1
|
Carnicer O, Hu YY, Ebenezer V, Irwin AJ, Finkel ZV. Genomic architecture constrains macromolecular allocation in dinoflagellates. Protist 2023; 174:125992. [PMID: 37738738 DOI: 10.1016/j.protis.2023.125992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/21/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
Dinoflagellate genomes have a unique architecture that may constrain their physiological and biochemical responsiveness to environmental stressors. Here we quantified how nitrogen (N) starvation influenced macromolecular allocation and C:N:P of three photosynthetic marine dinoflagellates, representing different taxonomic classes and genome sizes. Dinoflagellates respond to nitrogen starvation by decreasing cellular nitrogen, protein and RNA content, but unlike many other eukaryotic phytoplankton examined RNA:protein is invariant. Additionally, 2 of the 3 species exhibit increases in cellular phosphorus and very little change in cellular carbon with N-starvation. As a consequence, N starvation induces moderate increases in C:N, but extreme decreases in N:P and C:P, relative to diatoms. Dinoflagellate DNA content relative to total C, N and P is much higher than similar sized diatoms, but similar to very small photosynthetic picoeukaryotes such as Ostreococcus. In aggregate these results indicate the accumulation of phosphate stores may be an important strategy employed by dinoflagellates to meet P requirements associated with the maintenance and replication of their large genomes.
Collapse
Affiliation(s)
- Olga Carnicer
- Department of Oceanography, Dalhousie University, Halifax, Canada
| | - Ying-Yu Hu
- Department of Oceanography, Dalhousie University, Halifax, Canada
| | - Vinitha Ebenezer
- Department of Oceanography, Dalhousie University, Halifax, Canada
| | - Andrew J Irwin
- Department of Mathematics & Statistics, Dalhousie University, Halifax, Canada
| | - Zoe V Finkel
- Department of Oceanography, Dalhousie University, Halifax, Canada.
| |
Collapse
|
2
|
Du J, Izquierdo D, Xu HF, Beisner B, Lavaud J, Ohlund L, Sleno L, Juneau P. Responses to herbicides of Arctic and temperate microalgae grown under different light intensities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121985. [PMID: 37301455 DOI: 10.1016/j.envpol.2023.121985] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
In aquatic ecosystems, microalgae are exposed to light fluctuations at different frequencies due to daily and seasonal changes. Although concentrations of herbicides are lower in Arctic than in temperate regions, atrazine and simazine, are increasingly found in northern aquatic systems because of long-distance aerial dispersal of widespread applications in the south and antifouling biocides used on ships. The toxic effects of atrazine on temperate microalgae are well documented, but very little is known about their effects on Arctic marine microalgae in relation to their temperate counterparts after light adaptation to variable light intensities. We therefore investigated the impacts of atrazine and simazine on photosynthetic activity, PSII energy fluxes, pigment content, photoprotective ability (NPQ), and reactive oxygen species (ROS) content under three light intensities. The goal was to better understand differences in physiological responses to light fluctuations between Arctic and temperate microalgae and to determine how these different characteristics affect their responses to herbicides. The Arctic diatom Chaetoceros showed stronger light adaptation capacity than the Arctic green algae Micromonas. Atrazine and simazine inhibited the growth and photosynthetic electron transport, affected the pigment content, and disturbed the energy balance between light absorption and utilization. As a result, during high light adaptation and in the presence of herbicides, photoprotective pigments were synthesized and NPQ was highly activated. Nevertheless, these protective responses were insufficient to prevent oxidative damage caused by herbicides in both species from both regions, but at different extent depending on the species. Our study demonstrates that light is important in regulating herbicide toxicity in both Arctic and temperate microalgal strains. Moreover, eco-physiological differences in light responses are likely to support changes in the algal community, especially as the Arctic ocean becomes more polluted and bright with continued human impacts.
Collapse
Affiliation(s)
- Juan Du
- Department of Biological Sciences, Université du Québec à Montréal-GRIL-TOXEN, Succ Centre-Ville, Montréal, Canada
| | - Disney Izquierdo
- Department of Biological Sciences, Université du Québec à Montréal-GRIL-EcotoQ-TOXEN, Succ Centre-Ville, Montréal, Canada
| | - Hai-Feng Xu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Beatrix Beisner
- Department of Biological Sciences, Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Université du Québec à Montréal, Canada
| | - Johann Lavaud
- TAKUVIK International Research Laboratory IRL3376, Université Laval (Canada) - CNRS (France), Pavillon Alexandre-Vachon, 1045 Av. de la Médecine, Local 2064, G1V 0A6, Québec, Canada; LEMAR-Laboratory of Environmental Marine Sciences, UMR6539, CNRS/Univ Brest/Ifremer/IRD, Institut Universitaire Européen de La Mer, Technopôle Brest-Iroise, Rue Dumont d'Urville, 29280, Plouzané, France
| | - Leanne Ohlund
- Chemistry Department, Université du Québec à Montréal-EcotoQ-TOXEN, Succ Centre-Ville, Montreal, Quebec, H3C 3P8, Canada
| | - Lekha Sleno
- Chemistry Department, Université du Québec à Montréal-EcotoQ-TOXEN, Succ Centre-Ville, Montreal, Quebec, H3C 3P8, Canada
| | - Philippe Juneau
- Department of Biological Sciences, Université du Québec à Montréal-GRIL-EcotoQ-TOXEN, Succ Centre-Ville, Montréal, Canada.
| |
Collapse
|
3
|
Du J, Izquierdo D, Naoum J, Ohlund L, Sleno L, Beisner BE, Lavaud J, Juneau P. Pesticide responses of Arctic and temperate microalgae differ in relation to ecophysiological characteristics. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 254:106323. [PMID: 36435012 DOI: 10.1016/j.aquatox.2022.106323] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Polar ecosystems play an important role in global primary production. Microalgae have adaptations that enable them to live under low temperature environments where irradiance and day length change drastically. Their adaptations, leading to different ecophysiological characteristics relative to temperate species, could also alter their sensitivity to pollutants such as pesticides. This study's objective was to understand how different ecophysiological characteristics influence the response of Arctic phytoplankton to pesticides in relation to the responses of their temperate counterparts. Ecophysiological endpoints were related to growth, cell biovolume, pigment content, photosynthetic activity, photoprotective mechanisms (NPQ, antioxidant enzyme activities), and reactive oxygen species (ROS) content. The Arctic species Micromonas polaris was more resistant to atrazine and simazine than its temperate counterpart Micromonas bravo. However, the other Arctic species Chaetoceros neogracilis was more sensitive to these herbicides than its temperate counterpart Chaetoceros neogracile. With respect to two other pesticide toxicity, both temperate microalgae were more sensitive to trifluralin, while Arctic microalgae were more sensitive to chlorpyrifos (insecticide). All differences could be ascribed to differences in the eco-physiological features of the two microalgal groups, which can be explained by cell size, pigment content, ROS content and protective mechanisms (NPQ and antioxidant enzymes).
Collapse
Affiliation(s)
- Juan Du
- Department of Biological Sciences, Université du Québec à Montréal, GRIL-TOXEN, Succ Centre-Ville, Montreal, Quebec H3C 3P8, Canada
| | - Disney Izquierdo
- Department of Biological Sciences, Université du Québec à Montréal, GRIL-EcotoQ-TOXEN, Succ Centre-Ville, Montreal, Quebec H3C 3P8, Canada
| | - Jonathan Naoum
- Department of Biological Sciences, Université du Québec à Montréal, GRIL-EcotoQ-TOXEN, Succ Centre-Ville, Montreal, Quebec H3C 3P8, Canada
| | - Leanne Ohlund
- Chemistry Department, Université du Québec à Montréal, EcotoQ-TOXEN, Succ Centre-Ville, Montreal, Quebec H3C 3P8, Canada
| | - Lekha Sleno
- Chemistry Department, Université du Québec à Montréal, EcotoQ-TOXEN, Succ Centre-Ville, Montreal, Quebec H3C 3P8, Canada
| | - Beatrix E Beisner
- Department of Biological Sciences, Groupe de recherche interuniversitaire en limnologie (GRIL), Université du Québec à Montréal, Succ Centre-Ville, Montreal, Quebec H3C 3P8, Canada
| | - Johann Lavaud
- TAKUVIK International Research Laboratory IRL3376, Université Laval (Canada) - CNRS (France), Pavillon Alexandre-Vachon, 1045 av. de la Médecine, local 2064, G1V 0A6 Québec, Canada; LEMAR-Laboratory of Environmental Marine Sciences, UMR6539, CNRS/Univ Brest/Ifremer/IRD, Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, rue Dumont d'Urville, 29280 Plouzané, France
| | - Philippe Juneau
- Department of Biological Sciences, Université du Québec à Montréal, GRIL-EcotoQ-TOXEN, Succ Centre-Ville, Montreal, Quebec H3C 3P8, Canada.
| |
Collapse
|
4
|
Tilney CL, Hubbard KA. Expression of nuclear-encoded, haptophyte-derived ftsH genes support extremely rapid PSII repair and high-light photoacclimation in Karenia brevis (Dinophyceae). HARMFUL ALGAE 2022; 118:102295. [PMID: 36195421 DOI: 10.1016/j.hal.2022.102295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 06/16/2023]
Abstract
Karenia brevis, a neurotoxic dinoflagellate that produces brevetoxins, is endemic to the Gulf of Mexico and can grow at high irradiances typical of surface waters found there. To build upon a growing number of studies addressing high-light tolerance in K. brevis, specific photobiology and molecular mechanisms underlying this capacity were evaluated in culture. Since photosystem II (PSII) repair cycle activity can be crucial to high light tolerance in plants and algae, the present study assessed this capacity in K. brevis and characterized the ftsH-like genes which are fundamental to this process. Compared with cultures grown in low-light, cultures grown in high-light showed a 65-fold increase in PSII photoinactivation, a ∼50-fold increase in PSII repair, enhanced nonphotochemical quenching (NPQ), and depressed Fv/Fm. Repair rates were among the fastest reported in phytoplankton. Publicly available K. brevis transcriptomes (MMETSP) were queried for ftsH-like sequences and refined with additional sequencing from two K. brevis strains. The genes were phylogenetically related to haptophyte orthologs, implicating acquisition during tertiary endosymbiosis. RT-qPCR of three of the four ftsH-like homologs revealed that poly-A tails predominated in all homologs, and that the most highly expressed homolog had a 5' splice leader and amino-acid motifs characteristic of chloroplast targeting, indicating nuclear encoding for this plastid-targeted gene. High-light cultures showed a ∼1.5-fold upregulation in mRNA expression of the thylakoid-associated genes. Overall, in conjunction with NPQ mechanisms, rapid PSII repair mediated by a haptophyte-derived ftsH prevents chronic photoinhibition in K. brevis. Our findings continue to build the case that high-light photobiology-supported by the acquisition and maintenance of tertiary endosymbiotic genes-is critical to the success of K. brevis in the Gulf of Mexico.
Collapse
Affiliation(s)
- Charles L Tilney
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, FL, 33701, USA; Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, Québec, G5M 1L7, Canada.
| | - Katherine A Hubbard
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, FL, 33701, USA
| |
Collapse
|
5
|
Potential for the Production of Carotenoids of Interest in the Polar Diatom Fragilariopsis cylindrus. Mar Drugs 2022; 20:md20080491. [PMID: 36005496 PMCID: PMC9409807 DOI: 10.3390/md20080491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/15/2022] [Accepted: 07/27/2022] [Indexed: 01/25/2023] Open
Abstract
Carotenoid xanthophyll pigments are receiving growing interest in various industrial fields due to their broad and diverse bioactive and health beneficial properties. Fucoxanthin (Fx) and the inter-convertible couple diadinoxanthin–diatoxanthin (Ddx+Dtx) are acknowledged as some of the most promising xanthophylls; they are mainly synthesized by diatoms (Bacillariophyta). While temperate strains of diatoms have been widely investigated, recent years showed a growing interest in using polar strains, which are better adapted to the natural growth conditions of Nordic countries. The aim of the present study was to explore the potential of the polar diatom Fragilariopsis cylindrus in producing Fx and Ddx+Dtx by means of the manipulation of the growth light climate (daylength, light intensity and spectrum) and temperature. We further compared its best capacity to the strongest xanthophyll production levels reported for temperate counterparts grown under comparable conditions. In our hands, the best growing conditions for F. cylindrus were a semi-continuous growth at 7 °C and under a 12 h light:12 h dark photoperiod of monochromatic blue light (445 nm) at a PUR of 11.7 μmol photons m−2 s−1. This allowed the highest Fx productivity of 43.80 µg L−1 day−1 and the highest Fx yield of 7.53 µg Wh−1, more than two times higher than under ‘white’ light. For Ddx+Dtx, the highest productivity (4.55 µg L−1 day−1) was reached under the same conditions of ‘white light’ and at 0 °C. Our results show that F. cylindrus, and potentially other polar diatom strains, are very well suited for Fx and Ddx+Dtx production under conditions of low temperature and light intensity, reaching similar productivity levels as model temperate counterparts such as Phaeodactylum tricornutum. The present work supports the possibility of using polar diatoms as an efficient cold and low light-adapted bioresource for xanthophyll pigments, especially usable in Nordic countries.
Collapse
|
6
|
Xie E, Xu K, Li Z, Li W, Yi X, Li H, Han Y, Zhang H, Zhang Y. Disentangling the Effects of Ocean Carbonation and Acidification on Elemental Contents and Macromolecules of the Coccolithophore Emiliania huxleyi. Front Microbiol 2021; 12:737454. [PMID: 34745039 PMCID: PMC8564145 DOI: 10.3389/fmicb.2021.737454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/29/2021] [Indexed: 11/21/2022] Open
Abstract
Elemental contents change with shifts in macromolecular composition of marine phytoplankton. Recent studies focus on the responses of elemental contents of coccolithophores, a major calcifying phytoplankton group, to changing carbonate chemistry, caused by the dissolution of anthropogenically derived CO2 into the surface ocean. However, the effects of changing carbonate chemistry on biomacromolecules, such as protein and carbohydrate of coccolithophores, are less documented. Here, we disentangled the effects of elevated dissolved inorganic carbon (DIC) concentration (900 to 4,930μmolkg−1) and reduced pH value (8.04 to 7.70) on physiological rates, elemental contents, and macromolecules of the coccolithophore Emiliania huxleyi. Compared to present DIC concentration and pH value, combinations of high DIC concentration and low pH value (ocean acidification) significantly increased pigments content, particulate organic carbon (POC), and carbohydrate content and had less impact on growth rate, maximal relative electron transport rate (rETRmax), particulate organic nitrogen (PON), and protein content. In high pH treatments, elevated DIC concentration significantly increased growth rate, pigments content, rETRmax, POC, particulate inorganic carbon (PIC), protein, and carbohydrate contents. In low pH treatments, the extents of the increase in growth rate, pigments and carbohydrate content were reduced. Compared to high pH value, under low DIC concentration, low pH value significantly increased POC and PON contents and showed less impact on protein and carbohydrate contents; however, under high DIC concentration, low pH value significantly reduced POC, PON, protein, and carbohydrate contents. These results showed that reduced pH counteracted the positive effects of elevated DIC concentration on growth rate, rETRmax, POC, PON, carbohydrate, and protein contents. Elevated DIC concentration and reduced pH acted synergistically to increase the contribution of carbohydrate–carbon to POC, and antagonistically to affect the contribution of protein–nitrogen to PON, which further shifted the carbon/nitrogen ratio of E. huxleyi.
Collapse
Affiliation(s)
- Emei Xie
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control and Resource Recycling, Fujian Normal University, Fuzhou, China
| | - Kui Xu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, College of Life Sciences, Hubei Normal University, Huangshi, China
| | - Zhengke Li
- School of Food and Biological Engineering, Shanxi University of Science and Technology, Xi'an, China
| | - Wei Li
- College of Life and Environmental Sciences, Huangshan University, Huangshan, China
| | - Xiangqi Yi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Hongzhou Li
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control and Resource Recycling, Fujian Normal University, Fuzhou, China
| | - Yonghe Han
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control and Resource Recycling, Fujian Normal University, Fuzhou, China
| | - Hong Zhang
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control and Resource Recycling, Fujian Normal University, Fuzhou, China
| | - Yong Zhang
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control and Resource Recycling, Fujian Normal University, Fuzhou, China
| |
Collapse
|
7
|
Six C, Ratin M, Marie D, Corre E. Marine Synechococcus picocyanobacteria: Light utilization across latitudes. Proc Natl Acad Sci U S A 2021; 118:e2111300118. [PMID: 34518213 PMCID: PMC8463805 DOI: 10.1073/pnas.2111300118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 02/08/2023] Open
Abstract
The most ubiquitous cyanobacteria, Synechococcus, have colonized different marine thermal niches through the evolutionary specialization of lineages adapted to different ranges of temperature seawater. We used the strains of Synechococcus temperature ecotypes to study how light utilization has evolved in the function of temperature. The tropical Synechococcus (clade II) was unable to grow under 16 °C but, at temperatures >25 °C, induced very high growth rates that relied on a strong synthesis of the components of the photosynthetic machinery, leading to a large increase in photosystem cross-section and electron flux. By contrast, the Synechococcus adapted to subpolar habitats (clade I) grew more slowly but was able to cope with temperatures <10 °C. We show that growth at such temperatures was accompanied by a large increase of the photoprotection capacities using the orange carotenoid protein (OCP). Metagenomic analyzes revealed that Synechococcus natural communities show the highest prevalence of the ocp genes in low-temperature niches, whereas most tropical clade II Synechococcus have lost the gene. Moreover, bioinformatic analyzes suggested that the OCP variants of the two cold-adapted Synechococcus clades I and IV have undergone evolutionary convergence through the adaptation of the molecular flexibility. Our study points to an important role of temperature in the evolution of the OCP. We, furthermore, discuss the implications of the different metabolic cost of these physiological strategies on the competitiveness of Synechococcus in a warming ocean. This study can help improve the current hypotheses and models aimed at predicting the changes in ocean carbon fluxes in response to global warming.
Collapse
Affiliation(s)
- Christophe Six
- Centre National de la Recherche Scientifique, Sorbonne Université, UMR 7144, Adaptation et Diversité en Milieu Marin, group Ecology of Marine Plankton, Station Biologique de Roscoff, 29680 Roscoff, France;
| | - Morgane Ratin
- Centre National de la Recherche Scientifique, Sorbonne Université, UMR 7144, Adaptation et Diversité en Milieu Marin, group Ecology of Marine Plankton, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Dominique Marie
- Centre National de la Recherche Scientifique, Sorbonne Université, UMR 7144, Adaptation et Diversité en Milieu Marin, group Ecology of Marine Plankton, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Erwan Corre
- Department Analysis and Bioinformatics for Marine Science, Fédération de Recherche 2424, 29680 Roscoff, France
| |
Collapse
|
8
|
Berthold M, Campbell DA. Restoration, conservation and phytoplankton hysteresis. CONSERVATION PHYSIOLOGY 2021; 9:coab062. [PMID: 34394942 PMCID: PMC8361504 DOI: 10.1093/conphys/coab062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 06/10/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Phytoplankton growth depends not only upon external factors that are not strongly altered by the presence of phytoplankton, such as temperature, but also upon factors that are strongly influenced by activity of phytoplankton, including photosynthetically active radiation, and the availability of the macronutrients carbon, nitrogen, phosphorus and, for some, silicate. Since phytoplankton therefore modify, and to an extent create, their own habitats, established phytoplankton communities can show resistance and resilience to change, including managed changes in nutrient regimes. Phytoplankton blooms and community structures can be predicted from the overall biogeochemical setting and inputs, but restorations may be influenced by the physiological responses of established phytoplankton taxa to nutrient inputs, temperature, second-order changes in illumination and nutrient recycling. In this review we discuss the contributions of phytoplankton ecophysiology to biogeochemical hysteresis and possible effects on community composition in the face of management, conservation or remediation plans.
Collapse
Affiliation(s)
- Maximilian Berthold
- Department of Biology, Mount Allison University, Sackville, New Brunswick E4L 1C9, Canada
| | - Douglas A Campbell
- Department of Biology, Mount Allison University, Sackville, New Brunswick E4L 1C9, Canada
| |
Collapse
|
9
|
Young JN, Schmidt K. It's what's inside that matters: physiological adaptations of high-latitude marine microalgae to environmental change. THE NEW PHYTOLOGIST 2020; 227:1307-1318. [PMID: 32391569 DOI: 10.1111/nph.16648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 03/23/2020] [Indexed: 05/13/2023]
Abstract
Marine microalgae within seawater and sea ice fuel high-latitude ecosystems and drive biogeochemical cycles through the fixation and export of carbon, uptake of nutrients, and production and release of oxygen and organic compounds. High-latitude marine environments are characterized by cold temperatures, dark winters and a strong seasonal cycle. Within this environment a number of diverse and dynamic habitats exist, particularly in association with the formation and melt of sea ice, with distinct microalgal communities that transition with the season. Algal physiology is a crucial component, both responding to the dynamic environment and in turn influencing its immediate physicochemical environment. As high-latitude oceans shift into new climate regimes the analysis of seasonal responses may provide insights into how microalgae will respond to long-term environmental change. This review discusses recent developments in our understanding of how the physiology of high-latitude marine microalgae is regulated over a polar seasonal cycle, with a focus on ice-associated (sympagic) algae. In particular, physiologies that impact larger scale processes will be explored, with an aim to improve our understanding of current and future ecosystems and biogeochemical cycles.
Collapse
Affiliation(s)
- Jodi N Young
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - Katrin Schmidt
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
10
|
Ware MA, Hunstiger D, Cantrell M, Peers G. A Chlorophyte Alga Utilizes Alternative Electron Transport for Primary Photoprotection. PLANT PHYSIOLOGY 2020; 183:1735-1748. [PMID: 32457091 PMCID: PMC7401117 DOI: 10.1104/pp.20.00373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/28/2020] [Indexed: 05/28/2023]
Abstract
The green alga Desmodesmus armatus is an emerging biofuel platform that produces high amounts of lipids and biomass in mass culture. We observed D. armatus in light-limiting, excess-light, and sinusoidal-light environments to investigate its photoacclimation behaviors and the mechanisms by which it dissipates excess energy. Chlorophyll a/b ratios and the functional absorption cross section of PSII suggested a constitutively small light-harvesting antenna size relative to other green algae. In situ and ex situ measurements of photo-physiology revealed that nonphotochemical quenching is not a significant contributor to photoprotection; however, cells do not suffer substantial photoinhibition despite its near absence. We performed membrane inlet mass spectrometry analysis to show that D. armatus has a very high capacity for alternative electron transport (AET) measured as light-dependent oxygen consumption. Up to 90% of electrons generated at PSII can be dissipated by AET in a water-water cycle during growth in rapidly fluctuating light environments, like those found in industrial-scale photobioreactors. This work highlights the diversity of photoprotective mechanisms present in algal systems, indicating that nonphotochemical quenching is not necessarily required for effective photoprotection in some algae, and suggests that engineering AET may be an attractive target for increasing the biomass productivity of some strains.
Collapse
Affiliation(s)
- Maxwell A Ware
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523
| | - Darcy Hunstiger
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523
| | - Michael Cantrell
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523
| | - Graham Peers
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523
| |
Collapse
|
11
|
|
12
|
Lacour T, Babin M, Lavaud J. Diversity in Xanthophyll Cycle Pigments Content and Related Nonphotochemical Quenching (NPQ) Among Microalgae: Implications for Growth Strategy and Ecology. JOURNAL OF PHYCOLOGY 2020; 56:245-263. [PMID: 31674660 DOI: 10.1111/jpy.12944] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 10/04/2019] [Indexed: 05/12/2023]
Abstract
Xanthophyll cycle-related nonphotochemical quenching (NPQ), which is present in most photoautotrophs, allows dissipation of excess light energy. Xanthophyll cycle-related NPQ depends principally on xanthophyll cycle pigments composition and their effective involvement in NPQ. Xanthophyll cycle-related NPQ is tightly controlled by environmental conditions in a species-/strain-specific manner. These features are especially relevant in microalgae living in a complex and highly variable environment. The goal of this study was to perform a comparative assessment of NPQ ecophysiologies across microalgal taxa in order to underline the specific involvement of NPQ in growth adaptations and strategies. We used both published results and data acquired in our laboratory to understand the relationships between growth conditions (irradiance, temperature, and nutrient availability), xanthophyll cycle composition, and xanthophyll cycle pigments quenching efficiency in microalgae from various taxa. We found that in diadinoxanthin-containing species, the xanthophyll cycle pigment pool is controlled by energy pressure in all species. At any given energy pressure, however, the diatoxanthin content is higher in diatoms than in other diadinoxanthin-containing species. XC pigments quenching efficiency is species-specific and decreases with acclimation to higher irradiances. We found a clear link between the natural light environment of species/ecotypes and quenching efficiency amplitude. The presence of diatoxanthin or zeaxanthin at steady state in all species examined at moderate and high irradiances suggests that cells maintain a light-harvesting capacity in excess to cope with potential decrease in light intensity.
Collapse
Affiliation(s)
| | - Marcel Babin
- Takuvik Joint International Laboratory UMI3376, CNRS (France) & ULaval (Canada), Département de Biologie, Université Laval, Pavillon Alexandre-Vachon, 1045, Avenue de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Johann Lavaud
- Takuvik Joint International Laboratory UMI3376, CNRS (France) & ULaval (Canada), Département de Biologie, Université Laval, Pavillon Alexandre-Vachon, 1045, Avenue de la Médecine, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
13
|
Abstract
Processes that darken the surface of the Greenland Ice Sheet (GrIS) enhance energy absorption and accelerate melt, with consequences for global sea-level rise. Here, we demonstrate how summer blooms of “glacier algae” darken the ice surface, significantly impacting the physical integrity of the environment. We identify and quantify the energy regulation mechanisms employed by glacier algae to balance their requirements for photosynthesis and growth with the extreme light and temperature regime of the GrIS, demonstrating how these mechanisms are optimized to darken and melt the ice surface. Our findings are critical for the incorporation of biological feedbacks into predictive models of GrIS surface runoff and provide unique insight into how photoautotrophic life excels within icy environments. Blooms of Zygnematophycean “glacier algae” lower the bare ice albedo of the Greenland Ice Sheet (GrIS), amplifying summer energy absorption at the ice surface and enhancing meltwater runoff from the largest cryospheric contributor to contemporary sea-level rise. Here, we provide a step change in current understanding of algal-driven ice sheet darkening through quantification of the photophysiological mechanisms that allow glacier algae to thrive on and darken the bare ice surface. Significant secondary phenolic pigmentation (11 times the cellular content of chlorophyll a) enables glacier algae to tolerate extreme irradiance (up to ∼4,000 µmol photons⋅m−2⋅s−1) while simultaneously repurposing captured ultraviolet and short-wave radiation for melt generation. Total cellular energy absorption is increased 50-fold by phenolic pigmentation, while glacier algal chloroplasts positioned beneath shading pigments remain low-light–adapted (Ek ∼46 µmol photons⋅m−2⋅s−1) and dependent upon typical nonphotochemical quenching mechanisms for photoregulation. On the GrIS, glacier algae direct only ∼1 to 2.4% of incident energy to photochemistry versus 48 to 65% to ice surface melting, contributing an additional ∼1.86 cm water equivalent surface melt per day in patches of high algal abundance (∼104 cells⋅mL−1). At the regional scale, surface darkening is driven by the direct and indirect impacts of glacier algae on ice albedo, with a significant negative relationship between broadband albedo (Moderate Resolution Imaging Spectroradiometer [MODIS]) and glacier algal biomass (R2 = 0.75, n = 149), indicating that up to 75% of the variability in albedo across the southwestern GrIS may be attributable to the presence of glacier algae.
Collapse
|
14
|
Yan D, Endo H, Suzuki K. Increased temperature benefits growth and photosynthetic performance of the sea ice diatom Nitzschia cf. neglecta (Bacillariophyceae) isolated from saroma lagoon, Hokkaido, Japan. JOURNAL OF PHYCOLOGY 2019; 55:700-713. [PMID: 30802945 DOI: 10.1111/jpy.12846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
During ice melt in spring, ice algae are released from the ice and could be exposed to variable temperatures and irradiances in surface water. Saroma Lagoon is an embayment with two inlets leading to the Sea of Okhotsk. With seasonal development of sea ice, its water temperature changes dramatically throughout the year. To investigate the living and photoprotective strategies of ice algae in such a coastal water system, we grew Nitzschia cf. neglecta, an ice diatom isolated from the sea ice of this lagoon, under irradiance levels of 30 and 100 μmol photons · m-2 · s-1 , and temperatures of 2°C and 10°C. Then the acclimated cells were exposed to high light in order to investigate the plasticity of their photosynthetic apparatus. At 10°C, cells grew faster and showed decreased susceptibility to high light. At 2°C, an immediate decrease in all pigment content upon exposure, as well as a higher cellular content of diatoxanthin was used to compensate for the more severe excitation stress. Highly efficient photoprotection was achieved through the diadinoxanthin-diatoxanthin cycle-dependent nonphotochemical quenching. While regulation through psbA and rbcL at the transcription level played a minor role in the response to high light stress at both temperatures. The wide tolerance to both temperature and light changes suggest that the thinning of sea ice and higher temperatures in a warmer world will lead to more intense blooms in Saroma Lagoon.
Collapse
Affiliation(s)
- Dong Yan
- Graduate School of Environmental Science, Hokkaido University, North 10 West 5, Kita-ku, Sapporo, 060-0810, Japan
| | - Hisashi Endo
- Faculty of Environmental Earth Science, Hokkaido University, North 10 West 5, Kita-ku, Sapporo, 060-0810, Japan
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Koji Suzuki
- Graduate School of Environmental Science, Hokkaido University, North 10 West 5, Kita-ku, Sapporo, 060-0810, Japan
- Faculty of Environmental Earth Science, Hokkaido University, North 10 West 5, Kita-ku, Sapporo, 060-0810, Japan
| |
Collapse
|
15
|
Molecular mechanisms of temperature acclimation and adaptation in marine diatoms. ISME JOURNAL 2019; 13:2415-2425. [PMID: 31127177 DOI: 10.1038/s41396-019-0441-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/16/2019] [Accepted: 05/03/2019] [Indexed: 12/21/2022]
Abstract
Diatoms are important contributors to marine primary production and the ocean carbon cycle, yet the molecular mechanisms that regulate their acclimation and adaptation to temperature are poorly understood. Here we use a transcriptomic approach to investigate the molecular mechanisms associated with temperature acclimation and adaptation in closely related colder- and warmer-adapted diatom species. We find evidence that evolutionary changes in baseline gene expression, which we termed transcriptional investment or divestment, is a key mechanism used by diatoms to adapt to different growth temperatures. Invested and divested pathways indicate that the maintenance of protein processing machinery and membrane structure, important short-term physiological mechanisms used to respond to temperature changes, are key elements associated with adaptation to different growth temperatures. Our results also indicate that evolutionary changes in the transcriptional regulation of acetyl-CoA associated pathways, including lipid and branched chain amino acid metabolism, are used by diatoms to balance photosynthetic light capture and metabolism with changes in growth temperature. Transcriptional investment and divestment can provide a framework to identify mechanisms of acclimation and adaption to temperature.
Collapse
|
16
|
Cheregi O, Ekendahl S, Engelbrektsson J, Strömberg N, Godhe A, Spetea C. Microalgae biotechnology in Nordic countries - the potential of local strains. PHYSIOLOGIA PLANTARUM 2019; 166:438-450. [PMID: 30809828 PMCID: PMC6850598 DOI: 10.1111/ppl.12951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 05/03/2023]
Abstract
Climate change, energy use and food security are the main challenges that our society is facing nowadays. Biofuels and feedstock from microalgae can be part of the solution if high and continuous production is to be ensured. This could be attained in year-round, low cost, outdoor cultivation systems using strains that are not only champion producers of desired compounds but also have robust growth in a dynamic climate. Using microalgae strains adapted to the local conditions may be advantageous particularly in Nordic countries. Here, we review the current status of laboratory and outdoor-scale cultivation in Nordic conditions of local strains for biofuel, high-value compounds and water remediation. Strains suitable for biotechnological purposes were identified from the large and diverse pool represented by saline (NE Atlantic Ocean), brackish (Baltic Sea) and fresh water (lakes and rivers) sources. Energy-efficient annual rotation for cultivation of strains well adapted to Nordic climate has the potential to provide high biomass yields for biotechnological purposes.
Collapse
Affiliation(s)
- Otilia Cheregi
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburg 40530Sweden
| | - Susanne Ekendahl
- Department of Chemistry and MaterialsRISE Research Institutes of SwedenBorås 50115Sweden
| | - Johan Engelbrektsson
- Department of Chemistry and MaterialsRISE Research Institutes of SwedenBorås 50115Sweden
| | - Niklas Strömberg
- Department of Chemistry and MaterialsRISE Research Institutes of SwedenBorås 50115Sweden
| | - Anna Godhe
- Department of Marine SciencesUniversity of GothenburgGothenburg 40530Sweden
| | - Cornelia Spetea
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburg 40530Sweden
| |
Collapse
|
17
|
Bonisteel EM, Turner BE, Murphy CD, Melanson JR, Duff NM, Beardsall BD, Xu K, Campbell DA, Cockshutt AM. Strain specific differences in rates of Photosystem II repair in picocyanobacteria correlate to differences in FtsH protein levels and isoform expression patterns. PLoS One 2018; 13:e0209115. [PMID: 30566504 PMCID: PMC6300248 DOI: 10.1371/journal.pone.0209115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/29/2018] [Indexed: 12/23/2022] Open
Abstract
Picocyanobacteria are the numerically dominant photoautotrophs of the oligotrophic regions of Earth’s oceans. These organisms are characterized by their small size and highly reduced genomes. Strains partition to different light intensity and nutrient level niches, with differing photosynthetic apparatus stoichiometry, light harvesting machinery and susceptibility to photoinactivation. In this study, we grew three strains of picocyanobacteria: the low light, high nutrient strain Prochlorococcus marinus MIT 9313; the high light, low nutrient Prochlorococcus marinus MED 4; and the high light, high nutrient marine Synechococcus strain WH 8102; under low and high growth light levels. We then performed matched photophysiology, protein and transcript analyses. The strains differ significantly in their rates of Photosystem II repair under high light and in their capacity to remove the PsbA protein as the first step in the Photosystem II repair process. Notably, all strains remove the PsbD subunit at the same rate that they remove PsbA. When grown under low light, MIT 9313 loses active Photosystem II quickly when shifted to high light, but has no measurable capacity to remove PsbA. MED 4 and WH 8102 show less rapid loss of Photosystem II and considerable capacity to remove PsbA. MIT 9313 has less of the FtsH protease thought to be responsible for the removal of PsbA in other cyanobacteria. Furthermore, by transcript analysis the predominant FtsH isoform expressed in MIT 9313 is homologous to the FtsH 4 isoform characterized in the model strain Synechocystis PCC 6803, rather than the FtsH 2 and 3 isoforms thought to be responsible for PsbA degradation. MED 4 on the other hand shows high light inducible expression of the isoforms homologous to FtsH 2 and 3, consistent with its faster rate of PsbA removal. MIT 9313 has adapted to its low light environment by diverting resources away from Photosystem II content and repair.
Collapse
Affiliation(s)
- Erin M. Bonisteel
- Department of Chemistry & Biochemistry, Mount Allison University, Sackville, New Brunswick, Canada
| | - Brooke E. Turner
- Department of Chemistry & Biochemistry, Mount Allison University, Sackville, New Brunswick, Canada
| | - Cole D. Murphy
- Department of Chemistry & Biochemistry, Mount Allison University, Sackville, New Brunswick, Canada
| | - Jenna-Rose Melanson
- Department of Chemistry & Biochemistry, Mount Allison University, Sackville, New Brunswick, Canada
| | - Nicole M. Duff
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Brian D. Beardsall
- Department of Chemistry & Biochemistry, Mount Allison University, Sackville, New Brunswick, Canada
| | - Kui Xu
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Douglas A. Campbell
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Amanda M. Cockshutt
- Department of Chemistry & Biochemistry, Mount Allison University, Sackville, New Brunswick, Canada
- * E-mail:
| |
Collapse
|
18
|
Perkins R, Williamson C, Lavaud J, Mouget JL, Campbell DA. Time-dependent upregulation of electron transport with concomitant induction of regulated excitation dissipation in Haslea diatoms. PHOTOSYNTHESIS RESEARCH 2018; 137:377-388. [PMID: 29663190 PMCID: PMC6182385 DOI: 10.1007/s11120-018-0508-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 04/11/2018] [Indexed: 06/01/2023]
Abstract
Photoacclimation by strains of Haslea "blue" diatom species H. ostrearia and H. silbo sp. nov. ined. was investigated with rapid light curves and induction-recovery curves using fast repetition rate fluorescence. Cultures were grown to exponential phase under 50 µmol m-2 s-1 photosynthetic available radiation (PAR) and then exposed to non-sequential rapid light curves where, once electron transport rate (ETR) had reached saturation, light intensity was decreased and then further increased prior to returning to near growth light intensity. The non-sequential rapid light curve revealed that ETR was not proportional to the instantaneously applied light intensity, due to rapid photoacclimation. Changes in the effective absorption cross sections for open PSII reaction centres (σPSII') or reaction centre connectivity (ρ) did not account for the observed increases in ETR under extended high light. σPSII' in fact decreased as a function of a time-dependent induction of regulated excitation dissipation Y(NPQ), once cells were at or above a PAR coinciding with saturation of ETR. Instead, the observed increases in ETR under extended high light were explained by an increase in the rate of PSII reopening, i.e. QA- oxidation. This acceleration of electron transport was strictly light dependent and relaxed within seconds after a return to low light or darkness. The time-dependent nature of ETR upregulation and regulated NPQ induction was verified using induction-recovery curves. Our findings show a time-dependent induction of excitation dissipation, in parallel with very rapid photoacclimation of electron transport, which combine to make ETR independent of short-term changes in PAR. This supports a selective advantage for these diatoms when exposed to fluctuating light in their environment.
Collapse
Affiliation(s)
- R Perkins
- School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff, Wales, CF10 3AT, UK.
| | - C Williamson
- School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff, Wales, CF10 3AT, UK
- Schools of Biological and Geographical Sciences, University of Bristol, 12 Berkeley Square, Bristol, BS8 1SS, UK
| | - J Lavaud
- UMI 3376 Takuvik, CNRS/Université Laval, Département de Biologie-Pavillon Alexandre Vachon, Québec, QC, G1V 0A6, Canada
| | - J-L Mouget
- Mer-Molécules-Santé (MMS), FR CNRS 3473 IUML, Le Mans Université, Av. O. Messiaen, 72085, Le Mans Cedex 9, France
| | - D A Campbell
- Department of Biology, Mount Allison University, Sackville, NB, E4L3M7, Canada
| |
Collapse
|
19
|
Liefer JD, Garg A, Campbell DA, Irwin AJ, Finkel ZV. Nitrogen starvation induces distinct photosynthetic responses and recovery dynamics in diatoms and prasinophytes. PLoS One 2018; 13:e0195705. [PMID: 29641594 PMCID: PMC5895044 DOI: 10.1371/journal.pone.0195705] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/28/2018] [Indexed: 11/18/2022] Open
Abstract
Nitrogen stress is an important control on the growth of phytoplankton and varying responses to this common condition among taxa may affect their relative success within phytoplankton communities. We analyzed photosynthetic responses to nitrogen (N) stress in two classes of phytoplankton that often dominate their respective size ranges, diatoms and prasinophytes, selecting species of distinct niches within each class. Changes in photosynthetic structures appeared similar within each class during N stress, but photophysiological and growth responses were more species- or niche-specific. In the coastal diatom Thalassiosira pseudonana and the oceanic diatom T. weissflogii, N starvation induced large declines in photosynthetic pigments and Photosystem II (PSII) quantity and activity as well as increases in the effective absorption cross-section of PSII photochemistry (σ'PSII). These diatoms also increased photoprotection through energy-dependent non-photochemical quenching (NPQ) during N starvation. Resupply of N in diatoms caused rapid recovery of growth and relaxation of NPQ, while recovery of PSII photochemistry was slower. In contrast, the prasinophytes Micromonas sp., an Arctic Ocean species, and Ostreococcus tauri, a temperate coastal eutrophile, showed little change in photosynthetic pigments and structures and a decline or no change, respectively, in σ'PSII with N starvation. Growth and PSII function recovered quickly in Micromonas sp. after resupply of N while O. tauri failed to recover N-replete levels of electron transfer from PSII and growth, possibly due to their distinct photoprotective strategies. O. tauri induced energy-dependent NPQ for photoprotection that may suit its variable and nutrient-rich habitat. Micromonas sp. relies upon both energy-dependent NPQ and a sustained, energy-independent NPQ mechanism. A strategy in Micromonas sp. that permits photoprotection with little change in photosynthetic structures is consistent with its Arctic niche, where low temperatures and thus low biosynthetic rates create higher opportunity costs to rebuild photosynthetic structures.
Collapse
Affiliation(s)
- Justin D. Liefer
- Department of Geography and Environment, Mount Allison University, Sackville, New Brunswick, Canada
- * E-mail:
| | - Aneri Garg
- Department of Geography and Environment, Mount Allison University, Sackville, New Brunswick, Canada
| | - Douglas A. Campbell
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Andrew J. Irwin
- Department of Mathematics and Computer Science, Mount Allison University, Sackville, New Brunswick, Canada
| | - Zoe V. Finkel
- Department of Geography and Environment, Mount Allison University, Sackville, New Brunswick, Canada
| |
Collapse
|
20
|
Joli N, Monier A, Logares R, Lovejoy C. Seasonal patterns in Arctic prasinophytes and inferred ecology of Bathycoccus unveiled in an Arctic winter metagenome. THE ISME JOURNAL 2017; 11:1372-1385. [PMID: 28267153 PMCID: PMC5437359 DOI: 10.1038/ismej.2017.7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 12/04/2016] [Accepted: 01/09/2017] [Indexed: 11/09/2022]
Abstract
Prasinophytes occur in all oceans but rarely dominate phytoplankton populations. In contrast, a single ecotype of the prasinophyte Micromonas is frequently the most abundant photosynthetic taxon reported in the Arctic from summer through autumn. However, seasonal dynamics of prasinophytes outside of this period are little known. To address this, we analyzed high-throughput V4 18S rRNA amplicon data collected from November to July in the Amundsen Gulf Region, Beaufort Sea, Arctic. Surprisingly during polar sunset in November and December, we found a high proportion of reads from both DNA and RNA belonging to another prasinophyte, Bathycoccus. We then analyzed a metagenome from a December sample and the resulting Bathycoccus metagenome assembled genome (MAG) covered ~90% of the Bathycoccus Ban7 reference genome. In contrast, only ~20% of a reference Micromonas genome was found in the metagenome. Our phylogenetic analysis of marker genes placed the Arctic Bathycoccus in the B1 coastal clade. In addition, substitution rates of 129 coding DNA sequences were ~1.6% divergent between the Arctic MAG and coastal Chilean upwelling MAGs and 17.3% between it and a South East Atlantic open ocean MAG in the B2 Clade. The metagenomic analysis also revealed a winter viral community highly skewed toward viruses targeting Micromonas, with a much lower diversity of viruses targeting Bathycoccus. Overall a combination of Micromonas being relatively less able to maintain activity under dark winter conditions and viral suppression of Micromonas may have contributed to the success of Bathycoccus in the Amundsen Gulf during winter.
Collapse
Affiliation(s)
- Nathalie Joli
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Québec Océan, Université Laval, Québec City, QC, Canada
- Takuvik Joint International Laboratory, Centre National de la Recherche Scientifique (France, CNRS UMI 3376), Université Laval, Québec City, QC, Canada
| | - Adam Monier
- School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Ramiro Logares
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Spain
| | - Connie Lovejoy
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Québec Océan, Université Laval, Québec City, QC, Canada
- Takuvik Joint International Laboratory, Centre National de la Recherche Scientifique (France, CNRS UMI 3376), Université Laval, Québec City, QC, Canada
| |
Collapse
|
21
|
Murphy CD, Roodvoets MS, Austen EJ, Dolan A, Barnett A, Campbell DA. Photoinactivation of Photosystem II in Prochlorococcus and Synechococcus. PLoS One 2017; 12:e0168991. [PMID: 28129341 PMCID: PMC5271679 DOI: 10.1371/journal.pone.0168991] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/10/2016] [Indexed: 01/15/2023] Open
Abstract
The marine picocyanobacteria Synechococcus and Prochlorococcus numerically dominate open ocean phytoplankton. Although evolutionarily related they are ecologically distinct, with different strategies to harvest, manage and exploit light. We grew representative strains of Synechococcus and Prochlorococcus and tracked their susceptibility to photoinactivation of Photosystem II under a range of light levels. As expected blue light provoked more rapid photoinactivation than did an equivalent level of red light. The previous growth light level altered the susceptibility of Synechococcus, but not Prochlorococcus, to this photoinactivation. We resolved a simple linear pattern when we expressed the yield of photoinactivation on the basis of photons delivered to Photosystem II photochemistry, plotted versus excitation pressure upon Photosystem II, the balance between excitation and downstream metabolism. A high excitation pressure increases the generation of reactive oxygen species, and thus increases the yield of photoinactivation of Photosystem II. Blue photons, however, retained a higher baseline photoinactivation across a wide range of excitation pressures. Our experiments thus uncovered the relative influences of the direct photoinactivation of Photosystem II by blue photons which dominates under low to moderate blue light, and photoinactivation as a side effect of reactive oxygen species which dominates under higher excitation pressure. Synechococcus enjoyed a positive metabolic return upon the repair or the synthesis of a Photosystem II, across the range of light levels we tested. In contrast Prochlorococcus only enjoyed a positive return upon synthesis of a Photosystem II up to 400 μmol photons m-2 s-1. These differential cost-benefits probably underlie the distinct photoacclimation strategies of the species.
Collapse
Affiliation(s)
- Cole D. Murphy
- Biochemistry and Chemistry, Mount Allison University, Sackville, New Brunswick, Canada
| | - Mitchell S. Roodvoets
- Biochemistry and Chemistry, Mount Allison University, Sackville, New Brunswick, Canada
| | - Emily J. Austen
- Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Allison Dolan
- Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Audrey Barnett
- Michigan Technological University, Houghton, Michigan, United States of America
| | | |
Collapse
|