Biosciences and Applications, NCSR "Demokritos", 15310, Aghia Paraskevi Attikis, Greece
| | - Rebecca J Gast
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Maria Pelecanou
- Institute of Biosciences and Applications, NCSR "Demokritos", 15310, Aghia Paraskevi Attikis, Greece
| | - George C Papageorgiou
- Institute of Biosciences and Applications, NCSR "Demokritos", 15310, Aghia Paraskevi Attikis, Greece
| |
Collapse
|
12
|
Gao J, Wang H, Yuan Q, Feng Y. Structure and Function of the Photosystem Supercomplexes. FRONTIERS IN PLANT SCIENCE 2018; 9:357. [PMID: 29616068 PMCID: PMC5869908 DOI: 10.3389/fpls.2018.00357] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/02/2018] [Indexed: 05/21/2023]
Abstract
Photosynthesis converts solar energy into chemical energy to sustain all life on earth by providing oxygen and food, and controlling the atmospheric carbon dioxide. During this process, the water-splitting and oxygen-evolving reaction is catalyzed by photosystem II (PSII), while photosystem I (PSI) generates the reducing power for the reduction of NADP+ to NADPH. Together with their peripheral light-harvesting complexes (LHCs), photosystems function as multisubunit supercomplexes located in the thylakoid membranes of cyanobacteria, algae, and plants. Recent advances in single-particle cryo-electron microscopy (cryoEM), X-ray free electron laser (XFEL) and other techniques have revealed unprecedented structural and catalytic details concerning the two supercomplexes. Several high-resolution structures of the complexes from plants were solved, and serial time-resolved crystallography and "radiation-damage-free" femtosecond XFEL also provided important insights into the mechanism of water oxidation. Here, we review these exciting advances in the studies of the photosystem supercomplexes with an emphasis on PSII-LHCII, propose presently unresolved problems in this field, and suggest potential tendencies for future studies.
Collapse
Affiliation(s)
- Jinlan Gao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hao Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Qipeng Yuan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yue Feng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- *Correspondence: Yue Feng, ;
| |
Collapse
|
13
|
van Eerden FJ, van den Berg T, Frederix PWJM, de Jong DH, Periole X, Marrink SJ. Molecular Dynamics of Photosystem II Embedded in the Thylakoid Membrane. J Phys Chem B 2016; 121:3237-3249. [PMID: 27624992 DOI: 10.1021/acs.jpcb.6b06865] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Photosystem II (PSII) is one of the key protein complexes in photosynthesis. We introduce a coarse grained model of PSII and present the analysis of 60 μs molecular dynamics simulations of PSII in both monomeric and dimeric form, embedded in a thylakoid membrane model that reflects its native lipid composition. We describe in detail the setup of the protein complex and the many natural cofactors and characterize their mobility. Overall we find that the protein subunits and cofactors are more flexible toward the periphery of the complex as well as near the PLQ exchange cavity and at the dimer interface. Of all cofactors, β-carotenes show the highest mobility. Some of the β-carotenes diffuse in and out of the protein complex via the thylakoid membrane. In contrast with the PSII dimer, the monomeric form adopts a tilted conformation in the membrane, with strong interactions between the soluble PsbO subunit and the glycolipid headgroups. Interestingly, the tilted conformation causes buckling of the membrane. Together, our results provide an unprecedented view of PSII dynamics on a microsecond time scale. Our data may be used as basis for the interpretation of experimental data as well as for theoretical models describing exciton energy transfer.
Collapse
Affiliation(s)
- Floris J van Eerden
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Tom van den Berg
- Department of Physics and Astronomy, Faculteit der Exacte Wetenschappen, Vrije Universiteit , De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Pim W J M Frederix
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Djurre H de Jong
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Xavier Periole
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
14
|
Hori K, Nobusawa T, Watanabe T, Madoka Y, Suzuki H, Shibata D, Shimojima M, Ohta H. Tangled evolutionary processes with commonality and diversity in plastidial glycolipid synthesis in photosynthetic organisms. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1294-1308. [PMID: 27108062 DOI: 10.1016/j.bbalip.2016.04.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/09/2016] [Accepted: 04/15/2016] [Indexed: 01/25/2023]
Abstract
In photosynthetic organisms, the photosynthetic membrane constitutes a scaffold for light-harvesting complexes and photosynthetic reaction centers. Three kinds of glycolipids, namely monogalactosyldiacylglycerol, digalactosyldiacylglycerol, and sulfoquinovosyldiacylglycerol, constitute approximately 80-90% of photosynthetic membrane lipids and are well conserved from tiny cyanobacteria to the leaves of huge trees. These glycolipids perform a wide variety of functions beyond biological membrane formation. In particular, the capability of adaptation to harsh environments through regulation of membrane glycolipid composition is essential for healthy growth and development of photosynthetic organisms. The genome analysis and functional genetics of the model seed plant Arabidopsis thaliana have yielded many new findings concerning the biosynthesis, regulation, and functions of glycolipids. Nevertheless, it remains to be clarified how the complex biosynthetic pathways and well-organized functions of glycolipids evolved in early and primitive photosynthetic organisms, such as cyanobacteria, to yield modern photosynthetic organisms like land plants. Recently, genome data for many photosynthetic organisms have been made available as the fruit of the rapid development of sequencing technology. We also have reported the draft genome sequence of the charophyte alga Klebsormidium flaccidum, which is an intermediate organism between green algae and land plants. Here, we performed a comprehensive phylogenic analysis of glycolipid biosynthesis genes in oxygenic photosynthetic organisms including K. flaccidum. Based on the results together with membrane lipid analysis of this alga, we discuss the evolution of glycolipid synthesis in photosynthetic organisms. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Koichi Hori
- Tokyo Institute of Technology, School of Life Science and Technology, Yokohama City, Kanagawa 226-8501, Japan; CREST, Japan Science and Technology Agency, Japan
| | - Takashi Nobusawa
- Tokyo Institute of Technology, School of Life Science and Technology, Yokohama City, Kanagawa 226-8501, Japan; CREST, Japan Science and Technology Agency, Japan
| | - Tei Watanabe
- Tokyo Institute of Technology, Graduate School of Bioscience and Biotechnology, Yokohama City, Kanagawa 226-8501, Japan
| | - Yuka Madoka
- Tokyo Institute of Technology, School of Life Science and Technology, Yokohama City, Kanagawa 226-8501, Japan
| | - Hideyuki Suzuki
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Daisuke Shibata
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Mie Shimojima
- Tokyo Institute of Technology, School of Life Science and Technology, Yokohama City, Kanagawa 226-8501, Japan
| | - Hiroyuki Ohta
- Tokyo Institute of Technology, School of Life Science and Technology, Yokohama City, Kanagawa 226-8501, Japan; CREST, Japan Science and Technology Agency, Japan; Tokyo Institute of Technology, Earth-Life Science Institute, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan.
| |
Collapse
|
15
|
Farooq S, Chmeliov J, Trinkunas G, Valkunas L, van Amerongen H. Is There Excitation Energy Transfer between Different Layers of Stacked Photosystem-II-Containing Thylakoid Membranes? J Phys Chem Lett 2016; 7:1406-1410. [PMID: 27014831 DOI: 10.1021/acs.jpclett.6b00474] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We have compared picosecond fluorescence decay kinetics for stacked and unstacked photosystem II membranes in order to evaluate the efficiency of excitation energy transfer between the neighboring layers. The measured kinetics were analyzed in terms of a recently developed fluctuating antenna model that provides information about the dimensionality of the studied system. Independently of the stacking state, all preparations exhibited virtually the same value of the apparent dimensionality, d = 1.6. Thus, we conclude that membrane stacking does not affect the efficiency of the delivery of excitation energy toward the reaction centers but ensures a more compact organization of the thylakoid membranes within the chloroplast and separation of photosystems I and II.
Collapse
Affiliation(s)
- Shazia Farooq
- Laboratory of Biophysics, Wageningen University , P.O. Box 8128, 6700 ET Wageningen, The Netherlands
| | - Jevgenij Chmeliov
- Department of Theoretical Physics, Faculty of Physics, Vilnius University , Saulėtekio Avenue 9, 10222 Vilnius, Lithuania
- Department of Molecular Compound Physics, Institute of Physics, Center for Physical Sciences and Technology , Goštauto 11, 01108 Vilnius, Lithuania
| | - Gediminas Trinkunas
- Department of Theoretical Physics, Faculty of Physics, Vilnius University , Saulėtekio Avenue 9, 10222 Vilnius, Lithuania
- Department of Molecular Compound Physics, Institute of Physics, Center for Physical Sciences and Technology , Goštauto 11, 01108 Vilnius, Lithuania
| | - Leonas Valkunas
- Department of Theoretical Physics, Faculty of Physics, Vilnius University , Saulėtekio Avenue 9, 10222 Vilnius, Lithuania
- Department of Molecular Compound Physics, Institute of Physics, Center for Physical Sciences and Technology , Goštauto 11, 01108 Vilnius, Lithuania
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University , P.O. Box 8128, 6700 ET Wageningen, The Netherlands
- MicroSpectroscopy Centre, Wageningen University , P.O. Box 8128, 6700 ET Wageningen, The Netherlands
| |
Collapse
|