1
|
Razavi SA, Kalari M, Haghzad T, Haddadi F, Nasiri S, Hedayati M. Exploring the potential of myo-inositol in thyroid disease management: focus on thyroid cancer diagnosis and therapy. Front Endocrinol (Lausanne) 2024; 15:1418956. [PMID: 39329107 PMCID: PMC11424451 DOI: 10.3389/fendo.2024.1418956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/05/2024] [Indexed: 09/28/2024] Open
Abstract
Thyroid cancer (TC) is a malignancy that is increasing in prevalence on a global scale, necessitating the development of innovative approaches for both diagnosis and treatment. Myo-inositol (MI) plays a crucial role in a wide range of physiological and pathological functions within human cells. To date, studies have investigated the function of MI in thyroid physiology as well as its potential therapeutic benefits for hypothyroidism and autoimmune thyroiditis. However, research in the field of TC is very restricted. Metabolomics studies have highlighted the promising diagnostic capabilities of MI, recognizing it as a metabolic biomarker for identifying thyroid tumors. Furthermore, MI can influence therapeutic characteristics by modulating key cellular pathways involved in TC. This review evaluates the potential application of MI as a naturally occurring compound in the management of thyroid diseases, including hypothyroidism, autoimmune thyroiditis, and especially TC. The limited number of studies conducted in the field of TC emphasizes the critical need for future research to comprehend the multifaceted role of MI in TC. A significant amount of research and clinical trials is necessary to understand the role of MI in the pathology of TC, its diagnostic and therapeutic potential, and to pave the way for personalized medicine strategies in managing this intricate disease.
Collapse
Affiliation(s)
- S. Adeleh Razavi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Kalari
- Department of Biochemistry, Semnan University of Medical Sciences, Semnan, Iran
| | - Tahereh Haghzad
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Fatemeh Haddadi
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Shirzad Nasiri
- Department of Surgery, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Ferrari SM, Paparo SR, Ragusa F, Elia G, Mazzi V, Patrizio A, Ghionzoli M, Varricchi G, Centanni M, Ulisse S, Antonelli A, Fallahi P. Chemokines in thyroid autoimmunity. Best Pract Res Clin Endocrinol Metab 2023; 37:101773. [PMID: 36907786 DOI: 10.1016/j.beem.2023.101773] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
The chemokine receptor CXCR3 and its chemokines CXCL9, CXCL10, and CXCL11 are involved in the pathogenesis of autoimmune diseases. Th1 lymphocytes are recruited by Th1 chemokines, secreted by damaged cells. In inflamed tissues, the attracted Th1 lymphocytes induce the IFN-gamma and TNF-alpha release, that stimulates the secretion of Th1 chemokines, initiating and reiterating an amplification feedback loop. Autoimmune thyroid disorders (AITD) are the most recurrent autoimmune diseases, including Graves' disease (GD) and autoimmune thyroiditis, clinically defined by thyrotoxicosis and hypothyroidism, respectively. Graves' ophthalmopathy is one of GD extrathyroidal manifestations, occurring in ~30-50% of GD patients. In the early phase of AITD, the Th1 immune response is prevalent, and a following switch to a Th2 immune response has been shown in the late, inactive, phase. The reviewed data underline the importance of chemokines in thyroid autoimmunity and suggest CXCR3-receptor and its chemokines as potential targets of novel drugs for these disorders.
Collapse
Affiliation(s)
| | - Sabrina Rosaria Paparo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Francesca Ragusa
- Department of Surgery, Medical and Molecular Pathology and of Critical Area, University of Pisa, Pisa, Italy
| | - Giusy Elia
- Department of Surgery, Medical and Molecular Pathology and of Critical Area, University of Pisa, Pisa, Italy
| | - Valeria Mazzi
- Department of Surgery, Medical and Molecular Pathology and of Critical Area, University of Pisa, Pisa, Italy
| | - Armando Patrizio
- Department of Emergency Medicine, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Marco Ghionzoli
- Department of Pediatric Surgery, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy; World Allergy Organization (WAO), Center of Excellence, Naples, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Marco Centanni
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; Endocrine Unit, AUSL Latina, Latina, Italy
| | - Salvatore Ulisse
- Department of Surgery, "Sapienza" University of Rome, Rome, Italy
| | - Alessandro Antonelli
- Department of Surgery, Medical and Molecular Pathology and of Critical Area, University of Pisa, Pisa, Italy.
| | - Poupak Fallahi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
3
|
Ferrari SM, Ragusa F, Elia G, Paparo SR, Mazzi V, Baldini E, Benvenga S, Antonelli A, Fallahi P. Precision Medicine in Autoimmune Thyroiditis and Hypothyroidism. Front Pharmacol 2021; 12:750380. [PMID: 34867359 PMCID: PMC8635786 DOI: 10.3389/fphar.2021.750380] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/21/2021] [Indexed: 12/31/2022] Open
Abstract
Autoimmune thyroid diseases (AITD) are T-cell-mediated organ specific autoimmune disorders, deriving from an altered response of the immune system that leads to the immune attack to the thyroid. Hashimoto’s thyroiditis (HT) and Graves’ disease (GD) are the two principal AITD clinical presentations. Hypothyroidism and thyrotoxicosis are, respectively, the clinical hallmarks of HT and GD. Patients with autoimmune thyroiditis are treated daily with synthetic L-thyroxine (L-T4) at the dose of 1.5–1.7 μg/kg. Various L-T4 formulations are commercially available (tablet, liquid solution, or soft gel capsule). L-T4 in tablets is generally prescribed to treat hypothyroidism, whereas the liquid formulation, or soft gel capsules, can be administered in hypothyroid patients in case of malabsorption or in patients in therapy with drugs interfering with L-T4 absorption. Furthermore, myoinositol has a crucial role in thyroid autoimmunity and function. Clinical studies reported a significant decline in TSH and antithyroid autoantibodies levels after treatment with myoinositol + selenium in patients with subclinical hypothyroidism and autoimmune thyroiditis. Moreover, thyroidectomy can be rarely recommended in patients with autoimmune thyroiditis, with cosmetic reasons for a goiter, or with important signs or symptoms of local compression, or nodular disease with a “suspicious” cytology for malignancy. Furthermore, a recent randomized trial suggested that total thyroidectomy can improve quality of life and fatigue, while medical therapy did not. In this review, we overview currently available evidence in personalized medicine in patients with autoimmune thyroiditis and hypothyroidism. Further research is needed in larger population to investigate the effect of these new treatments on quality of life.
Collapse
Affiliation(s)
| | - Francesca Ragusa
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giusy Elia
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | | | - Valeria Mazzi
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Enke Baldini
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Salvatore Benvenga
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
- Master Program on Childhood, Adolescent and Women’s Endocrine Health, University of Messina, Messina, Italy
- Interdepartmental Program of Molecular and Clinical Endocrinology and Women’s Endocrine Health, Azienda Ospedaliera Universitaria Policlinico “G. Martino”, I-98125, Messina, Italy
| | - Alessandro Antonelli
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
- *Correspondence: Alessandro Antonelli,
| | - Poupak Fallahi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
4
|
Benvenga S, Micali A, Ieni A, Antonelli A, Fallahi P, Pallio G, Irrera N, Squadrito F, Picciolo G, Puzzolo D, Minutoli L. The Association of Myo-Inositol and Selenium Contrasts Cadmium-Induced Thyroid C Cell Hyperplasia and Hypertrophy in Mice. Front Endocrinol (Lausanne) 2021; 12:608697. [PMID: 33716965 PMCID: PMC7949001 DOI: 10.3389/fendo.2021.608697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/08/2021] [Indexed: 12/18/2022] Open
Abstract
Previous studies have demonstrated that, in addition to inducing structural changes in thyroid follicles, cadmium (Cd) increased the number of C cells. We examined the effects of myo-inositol (MI), seleno-L-methionine (Se), MI + Se, and resveratrol on C cells of mice exposed to cadmium chloride (Cd Cl2), as no data are currently available on the possible protective effects of these molecules. In contrast, we have previously shown this protective effect against CdCl2 on the thyroid follicles of mice. Ninety-eight C57 BL/6J adult male mice were divided into 14 groups of seven mice each: (i) 0.9% NaCl (vehicle; 1 ml/kg/day i.p.); (ii) Se (0.2 mg/kg/day per os); (iii) Se (0.4 mg/kg/day per os); (iv) MI (360 mg/kg/day per os); (v) Se (0.2 mg/kg/day) + MI; (vi) Se (0.4 mg/kg/day) + MI; (vii) resveratrol (20 mg/kg); (viii) CdCl2 (2 mg/kg/day i.p.) + vehicle; (ix) CdCl2 + Se (0.2 mg/kg/day); (x) CdCl2 + Se (0.4 mg/kg/day); (xi) CdCl2 + MI; (xii) CdCl2 + Se (0.2 mg/kg/day) + MI; (xiii) CdCl2 + Se (0.4 mg/kg/day) + MI; (xiv) CdCl2 + resveratrol (20 mg/kg). After 14 days, thyroids were processed for histological, immunohistochemical, and morphometric evaluation. Compared to vehicle, Cd significantly decreased follicle mean diameter, increased CT-positive cells number, area and cytoplasmic density, and caused the disappearance of TUNEL-positive C cells, namely, the disappearance of C cells undergoing apoptosis. Se at either 0.2 or 0.4 mg/kg/day failed to significantly increase follicular mean diameter, mildly decreased CT-positive cells number, area and cytoplasmic density, and was ineffective on TUNEL-positive C cells. Instead, MI alone increased significantly follicular mean diameter and TUNEL-positive cells number, and decreased significantly CT-positive cells number, area and cytoplasmic density. MI + Se 0.2 mg/kg/day or MI + Se 0.4 mg/kg/day administration improved all five indices more markedly. Indeed, follicular mean diameter and TUNEL-positive cells number increased significantly, while CT-positive cells number, area and cytoplasmic density decreased significantly. Thus, all five indices overlapped those observed in vehicle-treated mice. Resveratrol improved significantly all the considered parameters, with a magnitude comparable to that of MI alone. In conclusion, the association Myo + Se is effective in protecting the mouse thyroid from the Cd-induced hyperplasia and hypertrophy of C cells. This benefit adds to that exerted by Myo + Se on thyrocytes and testis.
Collapse
Affiliation(s)
- Salvatore Benvenga
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Antonio Micali
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Antonio Ieni
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Poupak Fallahi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
- *Correspondence: Giovanni Pallio,
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giacomo Picciolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Domenico Puzzolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
5
|
Wu X, Yan F, Wang L, Sun G, Liu J, Qu M, Wang Y, Li T. MicroRNA: Another Pharmacological Avenue for Colorectal Cancer? Front Cell Dev Biol 2020; 8:812. [PMID: 32984321 PMCID: PMC7493075 DOI: 10.3389/fcell.2020.00812] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miR) are single-stranded RNA of 21-23 nucleotides in length that repress mRNA translation and induces mRNA degradation. miR acts as an endogenous factor of gene expression and plays a crucial part in cancer biology such as cell development, proliferation, differentiation, and apoptosis. Numerous research has indicated that dysregulation of miR associates with colorectal carcinogenesis. In this review article, we firstly introduce the background of miR and colorectal cancer, and the mechanisms of miR in colorectal cancer, such as the proliferation, apoptosis, and progression. Then, we summarize the theranostic value of miR in colorectal cancer. Eventually, we discuss the potential directions and perspectives of miR. This article serves as a guide for further studies and implicate miR as a potent theranostic target for colorectal cancer.
Collapse
Affiliation(s)
- Xueliang Wu
- Department of General Surgery, First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Fuguo Yan
- Department of General Surgery, Xinchang Hospital of Wenzhou Medical University, Xinchang, China
| | - Likun Wang
- Department of General Surgery, First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Guangyuan Sun
- Department of General Surgery, First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Jinyu Liu
- Department of General Surgery, First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Ming Qu
- Department of General Surgery, First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Yicheng Wang
- Department of General Surgery, First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Tian Li
- Department of General Surgery, First Affiliated Hospital of Hebei North University, Zhangjiakou, China.,School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
6
|
Benvenga S, Ferrari SM, Elia G, Ragusa F, Patrizio A, Paparo SR, Camastra S, Bonofiglio D, Antonelli A, Fallahi P. Nutraceuticals in Thyroidology: A Review of in Vitro, and in Vivo Animal Studies. Nutrients 2020; 12:nu12051337. [PMID: 32397091 PMCID: PMC7285044 DOI: 10.3390/nu12051337] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023] Open
Abstract
Nutraceuticals are defined as a food, or parts of a food, that provide medical or health benefits, including the prevention of different pathological conditions, and thyroid diseases, or the treatment of them. Nutraceuticals have a place in complementary medicines, being positioned in an area among food, food supplements, and pharmaceuticals. The market of certain nutraceuticals such as thyroid supplements has been growing in the last years. In addition, iodine is a fundamental micronutrient for thyroid function, but also other dietary components can have a key role in clinical thyroidology. Here, we have summarized the in vitro, and in vivo animal studies present in literature, focusing on the commonest nutraceuticals generally encountered in the clinical practice (such as carnitine, flavonoids, melatonin, omega-3, resveratrol, selenium, vitamins, zinc, and inositol), highlighting conflicting results. These experimental studies are expected to improve clinicians’ knowledge about the main supplements being used, in order to clarify the potential risks or side effects and support patients in their use.
Collapse
Affiliation(s)
- Salvatore Benvenga
- Master Program on Childhood, Adolescent and Women’s Endocrine Health, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina;
- Interdepartmental Program of Molecular & Clinical Endocrinology, and Women’s Endocrine Health, University Hospital, Policlinico Universitario G. Martino, 98125 Messina, Italy
| | - Silvia Martina Ferrari
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (G.E.); (F.R.); (A.P.); (S.R.P.); (S.C.)
| | - Giusy Elia
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (G.E.); (F.R.); (A.P.); (S.R.P.); (S.C.)
| | - Francesca Ragusa
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (G.E.); (F.R.); (A.P.); (S.R.P.); (S.C.)
| | - Armando Patrizio
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (G.E.); (F.R.); (A.P.); (S.R.P.); (S.C.)
| | - Sabrina Rosaria Paparo
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (G.E.); (F.R.); (A.P.); (S.R.P.); (S.C.)
| | - Stefania Camastra
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (G.E.); (F.R.); (A.P.); (S.R.P.); (S.C.)
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy;
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (G.E.); (F.R.); (A.P.); (S.R.P.); (S.C.)
- Correspondence: ; Tel.: +39-050-992318
| | - Poupak Fallahi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy;
| |
Collapse
|
7
|
Ferrari SM, Ruffilli I, Elia G, Ragusa F, Paparo SR, Patrizio A, Mazzi V, Antonelli A, Fallahi P. Chemokines in hyperthyroidism. JOURNAL OF CLINICAL AND TRANSLATIONAL ENDOCRINOLOGY 2019; 16:100196. [PMID: 31193493 PMCID: PMC6536457 DOI: 10.1016/j.jcte.2019.100196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 12/28/2022]
Abstract
The term “hyperthyroidism” indicates a condition due to an exaggerate production of thyroid hormone; the most frequent cause is Graves’ disease (GD). We review cytokines and chemokines in hyperthyroidism, with a special focus in GD. In GD, recruited Th1 lymphocytes are responsible for enhanced IFN-γ and TNF-α production, which in turn stimulates Th1 chemokines release from thyrocytes, initiating and perpetuating the autoimmune process. Circulating levels of these chemokines are associated with the active phase of GD. Additional studies are necessary to investigate whether Th1 chemokines could be a novel therapeutic target in this disease.
Collapse
Affiliation(s)
| | - Ilaria Ruffilli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giusy Elia
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesca Ragusa
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Armando Patrizio
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Valeria Mazzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Poupak Fallahi
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
8
|
Affiliation(s)
- Christian A Koch
- Medicover GmbH, Berlin/Hannover, Germany.
- Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.
- Technical University of Dresden, Dresden, Germany.
- University of Louisville, Louisville, KY, USA.
- The University of Tennessee Health Science Center, Memphis, TN, USA.
| | | |
Collapse
|