1
|
Huang P, Chen Y, Yu S, Zhou Y. Propionic acid enhances H 2 production in purple phototrophic bacteria: Insights into carbon and reducing equivalent allocation. WATER RESEARCH 2025; 269:122799. [PMID: 39577388 DOI: 10.1016/j.watres.2024.122799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
Biohydrogen is gaining popularity as a clean and cost-effective energy source. Among the various production methods, photo fermentation (PF) with purple phototrophic bacteria (PPB) has shown great opportunity due to its high hydrogen yield. In practice, this yield is influenced by several factors, with the carbon source, particularly simple organic acid, being a key element that has attracted considerable research interest. Short-chain volatile fatty acids (VFAs), such as acetate, propionate, and butyrate, are widely found in waste streams and dark fermentation (DF) effluent. However, most studies on these VFAs focus mainly on performance evaluation, with few exploring the underlying mechanisms, which limits their applicability in real-world scenarios. To uncover the metabolic mechanisms, this study uses metagenomics to clarify the processes of reducing power production and distribution during substrate assimilation. Meanwhile, this study presents the impact of short-chain VFAs on biohydrogen, polyhydroxyalkanoates (PHA) and glycogen production by PPB. The results show that: (1) over long-term cultivation at similar COD consumption rates of 0.06 g COD/d, PPB possessed the highest hydrogen yield when fed with propionate (0.620 L H2·g COD-1) compared with butyrate (0.434) and acetate (0.361); (2) with propionate as the substrate, PPB accumulated less PHA (7 % of dry biomass) but more glycogen content (11 %), compared to butyrate (15 % PHA and 8 % glycogen) and acetate (21 % PHA and 5 % glycogen); (3) metagenomic analysis revealed that propionate resulted in the highest amounts of reducing equivalents, followed by butyrate and acetate; hydrogen production was the most efficient pathway for utilizing the reducing power with propionate, as the CO2 fixation and PHA or glycogen synthesis were ineffective for electron dissipation. This study offers insights into metabolic mechanism that could guide waste stream selection and pretreatment processes to provide favorable VFAs for the PF process, thereby enhancing PPB biohydrogen production performance in practical applications.
Collapse
Affiliation(s)
- Peitian Huang
- Interdisciplinary Graduate Program, Nanyang Technological University, 61 Nanyang Drive, 637335, Singapore; Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yun Chen
- Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Siwei Yu
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yan Zhou
- Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
2
|
Doki MM, Mehta AK, Chakraborty D, Ghangrekar MM, Dubey BK, Alloul A, Moradvandi A, Vlaeminck SE, Lindeboom REF. Recovery of purple non-sulfur bacteria-mediated single-cell protein from domestic wastewater in two-stage treatment using high rate digester and raceway pond. BIORESOURCE TECHNOLOGY 2024; 413:131467. [PMID: 39260730 DOI: 10.1016/j.biortech.2024.131467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/31/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Wastewater resources can be used to produce microbial protein for animal feed or organic fertiliser, conserving food chain resources. This investigation hasemployed thefermented sewage to photoheterotrophically grown purple non-sulfur bacteria (PNSB) in a 2.5 m3 pilot-scaleraceway-pond with infrared light to produce proteinaceous biomass. Fermented sewage with synthetic media consisting of sodium acetate and propionic acids at a surface-to-volume (S/V) ratio of 10 m2/m3 removed 89%, 93%, and 81% of chemical oxygen demand, ammonium nitrogen, and orthophosphate, respectively; whereas respective removal in fermented sewage alone without synthetic media was 73%, 73%, and 72% during batch operation of 120 h. The biomass yield of 0.88-0.95 g CODbiomass /g CODremoved with protein content of 40.3 ± 0.3%-43.9 ± 0.2% w/w was obtained for fermented sewage with synthetic media. The results revealed enhanced possibility of scaling-up the raceway reactor to recover resources from municipal wastewater and enable simultaneous high-rate PNSB single-cell protein production.
Collapse
Affiliation(s)
- Manikanta M Doki
- Department of Civil Engineering, Indian Institute of Technology, Kharagpur, India
| | - Arun Kumar Mehta
- Department of Civil Engineering, Indian Institute of Technology, Kharagpur, India
| | - Debkumar Chakraborty
- Department of Civil Engineering, Indian Institute of Technology, Kharagpur, India; Department of Life Sciences, GITAM School of Science, GITAM, Visakhapatnam 530045, Andhra Pradesh, India
| | - Makarand M Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology, Kharagpur, India; National Institute of Technology Puducherry, Karaikal 609609, India.
| | - Brajesh K Dubey
- Department of Civil Engineering, Indian Institute of Technology, Kharagpur, India
| | - Abbas Alloul
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Ali Moradvandi
- Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052 Gent, Belgium
| | - Siegfried E Vlaeminck
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium; Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052 Gent, Belgium
| | - Ralph E F Lindeboom
- Department of Water Management, Faculty of Civil Engineering and Geosciences, Stevinweg 1, 2628 CN Delft, the Netherlands
| |
Collapse
|
3
|
Carlozzi P, Touloupakis E, Filippi S, Cinelli P, Mezzetta A, Seggiani M. Purple non-sulfur bacteria as cell factories to produce a copolymer as PHBV under light/dark cycle in a 4-L photobioreactor. J Biotechnol 2022; 356:51-59. [PMID: 35932942 DOI: 10.1016/j.jbiotec.2022.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 11/28/2022]
Abstract
The present study reports a strategy to produce polyhydroxyalkanoates (PHAs) by culturing the marine bacterium Rhodovulum sulfidophilum DSM-1374. The study was carried out by growing the bacterium anaerobically for 720 h under 16/8 light/dark cycle. Two analytical techniques such as proton magnetic nuclear magnetic resonance (1H NMR) and Fourier transform infrared spectroscopy (FT-IR) were used to determine that the polyester produced was poly-3-hydroxybutirate-co-3-hydroxyvalerate (PHBV). This study showed that the excess of lactate and the limitation of N-P nutrients under a light-dark cycle enhanced PHBV synthesis and achieved a PHBV concentration of 330 mg/L in the R. sulfidophilum culture. During the 30 days of bacterial cultivation, the percentage of polymer in the six harvested dry biomasses gradually increased from 13.7% to 23.4%. In addition, the study showed that PHBV synthesis stopped during the 8-h dark phase and restarted in the light. The light-dark cycle study also showed that R. sulfidophilum DSM-1374 can be grown outdoors because the cells are exposed to the natural light-dark cycle.
Collapse
Affiliation(s)
- Pietro Carlozzi
- Research Institute on Terrestrial Ecosystems, CNR, Via Madonna del Piano 10, 50019 Florence, Italy.
| | - Eleftherios Touloupakis
- Research Institute on Terrestrial Ecosystems, CNR, Via Madonna del Piano 10, 50019 Florence, Italy
| | - Sara Filippi
- Department of Civil and Industrial Engineering, University of Pisa, L.go Lucio Lazzarino 1, 56122 Pisa, Italy
| | - Patrizia Cinelli
- Department of Civil and Industrial Engineering, University of Pisa, L.go Lucio Lazzarino 1, 56122 Pisa, Italy
| | - Andrea Mezzetta
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy
| | - Maurizia Seggiani
- Department of Civil and Industrial Engineering, University of Pisa, L.go Lucio Lazzarino 1, 56122 Pisa, Italy
| |
Collapse
|
4
|
Lee YR, Lee WH, Lee SY, Lee J, Kim MS, Moon M, Park GW, Kim HS, Kim JI, Lee JS, Lee S. Regulation of Reactive Oxygen Species Promotes Growth and Carotenoid Production Under Autotrophic Conditions in Rhodobacter sphaeroides. Front Microbiol 2022; 13:847757. [PMID: 35295297 PMCID: PMC8920488 DOI: 10.3389/fmicb.2022.847757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/07/2022] [Indexed: 11/26/2022] Open
Abstract
Industrial demand for capture and utilization using microorganisms to reduce CO2, a major cause of global warming, is significantly increasing. Rhodobacter sphaeroides is a suitable strain for the process of converting CO2 into high-value materials because it can accept CO2 and has various metabolic pathways. However, it has been mainly studied for heterotrophic growth that uses sugars and organic acids as carbon sources, not autotrophic growth. Here, we report that the regulation of reactive oxygen species is critical for growth when using CO2 as a sole carbon source in R. sphaeroides. In general, the growth rate is much slower under autotrophic conditions compared to heterotrophic conditions. To improve this, we performed random mutagenesis using N-methyl-N’-nitro-N-nitrosoguanidine (NTG). As a result, we selected the YR-1 strain with a maximum specific growth rate (μ) 1.44 day–1 in the early growth phase, which has a 110% faster growth rate compared to the wild-type. Based on the transcriptome analysis, it was confirmed that the growth was more sensitive to reactive oxygen species under autotrophic conditions. In the YR-1 mutant, the endogenous contents of H2O2 levels and oxidative damage were reduced by 33.3 and 42.7% in the cells, respectively. Furthermore, we measured that concentrations of carotenoids, which are important antioxidants. The total carotenoid is produced 9.63 g/L in the YR-1 mutant, suggesting that the production is 1.7-fold higher than wild-type. Taken together, our observations indicate that controlling ROS promotes cell growth and carotenoid production under autotrophic conditions.
Collapse
Affiliation(s)
- Yu Rim Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju, South Korea
- Interdisciplinary Program of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Won-Heong Lee
- Interdisciplinary Program of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Soo Youn Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju, South Korea
| | - Jiye Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju, South Korea
| | - Min-Sik Kim
- Energy Resources Upcycling Research Laboratory, Korea Institute of Energy Research, Daejeon, South Korea
| | - Myounghoon Moon
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju, South Korea
| | - Gwon Woo Park
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju, South Korea
| | - Hui Su Kim
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju, South Korea
- Department of Advanced Chemicals and Engineering, Chonnam National University, Gwangju, South Korea
| | - Jeong-Il Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Jin-Suk Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju, South Korea
| | - Sangmin Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju, South Korea
- *Correspondence: Sangmin Lee,
| |
Collapse
|
5
|
Poly-β-Hydroxybutyrate Production by Rhodopseudomonas sp. Grown in Semi-Continuous Mode in a 4 L Photobioreactor. Symmetry (Basel) 2021. [DOI: 10.3390/sym13091609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The synthesis of polyhydroxybutyrate (PHB) by photosynthetic non-sulfur bacteria is a potential approach for producing biodegradable plastics. In this work, acetate was used as a single carbon source to study the effect on PHB formation in Rhodopseudomonas sp. cultured in a cylindrical four-liter photobioreactor under semi-continuous mode. The cultivation process is divided into a symmetrical growth phase and a PHB accumulation phase separated temporally. The symmetrical growth phase (nutrient sufficient conditions) was followed by a sulfur-limited phase to promote PHB accumulation. The main novelty is the progressive lowering of the sulfur concentration into Rhodopseudomonas culture, which was obtained by two concomitant conditions: (1) sulfur consumption during the bacterial growth and (2) semi-continuous growth strategy. This caused a progressive lowering of the sulfur concentration into Rhodopseudomonas culturedue to the sulfur-free medium used to replace 2 L of culture (50% of the total) that was withdrawn from the photobioreactor at each dilution. The PHB content ranged from 9.26% to 15.24% of cell dry weight. At the steady state phase, the average cumulative PHB was >210 mg/L. Sulfur deficiency proved to be one of the most suitable conditions to obtain high cumulative PHB in Rhodopseudomonas culture.
Collapse
|
6
|
Petushkova E, Mayorova E, Tsygankov A. TCA Cycle Replenishing Pathways in Photosynthetic Purple Non-Sulfur Bacteria Growing with Acetate. Life (Basel) 2021; 11:711. [PMID: 34357087 PMCID: PMC8307300 DOI: 10.3390/life11070711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/27/2021] [Accepted: 07/14/2021] [Indexed: 11/23/2022] Open
Abstract
Purple non-sulfur bacteria (PNSB) are anoxygenic photosynthetic bacteria harnessing simple organic acids as electron donors. PNSB produce a-aminolevulinic acid, polyhydroxyalcanoates, bacteriochlorophylls a and b, ubiquinones, and other valuable compounds. They are highly promising producers of molecular hydrogen. PNSB can be cultivated in organic waste waters, such as wastes after fermentation. In most cases, wastes mainly contain acetic acid. Therefore, understanding the anaplerotic pathways in PNSB is crucial for their potential application as producers of biofuels. The present review addresses the recent data on presence and diversity of anaplerotic pathways in PNSB and describes different classifications of these pathways.
Collapse
Affiliation(s)
- Ekaterina Petushkova
- Pushchino Scientific Center for Biological Research, Institute of Basic Biological Problems Russian Academy of Sciences, 2, Institutskaya Str, 142290 Pushchino, Moscow Region, Russia; (E.P.); (E.M.)
| | - Ekaterina Mayorova
- Pushchino Scientific Center for Biological Research, Institute of Basic Biological Problems Russian Academy of Sciences, 2, Institutskaya Str, 142290 Pushchino, Moscow Region, Russia; (E.P.); (E.M.)
- Pushchino State Institute of Natural Science, The Federal State Budget Educational Institution of Higher Education, 3, Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Anatoly Tsygankov
- Pushchino Scientific Center for Biological Research, Institute of Basic Biological Problems Russian Academy of Sciences, 2, Institutskaya Str, 142290 Pushchino, Moscow Region, Russia; (E.P.); (E.M.)
| |
Collapse
|