1
|
Paśko P, Okoń K, Prochownik E, Krośniak M, Francik R, Kryczyk-Kozioł J, Grudzińska M, Tyszka-Czochara M, Malinowski M, Sikora J, Galanty A, Zagrodzki P. The Impact of Kohlrabi Sprouts on Various Thyroid Parameters in Iodine Deficiency- and Sulfadimethoxine-Induced Hypothyroid Rats. Nutrients 2022; 14:nu14142802. [PMID: 35889759 PMCID: PMC9316894 DOI: 10.3390/nu14142802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 01/20/2023] Open
Abstract
Brassica sprouts, as the rich source of dietary glucosinolates, may have a negative effect on thyroid function. In this study, kohlrabi sprouts diet, combined with two models of rat hypothyroidism, was tested. TSH, thyroid hormones and histopathology analysis were completed with the evaluation of immunological, biochemical, haematological parameters, cytosolic glutathione peroxidase, thioredoxin reductase in the thyroid, and plasma glutathione peroxidase. A thermographic analysis was also adapted to confirm thyroid dysfunction. The levels of TSH, fT3 and fT4, antioxidant enzyme (GPX) as well as histopathology parameters remained unchanged following kohlrabi sprouts ingestion, only TR activity significantly increased in response to the sprouts. In hypothyroid animals, sprouts diet did not prevent thyroid damage. In comparison with the rats with iodine deficiency, kohlrabi sprouts diet decreased TNF-α level. Neither addition of the sprouts to the diet, nor sulfadimethoxine and iodine deficiency, caused negative changes in red blood cell parameters, glucose and uric acid concentrations, or kidney function. However, such a dietary intervention resulted in reduced WBC levels, and adversely interfered with liver function in rats, most likely due to a higher dietary intake of glucosinolates. Moreover, the possible impact of the breed of the rats on the evaluated parameters was indicated.
Collapse
Affiliation(s)
- Paweł Paśko
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (E.P.); (M.K.); (J.K.-K.); (M.T.-C.); (P.Z.)
- Correspondence:
| | - Krzysztof Okoń
- Department of Pathomorphology, Jagiellonian University Medical College, Grzegórzecka 16, 31-531 Kraków, Poland;
| | - Ewelina Prochownik
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (E.P.); (M.K.); (J.K.-K.); (M.T.-C.); (P.Z.)
| | - Mirosław Krośniak
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (E.P.); (M.K.); (J.K.-K.); (M.T.-C.); (P.Z.)
| | - Renata Francik
- Department of Bioorganic Chemistry, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland;
- Institute of Health, State Higher Vocational School, Staszica 1, 33-300 Nowy Sącz, Poland
| | - Jadwiga Kryczyk-Kozioł
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (E.P.); (M.K.); (J.K.-K.); (M.T.-C.); (P.Z.)
| | - Marta Grudzińska
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.G.); (A.G.)
| | - Małgorzata Tyszka-Czochara
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (E.P.); (M.K.); (J.K.-K.); (M.T.-C.); (P.Z.)
| | - Mateusz Malinowski
- Department of Bioprocesses Engineering, Energetics and Automatization, Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116b, 30-149 Kraków, Poland; (M.M.); (J.S.)
| | - Jakub Sikora
- Department of Bioprocesses Engineering, Energetics and Automatization, Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116b, 30-149 Kraków, Poland; (M.M.); (J.S.)
| | - Agnieszka Galanty
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.G.); (A.G.)
| | - Paweł Zagrodzki
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (E.P.); (M.K.); (J.K.-K.); (M.T.-C.); (P.Z.)
| |
Collapse
|
2
|
Galanty A, Niepsuj M, Grudzińska M, Zagrodzki P, Podolak I, Paśko P. In the Search for Novel, Isoflavone-Rich Functional Foods—Comparative Studies of Four Clover Species Sprouts and Their Chemopreventive Potential for Breast and Prostate Cancer. Pharmaceuticals (Basel) 2022; 15:ph15070806. [PMID: 35890104 PMCID: PMC9319781 DOI: 10.3390/ph15070806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023] Open
Abstract
Despite a significant amount of research, the relationship between a diet rich in isoflavones and breast and prostate cancer risk is still ambiguous. The purpose of the current study was to pre-select the potential candidate for functional foods among red, white, crimson, and Persian clover sprouts, cultured for different periods of time (up to 10 days), with respect to the isoflavone content (determined by HPLC-UV-VIS), and to verify their impact on hormone-dependent cancers in vitro. The red clover sprouts were the richest in isoflavones (up to 426.2 mg/100 g dw), whereas the lowest content was observed for the crimson clover. Each species produced isoflavones in different patterns, which refer to the germination time. Hormone-insensitive MDA-MB-231 breast cancer cells were more resistant to the tested extracts than estrogen-dependent MCF7 breast cancer cells. Regarding prostate cancer, androgen-dependent LNCap cells were most susceptible to the tested sprouts, followed by androgen-insensitive, high metastatic PC3, and low metastatic DU145 cells. The observed cytotoxic impact of the tested sprouts is not associated with isoflavone content, as confirmed by chemometric analysis. Furthermore, the sprouts tested revealed a high antioxidant potential, and were characterized by high safety for normal breast and prostate cells.
Collapse
Affiliation(s)
- Agnieszka Galanty
- Department of Pharmacognosy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland; (M.N.); (M.G.); (I.P.)
- Correspondence:
| | - Monika Niepsuj
- Department of Pharmacognosy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland; (M.N.); (M.G.); (I.P.)
| | - Marta Grudzińska
- Department of Pharmacognosy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland; (M.N.); (M.G.); (I.P.)
| | - Paweł Zagrodzki
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland; (P.Z.); (P.P.)
| | - Irma Podolak
- Department of Pharmacognosy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland; (M.N.); (M.G.); (I.P.)
| | - Paweł Paśko
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland; (P.Z.); (P.P.)
| |
Collapse
|
3
|
Paśko P, Galanty A, Zagrodzki P, Żmudzki P, Bieniek U, Prochownik E, Domínguez-Álvarez E, Bierła K, Łobiński R, Szpunar J, Handzlik J, Marcinkowska M, Gorinstein S. Varied effect of fortification of kale sprouts with novel organic selenium compounds on the synthesis of sulphur and phenolic compounds in relation to cytotoxic, antioxidant and anti-inflammatory activity. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
4
|
Dobrowolska-Iwanek J, Zagrodzki P, Galanty A, Fołta M, Kryczyk-Kozioł J, Szlósarczyk M, Rubio PS, Saraiva de Carvalho I, Paśko P. Determination of Essential Minerals and Trace Elements in Edible Sprouts from Different Botanical Families—Application of Chemometric Analysis. Foods 2022; 11:foods11030371. [PMID: 35159521 PMCID: PMC8834360 DOI: 10.3390/foods11030371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/07/2022] [Accepted: 01/24/2022] [Indexed: 01/21/2023] Open
Abstract
Background: elemental deficiency may result in the malfunctioning of human organisms. Sprouts, with their attractive looks and well-established popularity, may be considered as alternative sources of elements in the diet. Moreover, the uptake of micro- and macronutrients from sprouts is better when compared to other vegetable sources. The aim of the study was to determine and compare the level of the selected essential minerals and trace elements in 25 sprouts from different botanical families, to preselect the richest species of high importance for human diets. Methods: the Cu, Zn, Mn, Fe, Mg, Ca determinations were performed using atomic absorption spectrometry with flame atomization and iodine by the colorimetric method. Results: beetroot sprouts had the highest levels of Zn, Fe, and Mg, while onion sprouts were the richest in Mn and Ca, among all of the tested sprouts. Sprouts of the Brassicaceae family were generally richer in Ca, Mg, and Zn than sprouts from the Fabaceae family. Results allow preselection of the most perspective sprouts as possible dietary sources of essential minerals and trace elements. For rucola, leeks, onions, and beetroot sprouts, the data on minerals and trace element compositions were performed for the first time.
Collapse
Affiliation(s)
- Justyna Dobrowolska-Iwanek
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (J.D.-I.); (P.Z.); (M.F.); (J.K.-K.)
| | - Paweł Zagrodzki
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (J.D.-I.); (P.Z.); (M.F.); (J.K.-K.)
| | - Agnieszka Galanty
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland;
| | - Maria Fołta
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (J.D.-I.); (P.Z.); (M.F.); (J.K.-K.)
| | - Jadwiga Kryczyk-Kozioł
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (J.D.-I.); (P.Z.); (M.F.); (J.K.-K.)
| | - Marek Szlósarczyk
- Department of Inorganic and Analytical Chemistry, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland;
| | - Pol Salvans Rubio
- Faculty of Pharmacy and Food Science, University of Barcelona, Diagonal Campus, Joan XXIII 27-31, 08-028 Barcelona, Spain;
| | - Isabel Saraiva de Carvalho
- Mediterranean Institute for Agriculture, Environment and Development, University of Algarve, 8005-139 Faro, Portugal;
| | - Paweł Paśko
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (J.D.-I.); (P.Z.); (M.F.); (J.K.-K.)
- Correspondence: ; Tel.: +48-126-205-670
| |
Collapse
|