1
|
Samaei A, Deshmukh SS, Protheroe C, Nyéki S, Tremblay-Ethier RA, Kálmán L. Photoactivation and conformational gating for manganese binding and oxidation in bacterial reaction centers. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148928. [PMID: 36216075 DOI: 10.1016/j.bbabio.2022.148928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
The influence of illumination history of native bacterial reaction centers (BRCs) on the ability of binding and photo-induced oxidation of manganous ions was investigated in the pH range between 8.0 and 9.4. Binding of manganous ions to a buried site required 6 to 11-fold longer incubation periods, depending on the pH, in dark-adapted BRCs than in BRCs that were previously illuminated prior to manganese binding. The intrinsic electron transfer from the bound manganese ion to the photo-oxidized primary electron donor was found to be limited by a 2 to 5-fold slower precursor conformational step in the dark-adapted samples for the same pH range. The conformational gating could be eliminated by photoactivation, namely if the BRCs were illuminated prior to binding. Unlike in Photosystem II, photoactivation in BRCs did not involve cluster assembly. Photoactivation with manganese already bound was only possible at elevated detergent concentration. In addition, also exclusively in dark-adapted BRCs, a marked breaking point in the Arrhenius-plot was discovered around 15 °C at pH 9.4 indicating a change in the reaction mechanism, most likely caused by the change of orientation of the 2-acetyl group of the inactive bacteriochlorophyll monomer located near the manganese binding site.
Collapse
Affiliation(s)
- Ali Samaei
- Department of Physics, Concordia University, Montreal, QC, Canada
| | | | | | - Sarah Nyéki
- Department of Physics, Concordia University, Montreal, QC, Canada
| | | | - László Kálmán
- Department of Physics, Concordia University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Sipka G, Nagy L, Magyar M, Akhtar P, Shen JR, Holzwarth AR, Lambrev PH, Garab G. Light-induced reversible reorganizations in closed Type II reaction centre complexes: physiological roles and physical mechanisms. Open Biol 2022; 12:220297. [PMID: 36514981 PMCID: PMC9748786 DOI: 10.1098/rsob.220297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
The purpose of this review is to outline our understanding of the nature, mechanism and physiological significance of light-induced reversible reorganizations in closed Type II reaction centre (RC) complexes. In the so-called 'closed' state, purple bacterial RC (bRC) and photosystem II (PSII) RC complexes are incapable of generating additional stable charge separation. Yet, upon continued excitation they display well-discernible changes in their photophysical and photochemical parameters. Substantial stabilization of their charge-separated states has been thoroughly documented-uncovering light-induced reorganizations in closed RCs and revealing their physiological importance in gradually optimizing the operation of the photosynthetic machinery during the dark-to-light transition. A range of subtle light-induced conformational changes has indeed been detected experimentally in different laboratories using different bRC and PSII-containing preparations. In general, the presently available data strongly suggest similar structural dynamics of closed bRC and PSII RC complexes, and similar physical mechanisms, in which dielectric relaxation processes and structural memory effects of proteins are proposed to play important roles.
Collapse
Affiliation(s)
- G. Sipka
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári körút 62, 6726 Szeged, Hungary
| | - L. Nagy
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári körút 62, 6726 Szeged, Hungary
- Institute of Medical Physics and Informatics, University of Szeged, Rerrich B. tér 1, 6720 Szeged, Hungary
| | - M. Magyar
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári körút 62, 6726 Szeged, Hungary
| | - P. Akhtar
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári körút 62, 6726 Szeged, Hungary
| | - J.-R. Shen
- Institute of Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, 700-8530 Okayama, Japan
- Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, People's Republic of China
| | - A. R. Holzwarth
- Max-Planck-Institute for Chemical Energy Conversion, 45470 Mülheim a.d. Ruhr, Germany
| | - P. H. Lambrev
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári körút 62, 6726 Szeged, Hungary
| | - G. Garab
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári körút 62, 6726 Szeged, Hungary
- Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| |
Collapse
|
3
|
Wang Q, Wang X, Wang Y, Hou Y. Evaluation and analysis of the toxicity of mercury (Hg 2+) to allophycocyanin from Spirulina platensis in vitro. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76881-76889. [PMID: 35672637 DOI: 10.1007/s11356-022-21190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
As a global environmental pollution problem, heavy metal pollution has brought great harm to human beings. In this work, we studied the toxicity of Hg2+ on allophycocyanin (APC) at the molecular level. Firstly, APC was extracted and purified from Spirulina platensis mud and its purity (A650/A280) reached 3.75. In addition, the fluorescence intensity of APC decreased with increasing Hg2+ concentration from 0 to 5 × 10-6 mol L-1. The theoretical calculation and experimental results showed that the fluorescence quenching of APC by Hg2+ was static and had a good linear relationship. Moreover, the UV-Vis spectra of APC showed a significant decrease at 200 nm and 650 nm with the increase of Hg2+ concentration from 0 to 5×10-6 mol L-1, and a red-shift at 200 nm, which indicated that Hg2+ not only affected the structure of APC but also affected the light absorption and photosynthetic function of APC. Furthermore, the results of molecular simulation demonstrate that Hg2+ combinations with the Met77, Cys81 in the α chain and the Arg77, Cys81 in the β chain, which interact between the peptide chain and the chromophore, and Hg2+ forms a Hg-S bond with -SH. This study provides new insights into the structure and how Hg2+ effect the optical properties of APC.
Collapse
Affiliation(s)
- Quanfu Wang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, China
| | - Xingteng Wang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, China
| | - Yatong Wang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, China
| | - Yanhua Hou
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, China.
| |
Collapse
|
4
|
Knox PP, Lukashev EP, Korvatovskiy BN, Strakhovskaya MG, Makhneva ZK, Bol'shakov MA, Paschenko VZ. Disproportionate effect of cationic antiseptics on the quantum yield and fluorescence lifetime of bacteriochlorophyll molecules in the LH1-RC complex of R. rubrum chromatophores. PHOTOSYNTHESIS RESEARCH 2022; 153:103-112. [PMID: 35277801 DOI: 10.1007/s11120-022-00909-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Photosynthetic membrane complexes of purple bacteria are convenient and informative macromolecular systems for studying the mechanisms of action of various physicochemical factors on the functioning of catalytic proteins both in an isolated state and as part of functional membranes. In this work, we studied the effect of cationic antiseptics (chlorhexidine, picloxydine, miramistin, and octenidine) on the fluorescence intensity and the efficiency of energy transfer from the light-harvesting LH1 complex to the reaction center (RC) of Rhodospirillum rubrum chromatophores. The effect of antiseptics on the fluorescence intensity and the energy transfer increased in the following order: chlorhexidine, picloxydine, miramistin, octenidine. The most pronounced changes in the intensity and lifetime of fluorescence were observed with the addition of miramistin and octenidine. At the same concentration of antiseptics, the increase in fluorescence intensity was 2-3 times higher than the increase in its lifetime. It is concluded that the addition of antiseptics decreases the efficiency of the energy migration LH1 → RC and increases the fluorescence rate constant kfl. We associate the latter with a change in the polarization of the microenvironment of bacteriochlorophyll molecules upon the addition of charged antiseptic molecules. A possible mechanism of antiseptic action on R. rubrum chromatophores is considered. This work is a continuation of the study of the effect of antiseptics on the energy transfer and fluorescence intensity in chromatophores of purple bacteria published earlier in Photosynthesis Research (Strakhovskaya et al. in Photosyn Res 147:197-209, 2021).
Collapse
Affiliation(s)
- Peter P Knox
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation, 119234
| | - Eugene P Lukashev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation, 119234
| | - Boris N Korvatovskiy
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation, 119234
| | - Marina G Strakhovskaya
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation, 119234.
| | - Zoja K Makhneva
- Federal Research Center "Pushchino Scientific Center for Biological Research of Russian Academy of Sciences", Pushchino, Russian Federation, 142290
| | - Maxim A Bol'shakov
- Federal Research Center "Pushchino Scientific Center for Biological Research of Russian Academy of Sciences", Pushchino, Russian Federation, 142290
| | - Vladimir Z Paschenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation, 119234
| |
Collapse
|
5
|
Sipka G, Magyar M, Mezzetti A, Akhtar P, Zhu Q, Xiao Y, Han G, Santabarbara S, Shen JR, Lambrev PH, Garab G. Light-adapted charge-separated state of photosystem II: structural and functional dynamics of the closed reaction center. THE PLANT CELL 2021; 33:1286-1302. [PMID: 33793891 PMCID: PMC8225241 DOI: 10.1093/plcell/koab008] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/13/2020] [Indexed: 05/04/2023]
Abstract
Photosystem II (PSII) uses solar energy to oxidize water and delivers electrons for life on Earth. The photochemical reaction center of PSII is known to possess two stationary states. In the open state (PSIIO), the absorption of a single photon triggers electron-transfer steps, which convert PSII into the charge-separated closed state (PSIIC). Here, by using steady-state and time-resolved spectroscopic techniques on Spinacia oleracea and Thermosynechococcus vulcanus preparations, we show that additional illumination gradually transforms PSIIC into a light-adapted charge-separated state (PSIIL). The PSIIC-to-PSIIL transition, observed at all temperatures between 80 and 308 K, is responsible for a large part of the variable chlorophyll-a fluorescence (Fv) and is associated with subtle, dark-reversible reorganizations in the core complexes, protein conformational changes at noncryogenic temperatures, and marked variations in the rates of photochemical and photophysical reactions. The build-up of PSIIL requires a series of light-induced events generating rapidly recombining primary radical pairs, spaced by sufficient waiting times between these events-pointing to the roles of local electric-field transients and dielectric relaxation processes. We show that the maximum fluorescence level, Fm, is associated with PSIIL rather than with PSIIC, and thus the Fv/Fm parameter cannot be equated with the quantum efficiency of PSII photochemistry. Our findings resolve the controversies and explain the peculiar features of chlorophyll-a fluorescence kinetics, a tool to monitor the functional activity and the structural-functional plasticity of PSII in different wild-types and mutant organisms and under stress conditions.
Collapse
Affiliation(s)
- G�bor Sipka
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Melinda Magyar
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Alberto Mezzetti
- Universit� Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) 91191 Gif-sur-Yvette, France
- Laboratoire de R�activit� de Surface UMR 7197, Sorbonne University, Paris, France
| | - Parveen Akhtar
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- ELI-ALPS, ELI-HU Nonprofit Ltd., Szeged, Hungary
| | - Qingjun Zhu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yanan Xiao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Stefano Santabarbara
- Photosynthetic Research Unit, Institute of Biophysics, National Research Council of Italy, Milano, Italy
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Petar H Lambrev
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- Author for correspondence: (G.G.), (P.H.L.)
| | - Győző Garab
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Author for correspondence: (G.G.), (P.H.L.)
| |
Collapse
|
6
|
Deshmukh SS, Kálmán L. Tuning the redox potential of the primary electron donor in bacterial reaction centers by manganese binding and light-induced structural changes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148285. [PMID: 32777306 DOI: 10.1016/j.bbabio.2020.148285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 11/26/2022]
Abstract
The influence of transition metal binding on the charge storage ability of native bacterial reaction centers (BRCs) was investigated. Binding of manganous ions uniquely prevented the light-induced conformational changes that would yield to long lifetimes of the charge separated state and the drop of the redox potential of the primary electron donor (P). The lifetimes of the stable charge pair in the terminal conformations were shortened by 50-fold and 7-fold upon manganous and cupric ion binding, respectively. Nickel and zinc binding had only marginal effects. Binding of manganese not only prevented the drop of the potential of P/P+ but also elevated it by up to 117 mV depending on where the metal was binding. With variable conditions, facilitating either manganese binding or light-induced structural changes a controlled tuning of the potential of P/P+ in multiple steps was demonstrated in a range of ~200 mV without the need of a mutation or synthesis. Under the selected conditions, manganese binding was achieved without its photochemical oxidation thus, the energized but still native BRCs can be utilized in photochemistry that is not reachable with regular BRCs. A 42 Å long hydrophobic tunnel was identified that became obstructed upon manganese binding and its likely role is to deliver protons from the hydrophobic core to the surface during conformational changes.
Collapse
Affiliation(s)
| | - László Kálmán
- Department of Physics, Concordia University, Montreal, QC, Canada.
| |
Collapse
|
7
|
Abstract
Mercury (Hg) is a global pollutant emitted primarily as gaseous Hg0 that is deposited in aquatic and terrestrial ecosystems following its oxidation to HgII. From that point, microbes play a key role in determining Hg’s fate in the environment by participating in sequestration, oxidation, reduction, and methylation reactions. A wide diversity of chemotrophic and phototrophic microbes occupying oxic and anoxic habitats are known to participate directly in Hg cycling. Over the last few years, new findings have come to light that have greatly improved our mechanistic understanding of microbe-mediated Hg cycling pathways in the environment. In this review, we summarize recent advances in microbially mediated Hg cycling and take the opportunity to compare the relatively well-studied chemotrophic pathways to poorly understood phototrophic pathways. We present how the use of genomic and analytical tools can be used to understand Hg transformations and the physiological context of recently discovered cometabolic Hg transformations supported in anaerobes and phototrophs. Finally, we propose a conceptual framework that emphasizes the role that phototrophs play in environmental Hg redox cycling and the importance of better characterizing such pathways in the face of the environmental changes currently underway.
Collapse
Affiliation(s)
- Daniel S. Grégoire
- Biology Department, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Alexandre J. Poulain
- Biology Department, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|