1
|
Araújo de Oliveira Figueirêdo H, Silva-Filho E, Felipe Cavalcante A, Pegado R, Cecília Queiroz de Medeiros A. Transcranial Direct Current Stimulation for Food Craving in Women Affected by Overweight and Obesity: A Randomized Controlled Trial. Eur Addict Res 2024; 30:197-206. [PMID: 38964299 DOI: 10.1159/000535720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/04/2023] [Indexed: 07/06/2024]
Abstract
INTRODUCTION Craving is a multifactorial behavior caused by central circuit imbalance. The proposed treatments involve exercise and reduced food intake. However, the treatments frequently fail. This study aimed to investigate the effect of 10 consecutive sessions of anodal transcranial direct current stimulation over the right dorsolateral prefrontal cortex on food craving and eating consumption of women affected by overweight and obesity. METHODS A randomized double-blind controlled trial with 50 volunteers was divided into two groups (active-tDCS: n = 25 and sham-tDCS: n = 25). There were a total of 10 consecutive tDCS sessions (2 mA, for 20 min) with an F4 anodal-F3 cathodal montage. We evaluated the effects on eating behavior (food craving, uncontrolled eating, emotional eating, and cognitive restriction), food consumption (calories and macronutrients), and anthropometric and body composition variables (weight, body mass index, waist circumference, and body fat percentage). RESULTS There were no statistically significant results between groups at the baseline regarding sociodemographic and clinical characteristics. Also, there was no significant interaction between time versus group for any of the variables studied. Treatment with tDCS was well tolerated and there were no serious adverse effects. CONCLUSIONS In women affected by overweight and obesity with food cravings, 10 sessions of F4 (anodal) and F3 (cathodal) tDCS did not produce changes in eating behavior, food consumption, and anthropometric and body composition.
Collapse
Affiliation(s)
| | - Edson Silva-Filho
- Graduate Program in Rehabilitation Science, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Antônio Felipe Cavalcante
- Graduate Program in Rehabilitation Science, Federal University of Rio Grande do Norte, Natal, Brazil
- Graduate Program in Health Science, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Rodrigo Pegado
- Graduate Program in Rehabilitation Science, Federal University of Rio Grande do Norte, Natal, Brazil
- Graduate Program in Health Science, Federal University of Rio Grande do Norte, Natal, Brazil
| | | |
Collapse
|
2
|
Miranda-Angulo AL, Sánchez-López JD, Vargas-Tejada DA, Hawkins-Caicedo V, Calderón JC, Gallo-Villegas J, Alzate-Restrepo JF, Suarez-Revelo JX, Castrillón G. Sympathovagal quotient and resting-state functional connectivity of control networks are related to gut Ruminococcaceae abundance in healthy men. Psychoneuroendocrinology 2024; 164:107003. [PMID: 38471256 DOI: 10.1016/j.psyneuen.2024.107003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024]
Abstract
INTRODUCTION Heart rate variability (HRV), brain resting-state functional connectivity (rsFC), and gut microbiota (GM) are three recognized indicators of health status, whose relationship has not been characterized. We aimed to identify the GM genera and families related to HRV and rsFC, the interaction effect of HRV and rsFC on GM taxa abundance, and the mediation effect of diet on these relationships. METHODS Eighty-eight healthy, young Colombian men were included in this cross-sectional study. HRV metrics were extracted from 24-hour Holter monitoring data and the resting functional connectivity strength (FCS) of 15 networks were derived from functional magnetic resonance imaging. Gut microbiota composition was assessed using the sequences of the V3-V4 regions of the 16 S rRNA gene, and diet was evaluated using a food frequency questionnaire. Multivariate linear regression analyses were performed to evaluate the correlations between the independent variables (HRV metrics and FCS) and the dependent variables (GM taxa abundance or alpha diversity indexes). Mediation analyses were used to test the role of diet in the relationship between HRV and GM. RESULTS The sympathovagal quotient (SQ) and the FCS of control networks were positively correlated with the abundance of the gut Ruminococcaceae family and an unclassified Ruminococcaceae genus (Ruminococcaceae_unc). Additionally, the interaction between the FCS of the control network and SQ reduced the individual main effects on the Ruminococcaceae_unc abundance. Finally, reduced habitual fiber intake partially mediated the relationship between SQ and this genus. CONCLUSION Two indicators of self-regulation, HRV and the rsFC of control networks, are related to the abundance of gut microbiota taxa in healthy men. However, only HRV is related to habitual dietary intake; thus, HRV could serve as a marker of food choice and GM composition in the future.
Collapse
Affiliation(s)
- Ana L Miranda-Angulo
- Grupo de Investigación en Fisiología y Bioquímica (PHYSIS), Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-2, Medellín, Colombia.
| | - Juan D Sánchez-López
- Grupo de Investigación en Fisiología y Bioquímica (PHYSIS), Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-2, Medellín, Colombia
| | - Daniel A Vargas-Tejada
- Grupo de Investigación en Fisiología y Bioquímica (PHYSIS), Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-2, Medellín, Colombia
| | - Valentina Hawkins-Caicedo
- Grupo de Investigación en Fisiología y Bioquímica (PHYSIS), Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-2, Medellín, Colombia
| | - Juan C Calderón
- Grupo de Investigación en Fisiología y Bioquímica (PHYSIS), Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-2, Medellín, Colombia
| | - Jaime Gallo-Villegas
- Grupo de Investigación en Medicina Aplicada a la Actividad Física y el Deporte (GRINMADE), Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-2, Medellín, Colombia; Centro Clínico y de Investigación SICOR, Calle 19 No. 42-40, Medellín, Colombia
| | - Juan F Alzate-Restrepo
- Centro Nacional de Secuenciación Genómica (CNSG), Sede de Investigación Universitaria (SIU), Universidad de Antioquia UdeA, Calle 70 No. 52-2, Medellín, Colombia
| | - Jazmin X Suarez-Revelo
- Grupo de Investigación en Imágenes SURA, Ayudas diagnósticas SURA, Carrera 48 No. 26-50, piso 2, Medellín, Colombia
| | - Gabriel Castrillón
- Grupo de Investigación en Imágenes SURA, Ayudas diagnósticas SURA, Carrera 48 No. 26-50, piso 2, Medellín, Colombia; Department of Neuroradiology, Universitätsklinikum Erlangen, Maximiliansplatz 2, Erlangen, Germany
| |
Collapse
|
3
|
Ratko M, Crljen V, Tkalčić M, Mažuranić A, Bubalo P, Škavić P, Banovac I, Dugandžić A. Expression of guanylate cyclase C in human prefrontal cortex depends on sex and feeding status. Front Mol Neurosci 2024; 17:1361089. [PMID: 38840774 PMCID: PMC11150535 DOI: 10.3389/fnmol.2024.1361089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 04/30/2024] [Indexed: 06/07/2024] Open
Abstract
Introduction Guanylate cyclase C (GC-C) has been detected in the rodent brain in neurons of the cerebral cortex, amygdala, midbrain, hypothalamus, and cerebellum. Methods In this study we determined GC-C protein expression in Brodmann areas (BA) 9, BA10, BA11, and BA32 of the human prefrontal cortex involved in regulation of feeding behavior, as well as in the cerebellar cortex, arcuate nucleus of hypothalamus and substantia nigra in brain samples of human 21 male and 13 female brains by ELISA with postmortem delay < 24 h. Results GC-C was found in all tested brain areas and it was expressed in neurons of the third cortical layer of BA9. The regulation of GC-C expression by feeding was found in male BA11 and BA10-M, where GC-C expression was in negative correlation to the volume of stomach content during autopsy. In female BA11 there was no correlation detected, while in BA10-M there was even positive correlation. This suggests sex differences in GC-C expression regulation in BA11 and BA10-M. The amount of GC-C was higher in female BA9 only when the death occurred shortly after a meal, while expression of GC-C was higher in BA10-O only when the stomach was empty. The expression of GC-C in female hypothalamus was lower when compared to male hypothalamus only when the stomach was full, suggesting possibly lower satiety effects of GC-C agonists in women. Discussion These results point toward the possible role of GC-C in regulation of feeding behavior. Since, this is first study of GC-C regulation and its possible function in prefrontal cortex, to determine exact role of GC-C in different region of prefrontal cortex, especially in humans, need further studies.
Collapse
Affiliation(s)
- Martina Ratko
- Laboratory for Cellular Neurophysiology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Vladiana Crljen
- Laboratory for Cellular Neurophysiology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Physiology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Martina Tkalčić
- Institute for Forensic Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Anton Mažuranić
- Institute for Forensic Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Pero Bubalo
- Institute for Forensic Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Petar Škavić
- Institute for Forensic Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivan Banovac
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Aleksandra Dugandžić
- Laboratory for Cellular Neurophysiology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Physiology, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
4
|
Ester-Nacke T, Berti K, Veit R, Dannecker C, Salvador R, Ruffini G, Heni M, Birkenfeld AL, Plewnia C, Preissl H, Kullmann S. Network-targeted transcranial direct current stimulation of the hypothalamus appetite-control network: a feasibility study. Sci Rep 2024; 14:11341. [PMID: 38762574 PMCID: PMC11102513 DOI: 10.1038/s41598-024-61852-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/10/2024] [Indexed: 05/20/2024] Open
Abstract
The hypothalamus is the key regulator for energy homeostasis and is functionally connected to striatal and cortical regions vital for the inhibitory control of appetite. Hence, the ability to non-invasively modulate the hypothalamus network could open new ways for the treatment of metabolic diseases. Here, we tested a novel method for network-targeted transcranial direct current stimulation (net-tDCS) to influence the excitability of brain regions involved in the control of appetite. Based on the resting-state functional connectivity map of the hypothalamus, a 12-channel net-tDCS protocol was generated (Neuroelectrics Starstim system), which included anodal, cathodal and sham stimulation. Ten participants with overweight or obesity were enrolled in a sham-controlled, crossover study. During stimulation or sham control, participants completed a stop-signal task to measure inhibitory control. Overall, stimulation was well tolerated. Anodal net-tDCS resulted in faster stop signal reaction time (SSRT) compared to sham (p = 0.039) and cathodal net-tDCS (p = 0.042). Baseline functional connectivity of the target network correlated with SSRT after anodal compared to sham stimulation (p = 0.016). These preliminary data indicate that modulating hypothalamus functional network connectivity via net-tDCS may result in improved inhibitory control. Further studies need to evaluate the effects on eating behavior and metabolism.
Collapse
Affiliation(s)
- Theresa Ester-Nacke
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany.
- German Center of Diabetes Research (DZD), Tübingen, Germany.
| | - Katharina Berti
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center of Diabetes Research (DZD), Tübingen, Germany
| | - Ralf Veit
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center of Diabetes Research (DZD), Tübingen, Germany
| | - Corinna Dannecker
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center of Diabetes Research (DZD), Tübingen, Germany
| | | | | | - Martin Heni
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center of Diabetes Research (DZD), Tübingen, Germany
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- Division of Endocrinology and Diabetology, Department of Internal Medicine 1, University Hospital Ulm, Ulm, Germany
| | - Andreas L Birkenfeld
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center of Diabetes Research (DZD), Tübingen, Germany
| | - Christian Plewnia
- Department of Psychiatry and Psychotherapy, German Center for Mental Health (DZPG), Neurophysiology and Interventional Neuropsychiatry, University Hospital Tübingen, Tübingen, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center of Diabetes Research (DZD), Tübingen, Germany
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center of Diabetes Research (DZD), Tübingen, Germany
| |
Collapse
|
5
|
Hu Y, Li G, Zhang W, Wang J, Ji W, Yu J, Han Y, Cui G, Wang H, Manza P, Volkow N, Ji G, Wang GJ, Zhang Y. Obesity is associated with alterations in anatomical connectivity of frontal-corpus callosum. Cereb Cortex 2024; 34:bhae014. [PMID: 38300178 PMCID: PMC11486688 DOI: 10.1093/cercor/bhae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 02/02/2024] Open
Abstract
Obesity has been linked to abnormal frontal function, including the white matter fibers of anterior portion of the corpus callosum, which is crucial for information exchange within frontal cortex. However, alterations in white matter anatomical connectivity between corpus callosum and cortical regions in patients with obesity have not yet been investigated. Thus, we enrolled 72 obese and 60 age-/gender-matched normal weight participants who underwent clinical measurements and diffusion tensor imaging. Probabilistic tractography with connectivity-based classification was performed to segment the corpus callosum and quantify white matter anatomical connectivity between subregions of corpus callosum and cortical regions, and associations between corpus callosum-cortex white matter anatomical connectivity and clinical behaviors were also assessed. Relative to normal weight individuals, individuals with obesity exhibited significantly greater white matter anatomical connectivity of corpus callosum-orbitofrontal cortex, which was positively correlated with body mass index and self-reported disinhibition of eating behavior, and lower white matter anatomical connectivity of corpus callosum-prefrontal cortex, which was significantly negatively correlated with craving for high-calorie food cues. The findings show that alterations in white matter anatomical connectivity between corpus callosum and frontal regions involved in reward and executive control are associated with abnormal eating behaviors.
Collapse
Affiliation(s)
- Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
| | - Guanya Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
| | - Wenchao Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
| | - Jia Wang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
| | - Weibin Ji
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
| | - Juan Yu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle West Road, Xi’an, Shaanxi 710032, China
| | - Yu Han
- Department of Radiology, Tangdu Hospital, The Fourth Military Medical University, 4 Xinsi Road, Xi’an, Shaanxi 710038, China
| | - Guangbin Cui
- Department of Radiology, Tangdu Hospital, The Fourth Military Medical University, 4 Xinsi Road, Xi’an, Shaanxi 710038, China
| | - Haoyi Wang
- College of Westa, Southwest University, 2 Tiansheng Road, Chongqing 400715, China
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, 10 Center Drive, MSC1013, Building 10, Room B2L304, Bethesda, MD 20892, USA
| | - Nora Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, 10 Center Drive, MSC1013, Building 10, Room B2L304, Bethesda, MD 20892, USA
| | - Gang Ji
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle West Road, Xi’an, Shaanxi 710032, China
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, 10 Center Drive, MSC1013, Building 10, Room B2L304, Bethesda, MD 20892, USA
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
| |
Collapse
|
6
|
Giddens E, Noy B, Steward T, Verdejo-García A. The influence of stress on the neural underpinnings of disinhibited eating: a systematic review and future directions for research. Rev Endocr Metab Disord 2023; 24:713-734. [PMID: 37310550 PMCID: PMC10404573 DOI: 10.1007/s11154-023-09814-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/29/2023] [Indexed: 06/14/2023]
Abstract
Disinhibited eating involves overconsumption and loss of control over food intake, and underpins many health conditions, including obesity and binge-eating related disorders. Stress has been implicated in the development and maintenance of disinhibited eating behaviours, but the mechanisms underlying this relationship are unclear. In this systematic review, we examined how the impact of stress on the neurobiological substrates of food-related reward sensitivity, interoception and cognitive control explains its role in disinhibited eating behaviours. We synthesised the findings of functional magnetic resonance imaging studies including acute and/or chronic stress exposures in participants with disinhibited eating. A systematic search of existing literature conducted in alignment with the PRISMA guidelines identified seven studies investigating neural impacts of stress in people with disinhibited eating. Five studies used food-cue reactivity tasks, one study used a social evaluation task, and one used an instrumental learning task to probe reward, interoception and control circuitry. Acute stress was associated with deactivation of regions in the prefrontal cortex implicated in cognitive control and the hippocampus. However, there were mixed findings regarding differences in reward-related circuitry. In the study using a social task, acute stress associated with deactivation of prefrontal cognitive control regions in response to negative social evaluation. In contrast, chronic stress was associated with both deactivation of reward and prefrontal regions when viewing palatable food-cues. Given the small number of identified publications and notable heterogeneity in study designs, we propose several recommendations to strengthen future research in this emerging field.
Collapse
Affiliation(s)
- Emily Giddens
- Turner Institute for Brain and Mental Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, 18 Innovation Walk, Clayton, VIC 3800 Australia
| | - Brittany Noy
- Turner Institute for Brain and Mental Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, 18 Innovation Walk, Clayton, VIC 3800 Australia
| | - Trevor Steward
- Melbourne School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, VIC Australia
| | - Antonio Verdejo-García
- Turner Institute for Brain and Mental Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, 18 Innovation Walk, Clayton, VIC 3800 Australia
| |
Collapse
|
7
|
Effect of transcranial direct current stimulation on homeostatic and hedonic appetite control and mood states in women presenting premenstrual syndrome across menstrual cycle phases. Physiol Behav 2023; 261:114075. [PMID: 36627037 DOI: 10.1016/j.physbeh.2023.114075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
PURPOSE This study investigated the acute effect of anodal transcranial direct current stimulation (a-tDCS) over the left dorsolateral prefrontal cortex (DLPFC) on appetite, energy intake, food preferences, and mood states in the luteal and follicular phases of the menstrual cycle in women presenting premenstrual syndrome. METHODS Sixteen women (26.5 ± 5.2 years; 1.63 ± 0.1 m; 64.2 ± 12.8 kg; body mass index 24.0 ± 5.0 kg/m2; body fat 27.6 ± 7.5%) with the eumenorrheic menstrual cycle were submitted to a-tDCS and sham-tDCS conditions over their follicular and luteal phases. At pre - and post-tDCS, hunger and desire to eat something tasty, (analogic visual scale), the profile of mood states (POMS), and the psychological components of food preferences (Leeds Food Preference Questionnaire-BR) were assessed. Participants recorded their food intake for the rest of the day using a diary log. RESULTS There was a trend towards main effect of condition for decreased implicit wanting for low-fat savory food after a-tDCS but not sham-tDCS regardless of menstrual cycle phase (p = 0.062). There was no effect for self-reported hunger, desire to eat, energy and macronutrient intake, and on other components of food preferences (explicit liking and wanting for low- and high-fat savory and sweet foods, implicit wanting for low- and high-fat sweet and high-fat savory food); as well as for mood states. CONCLUSIONS Although no significant effects of a-tDCS were found, the present investigation provides relevant perspectives for future studies.
Collapse
|
8
|
Ljubisavljevic M, Basha J, Ismail FY. The effects of prefrontal vs. parietal cortex transcranial direct current stimulation on craving, inhibition, and measures of self-esteem. Front Neurosci 2022; 16:998875. [DOI: 10.3389/fnins.2022.998875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
While prefrontal cortex dysfunction has been implicated in high food cravings, other cortical regions, like the parietal cortex, are potentially also involved in regulating craving. This study explored the effects of stimulating the inferior parietal lobule (IPL) and dorsolateral prefrontal cortex (DLPFC) on food craving state and trait. Transcranial direct current stimulation (tDCS) was administered at 1.5 mA for 5 consecutive days. Participants received 20 min of IPL, DLPFC, or sham stimulation (SHAM) each day which consisted of two rounds of 10-min stimulation, divided by a 10-min mindfulness task break. In addition, we studied inhibition and subjective psychological aspects like body image and self-esteem state and trait. To decompose immediate and cumulative effects, we measured the following on days 1 and 5: inhibition through the Go/No-go task; and food craving, self-esteem, and body appreciation through a battery of questionnaires. We found that false alarm errors decreased in the participants receiving active stimulation in the DLPFC (DLPFC-group). In contrast, false alarm errors increased in participants receiving active stimulation in the IPL (IPL-group). At the same time, no change was found in the participants receiving SHAM (SHAM-group). There was a trending reduction in craving trait in all groups. Momentary craving was decreased in the DLPFC-group and increased in IPL-group, yet a statistical difference was not reached. According to time and baseline, self-esteem and body perception improved in the IPL-group. Furthermore, self-esteem trait significantly improved over time in the DLPFC-group and IPL-group. These preliminary results indicate that tDCS modulates inhibition in frontoparietal areas with opposite effects, enhancing it in DLPFC and impairing it in IPL. Moreover, craving is moderately linked to inhibition, self-esteem, and body appreciation which seem not to be affected by neuromodulation but may rely instead on broader regions as more complex constructs. Finally, the fractionated protocol can effectively influence inhibition with milder effects on other constructs.
Collapse
|
9
|
Steward T, Wierenga CE. Foreword to the special issue on the neuroscience of obesity and related disorders. Rev Endocr Metab Disord 2022; 23:679-681. [PMID: 35697960 PMCID: PMC9307530 DOI: 10.1007/s11154-022-09739-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/20/2022] [Indexed: 10/27/2022]
Affiliation(s)
- Trevor Steward
- Melbourne School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia.
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Victoria, Australia.
- Melbourne School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Redmond Barry Building #505, Parkville, Victoria, Australia.
| | - Christina E Wierenga
- Department of Psychiatry, University of California, San Diego, San Diego, California, USA
| |
Collapse
|
10
|
Guo Z, Gong Y, Lu H, Qiu R, Wang X, Zhu X, You X. Multitarget high-definition transcranial direct current stimulation improves response inhibition more than single-target high-definition transcranial direct current stimulation in healthy participants. Front Neurosci 2022; 16:905247. [PMID: 35968393 PMCID: PMC9372262 DOI: 10.3389/fnins.2022.905247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
Prior studies have focused on single-target anodal transcranial direct current stimulation (tDCS) over the right inferior frontal gyrus (rIFG) or pre-supplementary motor area (pre-SMA) to improve response inhibition in healthy individuals. However, the results are contradictory and the effect of multitarget anodal stimulation over both brain regions has never been investigated. The present study aimed to investigate the behavioral and neurophysiological effects of different forms of anodal high-definition tDCS (HD-tDCS) on improving response inhibition, including HD-tDCS over the rIFG or pre-SMA and multitarget HD-tDCS over both areas. Ninety-two healthy participants were randomly assigned to receive single-session (20 min) anodal HD-tDCS over rIFG + pre-SMA, rIFG, pre-SMA, or sham stimulation. Before and immediately after tDCS intervention, participants completed a stop-signal task (SST) and a go/nogo task (GNG). Their cortical activity was recorded using functional near-infrared spectroscopy (fNIRS) during the go/nogo task. The results showed multitarget stimulation produced a significant reduction in stop-signal reaction time (SSRT) relative to baseline. The pre-to-post SSRT change was not significant for rIFG, pre-SMA, or sham stimulation. Further analyses revealed multitarget HD-tDCS significantly decreased SSRT in both the high-performance and low-performance subgroups compared with the rIFG condition which decreased SSRT only in the low-performance subgroup. Only the multitarget condition significantly improved neural efficiency as indexed by lower △oxy-Hb after stimulation. In conclusion, the present study provides important preliminary evidence that multitarget HD-tDCS is a promising avenue to improve stimulation efficacy, establishing a more effective montage to enhance response inhibition relative to the commonly used single-target stimulation.
Collapse
Affiliation(s)
- Zhihua Guo
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
| | - Yue Gong
- School of Psychology, Shaanxi Normal University, Xi’an, China
| | - Hongliang Lu
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
| | - Rui Qiu
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
| | - Xinlu Wang
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
| | - Xia Zhu
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
- *Correspondence: Xia Zhu,
| | - Xuqun You
- School of Psychology, Shaanxi Normal University, Xi’an, China
- Xuqun You,
| |
Collapse
|