1
|
Garner T, Clayton P, Højby M, Murray P, Stevens A. Gene Expression Signatures Predict First-Year Response to Somapacitan Treatment in Children With Growth Hormone Deficiency. J Clin Endocrinol Metab 2024; 109:1214-1221. [PMID: 38066644 PMCID: PMC11031233 DOI: 10.1210/clinem/dgad717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Indexed: 04/21/2024]
Abstract
CONTEXT The pretreatment blood transcriptome predicts growth response to daily growth hormone (GH) therapy with high accuracy. OBJECTIVE Investigate response prediction using pretreatment transcriptome in children with GH deficiency (GHD) treated with once-weekly somapacitan, a novel long-acting GH. METHODS REAL4 is a randomized, multinational, open-label, active-controlled parallel group phase 3 trial, comprising a 52-week main phase and an ongoing 3-year safety extension (NCT03811535). A total of 128/200 treatment-naïve prepubertal children with GHD consented to baseline blood transcriptome profiling. They were randomized 2:1 to subcutaneous somapacitan (0.16 mg/kg/week) or daily GH (0.034 mg/kg/day). Differential RNA-seq analysis and machine learning were used to predict therapy response. RESULTS 121/128 samples passed quality control. Children treated with somapacitan (n = 76) or daily GH (n = 45) were categorized based on fastest and slowest growing quartiles at week 52. Prediction of height velocity (HV; cm/year) was excellent for both treatments (out of bag [OOB] area under curve [AUC]: 0.98-0.99; validation AUC: 0.83-0.84), as was prediction of secondary markers of growth response: HV standard deviation score (SDS) (0.99-1.0; 0.75-0.78), change from baseline height SDS (ΔHSDS) (0.98-1.0; 0.61-0.75), and change from baseline insulin-like growth factor-I SDS (ΔIGF-I SDS) (0.96-1.0; 0.85-0.88). Genes previously identified as predictive of GH therapy response were consistently better at predicting the fastest growers in both treatments in this study (OOB AUC: 0.93-0.97) than the slowest (0.67-0.85). CONCLUSION Pretreatment transcriptome predicts first-year growth response in somapacitan-treated children with GHD. A common set of genes can predict the treatment response to both once-weekly somapacitan and conventional daily GH. This approach could potentially be developed into a clinically applicable pretreatment test to improve clinical management.
Collapse
Affiliation(s)
- Terence Garner
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester and Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Peter Clayton
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester and Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, M13 9WL, UK
| | - Michael Højby
- Novo Nordisk, Clinical Drug Development, 2860 Søborg, Denmark
| | - Philip Murray
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester and Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, M13 9WL, UK
| | - Adam Stevens
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester and Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| |
Collapse
|
2
|
Bamba V, Kanakatti Shankar R. Approach to the Patient: Safety of Growth Hormone Replacement in Children and Adolescents. J Clin Endocrinol Metab 2022; 107:847-861. [PMID: 34636896 DOI: 10.1210/clinem/dgab746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 02/07/2023]
Abstract
The use of recombinant human growth hormone (rhGH) in children and adolescents has expanded since its initial approval to treat patients with severe GH deficiency (GHD) in 1985. rhGH is now approved to treat several conditions associated with poor growth and short stature. Recent studies have raised concerns that treatment during childhood may affect morbidity and mortality in adulthood, with specific controversies over cancer risk and cerebrovascular events. We will review 3 common referrals to a pediatric endocrinology clinic, followed by a summary of short- and long-term effects of rhGH beyond height outcomes. Methods to mitigate risk will be reviewed. Finally, this information will be applied to each clinical case, highlighting differences in counseling and clinical outcomes. rhGH therapy has been used for more than 3 decades. Data are largely reassuring, yet we still have much to learn about pharmaceutical approaches to growth in children and the lifelong effect of treatment.
Collapse
Affiliation(s)
- Vaneeta Bamba
- The Perelman School of Medicine, University of Pennsylvania, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Roopa Kanakatti Shankar
- The George Washington University School of Medicine, Children's National Hospital, Washington, DC 20010, USA
| |
Collapse
|
3
|
Aplin JD, Stevens A. Use of 'omics for endometrial timing: the cycle moves on. Hum Reprod 2022; 37:644-650. [PMID: 35147196 PMCID: PMC8971645 DOI: 10.1093/humrep/deac022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/05/2022] [Indexed: 12/23/2022] Open
Abstract
For some years, the prospect of precise and personalized timing of the endometrial cycle for optimal embryo replacement has been held out as a potential solution to low implantation rates. It is envisaged that a receptive state can be defined and reached at a predictable time, and embryo replacement performed in synchrony. In the last century, morphological changes characteristic of the mid secretory phase were defined in precisely timed cycles in women of proven fertility, but when deviations from this standardized schedule occur, their significance for implantation has remained uncertain. ‘Omics technologies have been widely advocated for staging the endometrial cycle and defining a set of biochemical requirements for implantation, but after two decades of research, improvements to pregnancy rates have not followed, and there is a striking lack of agreement regarding the molecular characterization of the receptive state. Some of the rationale underlying these problems is now emerging with the application of higher-level computational and biological methodology. Here, we consider the challenges of defining an endometrial phenotype that can support implantation and continuing pregnancy. Receptivity may be an emergent trait depending on contributions from multiple proteins that have low pathway connectivity. We recommend that authors choose language which rigorously avoids the implication that protocols for molecular staging of the mid secretory phase inherently identify a state of receptivity to the implanting blastocyst.
Collapse
Affiliation(s)
- John D Aplin
- Maternal and Fetal Health Centre, Manchester Academic Health Sciences Centre, University of Manchester, St Mary's Hospital, Manchester, UK
| | - Adam Stevens
- Maternal and Fetal Health Centre, Manchester Academic Health Sciences Centre, University of Manchester, St Mary's Hospital, Manchester, UK
| |
Collapse
|
4
|
He D, Li Y, Yang W, Chen S, Sun H, Li P, Zhang M, Ban B. Molecular diagnosis for growth hormone deficiency in Chinese children and adolescents and evaluation of impact of rare genetic variants on treatment efficacy of growth hormone. Clin Chim Acta 2022; 524:1-10. [PMID: 34826401 DOI: 10.1016/j.cca.2021.11.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/20/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Growth hormone is an effective therapy for growth hormone deficiency (GHD) but with a rather variable individual sensitivity. It is unclear whether rare genetic variants may contribute to the differential GH responsiveness. METHODS The present study aims to investigate the molecular etiology of GHD in Chinese children and adolescents and evaluate the impact of rare variants on therapeutic efficacies of GH. RESULTS Twenty-one rare heterozygous variant were classified as promising uncertain significance (n = 14), pathogenic (n = 5) or likely pathogenic (n = 2) for 21 of the 93 GHD patients. After GHD patients harboring these rare variants were excluded, inter-individual variability in the response to GH therapy obviously reduced and the negative correlation between initiation age of treatment and height SDS change became stronger in the group without rare variants. Among rare variants, 7 (likely) pathogenic variants (7.5%, 7/93) involved a total of 6 genes not only associated with GH secretion (PROKR2, LZTR1), but also growth plate chondrocyte signaling (ACAN, FBN1, COL9A1) or genetic syndromes (PTPN11). CONCLUSIONS Rare genetic variants are an important factor contributing to differential GH responsiveness and genetic testing should be factored into accurate diagnosis and treatment decision making in the future. CLINICAL TRIAL REGISTRATION NUMBER ChiCTR1900026510.
Collapse
Affiliation(s)
- Dongye He
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, PR China; Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, PR China; Chinese Research Center for Behavior Medicine in Growth and Development, Jining, PR China
| | - Yanying Li
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, PR China; Chinese Research Center for Behavior Medicine in Growth and Development, Jining, PR China
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, PR China
| | - Shuxiong Chen
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, PR China; Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, PR China; Chinese Research Center for Behavior Medicine in Growth and Development, Jining, PR China
| | - Hailing Sun
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, PR China; Chinese Research Center for Behavior Medicine in Growth and Development, Jining, PR China
| | - Ping Li
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, PR China; Chinese Research Center for Behavior Medicine in Growth and Development, Jining, PR China
| | - Mei Zhang
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, PR China; Chinese Research Center for Behavior Medicine in Growth and Development, Jining, PR China.
| | - Bo Ban
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, PR China; Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, PR China; Chinese Research Center for Behavior Medicine in Growth and Development, Jining, PR China.
| |
Collapse
|
5
|
Ranke MB. Short and Long-Term Effects of Growth Hormone in Children and Adolescents With GH Deficiency. Front Endocrinol (Lausanne) 2021; 12:720419. [PMID: 34539573 PMCID: PMC8440916 DOI: 10.3389/fendo.2021.720419] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/19/2021] [Indexed: 02/05/2023] Open
Abstract
The syndrome of impaired GH secretion (GH deficiency) in childhood and adolescence had been identified at the end of the 19th century. Its non-acquired variant (naGHD) is, at childhood onset, a rare syndrome of multiple etiologies, predominantly characterized by severe and permanent growth failure culminating in short stature. It is still difficult to diagnose GHD and, in particular, to ascertain impaired GH secretion in comparison to levels in normally-growing children. The debate on what constitutes an optimal diagnostic process continues. Treatment of the GH deficit via replacement with cadaveric pituitary human GH (pit-hGH) had first been demonstrated in 1958, and opened an era of therapeutic possibilities, albeit for a limited number of patients. In 1985, the era of recombinant hGH (r-hGH) began: unlimited supply meant that substantial long-term experience could be gained, with greater focus on efficacy, safety and costs. However, even today, the results of current treatment regimes indicate that there is still a substantial fraction of children who do not achieve adult height within the normal range. Renewed evaluation of height outcomes in childhood-onset naGHD is required for a better understanding of the underlying causes, whereby the role of various factors - diagnostics, treatment modalities, mode of treatment evaluation - during the important phases of child growth - infancy, childhood and puberty - are further explored.
Collapse
Affiliation(s)
- Michael B. Ranke
- Children’s Hospital, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|