1
|
Li M, Niu Y, Zhang T, Yang H, Tian L, Zhou S, Wumiti T, Sun J, Zhou Q, Zuo X, Gao T, Li J, Ma Y, Guo Y, Wang L. Wen-Shen-Tong-Luo-Zhi-Tong-Decoction inhibits bone loss in senile osteoporosis model mice by promoting testosterone production. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119033. [PMID: 39515680 DOI: 10.1016/j.jep.2024.119033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wen-Shen-Tong-Luo-Zhi-Tong-Decoction (WSTLZTD) is a traditional Chinese medicine formula, and its effectiveness in the treatment of senile osteoporosis(SOP) has been confirmed by clinical studies. However, the underlying mechanism of WSTLZTD in SOP is unclear. AIM OF THE STUDY This study aimed to clarify the unique effects of Wen-Shen-Tong-Luo-Zhi-Tong-Decoction(WSTLZTD) on senile osteoporosis(SOP) and its underlying mechanisms. MATERIALS AND METHODS SAMP6 mice were treated with varying doses of WSTLZTD as the SOP model. Bone loss was evaluated by micro-CT, HE, OCN immunohistochemistry staining, and serum Trap level. Metabolomics studies serum metabolites. ELISA, qPCR, and immunofluorescence were utilized to measure testosterone levels in mouse testis. The effect of testosterone on the mitochondrial energy metabolism of BMSCs was investigated using ROS generation, NAD+/NADH ratio, and WB. Cell senescence was examined by β-galactosidase staining and WB. The effect of TM3 cell conditioned media (CM) on mitochondrial energy metabolism and BMSCs osteogenesis were studied using ALP, ARS, ROS staining, the NAD+/NADH, and WB. RESULTS WSTLZTD effectively reversed bone loss in SOP model mice, resulting in better bone microstructure, increased BMD, BV/TV, Tb.n, Tb.Th and, and decreased Tb.Sp. WSTLZTD can increase OCN expression and decrease Trap levels. Network pharmacology data suggest that WSTLZTD regulates steroid hormone production, cellular senescence, inflammation. Metabolomic data indicate that WSTLZTD increases testosterone production or metabolism-related metabolites. WSTLZTD enhanced testosterone production and the mRNA expression of genes involved in testosterone synthesis. Testosterone inhibited the decline in osteogenic differentiation and mitochondrial energy metabolism of senescent BMSCs. The decreased testosterone production in senescent TM3 is reversed by WSTLZTD. CM derived from WSTLZTD-treated TM3 cells promoted osteogenic differentiation and mitochondrial energy metabolism of BMSCs. CONCLUSIONS By increasing testosterone production, WSTLZTD may promote mitochondrial energy metabolism and osteogenic differentiation of senescent BMSCs, thereby exerting its anti-SOP effect.
Collapse
Affiliation(s)
- Muzhe Li
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Yuanyuan Niu
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Tianchi Zhang
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Haomiao Yang
- NanJing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210001, Jiangsu, China, Nanjing, 210029, Jiangsu Province, China
| | - Linkun Tian
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Shijie Zhou
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Taxi Wumiti
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Jie Sun
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Qinfeng Zhou
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Xinchen Zuo
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Tianle Gao
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Jiale Li
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Yong Ma
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China; Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 224000, Yancheng, Jiangsu Province, China
| | - Yang Guo
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China.
| | - Lining Wang
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China; NanJing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210001, Jiangsu, China, Nanjing, 210029, Jiangsu Province, China; Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China.
| |
Collapse
|
2
|
Silva WJ, Cruz A, Duque G. MicroRNAs and their Modulatory Effect on the Hallmarks of Osteosarcopenia. Curr Osteoporos Rep 2024; 22:458-470. [PMID: 39162945 DOI: 10.1007/s11914-024-00880-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
PURPOSE OF THE REVIEW Osteosarcopenia is a geriatric syndrome associated with disability and mortality. This review summarizes the key microRNAs that regulate the hallmarks of sarcopenia and osteoporosis. Our objective was to identify components similarly regulated in the pathology and have therapeutic potential by influencing crucial cellular processes in both bone and skeletal muscle. RECENT FINDINGS The simultaneous decline in bone and muscle in osteosarcopenia involves a complex crosstalk between these tissues. Recent studies have uncovered several key mechanisms underlying this condition, including the disruption of cellular signaling pathways that regulate bone remodeling and muscle function and regeneration. Accordingly, emerging evidence reveals that dysregulation of microRNAs plays a significant role in the development of each of these hallmarks of osteosarcopenia. Although the recent recognition of osteosarcopenia as a single diagnosis of bone and muscle deterioration has provided new insights into the mechanisms of these underlying age-related diseases, several knowledge gaps have emerged, and a deeper understanding of the role of common microRNAs is still required. In this study, we summarize current evidence on the roles of microRNAs in the pathogenesis of osteosarcopenia and identify potential microRNA targets for treating this condition. Among these, microRNAs-29b and -128 are upregulated in the disease and exert adverse effects by inhibiting IGF-1 and SIRT1, making them potential targets for developing inhibitors of their activity. MicroRNA-21 is closely associated with the occurrence of muscle and bone loss. Conversely, microRNA-199b is downregulated in the disease, and its reduced activity may be related to increased myostatin and GSK3β activity, presenting it as a target for developing analogues that restore its function. Finally, microRNA-672 stands out for its ability to protect skeletal muscle and bone when expressed in the disease, highlighting its potential as a possible therapy for osteosarcopenia.
Collapse
Affiliation(s)
- William J Silva
- Department of Research and Development, Mirscience Therapeutics, São Paulo, Brazil
| | - André Cruz
- Department of Research and Development, Mirscience Therapeutics, São Paulo, Brazil
| | - Gustavo Duque
- Bone, Muscle & Geroscience Group. Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
- Dr. Joseph Kaufmann Chair in Geriatric Medicine, Department of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
3
|
Todorovic S, Akpinar A, Assunção R, Bär C, Bavaro SL, Berkel Kasikci M, Domínguez-Soberanes J, Capozzi V, Cotter PD, Doo EH, Gündüz Ergün B, Guzel M, Harsa HS, Hastaoglu E, Humblot C, Hyseni B, Hosoglu MI, Issa A, Karakaş-Budak B, Karakaya S, Kesenkas H, Keyvan E, Künili IE, Kütt ML, Laranjo M, Louis S, Mantzouridou FT, Matalas A, Mayo B, Mojsova S, Mukherjee A, Nikolaou A, Ortakci F, Paveljšek D, Perrone G, Pertziger E, Santa D, Sar T, Savary-Auzeloux I, Schwab C, Starowicz M, Stojanović M, Syrpas M, Tamang JP, Yerlikaya O, Yilmaz B, Malagon-Rojas J, Salminen S, Frias J, Chassard C, Vergères G. Health benefits and risks of fermented foods-the PIMENTO initiative. Front Nutr 2024; 11:1458536. [PMID: 39309142 PMCID: PMC11414650 DOI: 10.3389/fnut.2024.1458536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/14/2024] [Indexed: 09/25/2024] Open
Abstract
Worldwide, fermented foods (FF) are recognized as healthy and safe. Despite the rapid increase of research papers, there is a lack of systematic evaluation of the health benefits and risks of FF. The COST Action CA20128 "Promoting innovation of fermented foods" (PIMENTO) aims to provide a comprehensive assessment on the available evidence by compiling a set of 16 reviews. Seven reviews will cover clinical and biological endpoints associated with major health indicators across several organ systems, including the cardiovascular, gastrointestinal, neurological, immune, and skeletal systems. Nine reviews will address broader biological questions associated with FF including bioactive compounds and vitamin production, nutrient bioavailability and bioaccessibility, the role of FF in healthy diets and personalized nutrition, food safety, regulatory practices, and finally, the health properties of novel and ethnic FF. For each outcome assessed in the reviews, an innovative approach will be adopted based on EFSA's published guidance for health claim submissions. In particular, each review will be composed of three parts: (1) a systematic review of available human studies; (2) a non-systematic review of the mechanism of action related to the clinical endpoints measured by the human studies identified in part 1; and (3) a non-systematic review of the characterization of the FF investigated in the human studies identified in part 1. The evidence and research gaps derived from the reviews will be summarized and published in the form of a strategic road map that will pave the way for future research on FF.
Collapse
Affiliation(s)
- Smilja Todorovic
- Institute for Biological Research Sinisa Stankovic, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Asli Akpinar
- Department of Food Engineering, Manisa Celal Bayar University Faculty of Engineering and Natural Science, Manisa, Türkiye
| | - Ricardo Assunção
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health and Science, Almada, Portugal
| | - Cornelia Bär
- Competence Division Method Development and Analytics, Agroscope, Berne, Switzerland
| | - Simona L. Bavaro
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Bari, Italy
| | - Muzeyyen Berkel Kasikci
- Department of Food Engineering, Manisa Celal Bayar University Faculty of Engineering and Natural Science, Manisa, Türkiye
- STLO, INRAE, Institut Agro-Rennes Angers, Rennes, France
| | | | | | - Paul D. Cotter
- Department of Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
| | - Eun-Hee Doo
- School of Living and Environmental Engineering, Dongyang Mirae University, Seoul, Republic of Korea
| | - Burcu Gündüz Ergün
- Biotechnology Research Center, Field Crops Central Research Institute, Ankara, Türkiye
| | - Mustafa Guzel
- Department of Food Engineering, Hitit University, Corum, Türkiye
| | - Hayriye S. Harsa
- Department of Food Engineering, Izmir Institute of Technology, Izmir, Türkiye
| | | | - Christèle Humblot
- French National Research Institute for Sustainable Development (IRD), Montpellier, France
| | - Bahtir Hyseni
- Faculty of Food Technology, University “Isa Boletini”, Mitrovica, Republic of Kosovo
| | - Muge I. Hosoglu
- Biotechnology Institute, Gebze Technical University, Kocaeli, Türkiye
| | - Aline Issa
- Faculty of Nursing and Health Sciences, Notre Dame University-Louaize, Zouk Mosbeh, Lebanon
| | - Barçın Karakaş-Budak
- Department of Food Engineering, Akdeniz University Faculty of Engineering, Antalya, Türkiye
| | - Sibel Karakaya
- Department of Food Engineering, Faculty of Engineering, Ege University, Izmir, Türkiye
| | - Harun Kesenkas
- Department of Dairy Technology, Faculty of Agriculture, Ege University, Izmir, Türkiye
| | - Erhan Keyvan
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Türkiye
| | - Ibrahim E. Künili
- Department of Fishing and Fish Processing Technology, Faculty of Marine Sciences and Technology, Canakkale Onsekiz Mart University, Canakkale, Türkiye
| | | | - Marta Laranjo
- MED-Mediterranean Institute for Agriculture, Environment and Development-CHANGE-Global Change and Sustainability Institute and Departamento de Medicina Veterinária-Escola de Ciências e Tecnologia (ECT), Universidade de Évora, Évora, Portugal
| | - Sandrine Louis
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Fani T. Mantzouridou
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonia Matalas
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Baltasar Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Villaviciosa, Spain
| | - Sandra Mojsova
- Department of Food Safety and Veterinary Public Health, Food Institute, Faculty of Veterinary Medicine, Skopje, Ss. Cyril and Methodius University, Skopje, North Macedonia
| | - Arghya Mukherjee
- Department of Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
| | - Anastasios Nikolaou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Fatih Ortakci
- Food Engineering Department, Istanbul Technical University, Istanbul, Türkiye
| | - Diana Paveljšek
- Institute of Dairy Science and Probiotics, Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| | - Giancarlo Perrone
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, Bari, Italy
| | - Eugenia Pertziger
- Research Division Microbial Food Systems, Agroscope, Berne, Switzerland
- Department of Epidemiology and Health Systems, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Dushica Santa
- Faculty of Agricultural Sciences and Food, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | | | - Clarissa Schwab
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Małgorzata Starowicz
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland
| | | | - Michail Syrpas
- Department of Food Science and Technology, Kaunas University of Technology, Kaunas, Lithuania
| | - Jyoti P. Tamang
- Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, India
| | - Oktay Yerlikaya
- Department of Dairy Technology, Faculty of Agriculture, Ege University, Izmir, Türkiye
| | - Birsen Yilmaz
- Department of Biological Sciences, Tata Institute of Fundamental Research, Hyderabad, India
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Çukurova University, Adana, Türkiye
| | | | - Seppo Salminen
- Functional foods Forum, Faculty of Medicine, University of Turku, Turku, Finland
| | - Juana Frias
- Department of Technological Processes and Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain
| | - Christophe Chassard
- Human Nutrition Unit, INRAE, Université Clermont-Auvergne, Clermont-Ferrand, France
| | - Guy Vergères
- Research Division Microbial Food Systems, Agroscope, Berne, Switzerland
| |
Collapse
|
4
|
Hadji P, Esterberg E, Obermüller D, Bartsch R. Bone evaluation study-2: update on the epidemiology of osteoporosis in Germany. Arch Osteoporos 2024; 19:26. [PMID: 38592546 PMCID: PMC11003882 DOI: 10.1007/s11657-024-01380-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/14/2024] [Indexed: 04/10/2024]
Abstract
Osteoporosis is the most common bone disorder. Our data gives an estimate of around 5.87 million cases of osteoporosis in the general German population in 2018. Only 30% of insured individuals who suffered an osteoporotic fracture and/or had a confirmed diagnosis of osteoporosis, received an appropriate prescription. PURPOSE Osteoporosis is the most common bone disorder. It particularly affects elderly people and increases the risk of atraumatic fractures. The aim of this study was to estimate the prevalence of osteoporosis in the general German population aged ≥ 50 years and to collect data on the frequency of prescription of osteoporosis-specific medication in order to assess the treatment gap. METHODS Retrospective analysis of anonymized data of individuals aged ≥ 50 years insured under statutory healthcare schemes from the database of the Institute for Applied Health Research Berlin (InGef) for 2018 (study population). Insured individuals with osteoporosis were identified based on osteoporosis diagnoses, osteoporosis-specific prescriptions, or osteoporotic fractures. Thus, we estimated the prevalence of osteoporosis in the general German population aged ≥ 50 years. The prevalence of diagnoses, fractures, and prescriptions was determined for the study population and stratified by age and gender. RESULTS Within the study population of 1,599,299 insured individuals, a prevalence of osteoporosis of 15.9% was determined. This estimated approximately 5.87 million cases of osteoporosis for the general German population. 81.6% of the cases were women. Osteoporosis-specific prescriptions were received by 30.0% of the insured individuals in the study population who had been diagnosed with osteoporosis and/or suffered an osteoporotic fracture. CONCLUSIONS Germany has a high prevalence of osteoporosis. Only a small portion of individuals who may require osteoporosis-specific treatment actually receive it.
Collapse
Affiliation(s)
- Peyman Hadji
- Frankfurter Hormon- Und Osteoporosezentrum, Frankfurt Am Main, Germany
- Philipps-Universität Marburg, Marburg, Germany
| | | | | | | |
Collapse
|
5
|
Szulc P, Whittier DE, Boyd SK, Chapurlat R. Rapid bone microarchitecture decline in older men with high bone turnover-the prospective STRAMBO study. J Bone Miner Res 2024; 39:17-29. [PMID: 38630881 DOI: 10.1093/jbmr/zjad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 04/19/2024]
Abstract
Older men with high bone turnover have faster bone loss. We assessed the link between the baseline levels of bone turnover markers (BTMs) and the prospectively assessed bone microarchitecture decline in men. In 825 men aged 60-87 yr, we measured the serum osteocalcin (OC), bone alkaline phosphatase (BAP), N-terminal propeptide of type I procollagen (PINP), and C-terminal telopeptide of type I collagen (CTX-I), and urinary total deoxypyridinoline (tDPD). Bone microarchitecture and strength (distal radius and distal tibia) were estimated by high-resolution pQCT (XtremeCT, Scanco Medical) at baseline and then after 4 and 8 yr. Thirty-seven men took medications affecting bone metabolism. Statistical models were adjusted for age and BMI. At the distal radius, the decrease in the total bone mineral density (Tt.BMD), cortical BMD (Ct.BMD), cortical thickness (Ct.Thd), and cortical area (Ct.Ar) and failure load was faster in the highest vs the lowest CTX-I quartile (failure load: -0.94 vs -0.31% yr-1, P < .001). Patterns were similar for distal tibia. At the distal tibia, bone decline (Tt.BMD, Ct.Thd, Ct.Ar, Ct.BMD, and failure load) was faster in the highest vs the lowest tDPD quartile. At each skeletal site, the rate of decrease in Tb.BMD differed between the extreme OC quartiles (P < .001). Men in the highest BAP quartile had a faster loss of Tt.BMD, Tb.BMD, reaction force, and failure load vs the lowest quartile. The link between PINP and bone decline was poor. The BTM score is the sum of the nos. of the quartiles for each BTM. Men in the highest quartile of the score had a faster loss of cortical bone and bone strength vs the lowest quartile. Thus, in the older men followed prospectively for 8 yr, the rate of decline in bone microarchitecture and estimated bone strength was 50%-215% greater in men with high bone turnover (highest quartile, CTX-I above the median) compared to the men with low bone turnover (lowest quartile, CTX-I below the median).
Collapse
Affiliation(s)
- Pawel Szulc
- INSERM UMR 1033, University of Lyon, Hôpital Edouard Herriot, Lyon 69437, France
| | - Danielle E Whittier
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Steven K Boyd
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Roland Chapurlat
- INSERM UMR 1033, University of Lyon, Hôpital Edouard Herriot, Lyon 69437, France
| |
Collapse
|
6
|
Zhang YY, Xie N, Sun XD, Nice EC, Liou YC, Huang C, Zhu H, Shen Z. Insights and implications of sexual dimorphism in osteoporosis. Bone Res 2024; 12:8. [PMID: 38368422 PMCID: PMC10874461 DOI: 10.1038/s41413-023-00306-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/04/2023] [Accepted: 11/27/2023] [Indexed: 02/19/2024] Open
Abstract
Osteoporosis, a metabolic bone disease characterized by low bone mineral density and deterioration of bone microarchitecture, has led to a high risk of fatal osteoporotic fractures worldwide. Accumulating evidence has revealed that sexual dimorphism is a notable feature of osteoporosis, with sex-specific differences in epidemiology and pathogenesis. Specifically, females are more susceptible than males to osteoporosis, while males are more prone to disability or death from the disease. To date, sex chromosome abnormalities and steroid hormones have been proven to contribute greatly to sexual dimorphism in osteoporosis by regulating the functions of bone cells. Understanding the sex-specific differences in osteoporosis and its related complications is essential for improving treatment strategies tailored to women and men. This literature review focuses on the mechanisms underlying sexual dimorphism in osteoporosis, mainly in a population of aging patients, chronic glucocorticoid administration, and diabetes. Moreover, we highlight the implications of sexual dimorphism for developing therapeutics and preventive strategies and screening approaches tailored to women and men. Additionally, the challenges in translating bench research to bedside treatments and future directions to overcome these obstacles will be discussed.
Collapse
Affiliation(s)
- Yuan-Yuan Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Na Xie
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiao-Dong Sun
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Republic of Singapore
| | - Canhua Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Huili Zhu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, China.
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.
| |
Collapse
|
7
|
Lloret MJ, Fusaro M, Jørgensen HS, Haarhaus M, Gifre L, Alfieri CM, Massó E, D'Marco L, Evenepoel P, Bover J. Evaluating Osteoporosis in Chronic Kidney Disease: Both Bone Quantity and Quality Matter. J Clin Med 2024; 13:1010. [PMID: 38398323 PMCID: PMC10889712 DOI: 10.3390/jcm13041010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Bone strength is determined not only by bone quantity [bone mineral density (BMD)] but also by bone quality, including matrix composition, collagen fiber arrangement, microarchitecture, geometry, mineralization, and bone turnover, among others. These aspects influence elasticity, the load-bearing and repair capacity of bone, and microcrack propagation and are thus key to fractures and their avoidance. In chronic kidney disease (CKD)-associated osteoporosis, factors traditionally associated with a lower bone mass (advanced age or hypogonadism) often coexist with non-traditional factors specific to CKD (uremic toxins or renal osteodystrophy, among others), which will have an impact on bone quality. The gold standard for measuring BMD is dual-energy X-ray absorptiometry, which is widely accepted in the general population and is also capable of predicting fracture risk in CKD. Nevertheless, a significant number of fractures occur in the absence of densitometric World Health Organization (WHO) criteria for osteoporosis, suggesting that methods that also evaluate bone quality need to be considered in order to achieve a comprehensive assessment of fracture risk. The techniques for measuring bone quality are limited by their high cost or invasive nature, which has prevented their implementation in clinical practice. A bone biopsy, high-resolution peripheral quantitative computed tomography, and impact microindentation are some of the methods established to assess bone quality. Herein, we review the current evidence in the literature with the aim of exploring the factors that affect both bone quality and bone quantity in CKD and describing available techniques to assess them.
Collapse
Affiliation(s)
- Maria J Lloret
- Nephrology Department, Fundació Puigvert, Cartagena 340-350, 08025 Barcelona, Spain
- Institut de Recerca Sant Pau (IR-Sant-Pau), 08025 Barcelona, Spain
| | - Maria Fusaro
- National Research Council (CNR), Institute of Clinical Physiology, 56124 Pisa, Italy
- Department of Medicine, University of Padua, 35128 Padua, Italy
| | - Hanne S Jørgensen
- Institute of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
- Department of Nephrology, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Mathias Haarhaus
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital, Huddinge, 141 86 Stockholm, Sweden
- Diaverum AB, Hyllie Boulevard 53, 215 37 Malmö, Sweden
| | - Laia Gifre
- Rheumatology Department, University Hospital Germans Trias I Pujol, Universitat Autònoma de Barcelona, 08193 Badalona, Spain
| | - Carlo M Alfieri
- Unit of Nephrology Dialysis and Renal Transplantation Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Elisabet Massó
- Nephrology Department, University Hospital Germans Trias I Pujol, REMAR-IGTP Group, Research Institute Germans Trias I Pujol (IGTP), Universitat Autònoma de Barcelona, 08193 Badalona, Spain
| | - Luis D'Marco
- Grupo de Investigación en Enfermedades Cardiorenales y Metabólicas, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain
| | - Pieter Evenepoel
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Jordi Bover
- Nephrology Department, University Hospital Germans Trias I Pujol, REMAR-IGTP Group, Research Institute Germans Trias I Pujol (IGTP), Universitat Autònoma de Barcelona, 08193 Badalona, Spain
| |
Collapse
|
8
|
Gan Z, Huang J, Xu M, Yuan X, Shang X, Chen X, Chen K. Micheliolide prevents estrogen deficiency-induced bone loss via inhibiting osteoclast bone resorption. Aging (Albany NY) 2023; 15:10732-10745. [PMID: 37827691 PMCID: PMC10599737 DOI: 10.18632/aging.205111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023]
Abstract
Osteoporosis is one of the major health problems characterized by decreased bone density and increased risk of fractures. Nowadays, the treating strategies against osteoporosis are efficient, but still have some drawbacks. Micheliolide, a guaianolide sesquiterpene lactone isolated from Michelia compressa and Michelia champac, has been reported to have anti-inflammatory effects. Here, our data suggest that Micheliolide could protect mice from ovariectomy induced bone loss. According to the Micro-CT scan and histomorphometry quantification data, Micheliolide treatment inhibits excessive osteoclast bone resorption without affecting bone formation in estrogen deficiency mice. Consistently, our data suggest that Micheliolide could inhibit osteoclastogenesis in vitro. Additionally, we confirmed that Micheliolide inhibits osteoclasts formation via inhibiting P38 MAPK signaling pathway, and P79350 (a P38 agonist) could rescue this effect. In summary, our data suggest that Micheliolide could ameliorate estrogen deficiency-induced bone loss via attenuating osteoclastogenesis. Hence, Micheliolide could be used as a novel anti-resorptive agent against osteoporosis.
Collapse
Affiliation(s)
- Ziyang Gan
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Junming Huang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi, China
| | - Mingyou Xu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Xingshi Yuan
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Xifu Shang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Xi Chen
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Kun Chen
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| |
Collapse
|
9
|
Giordani C, Matacchione G, Giuliani A, Valli D, Scarpa ES, Antonelli A, Sabbatinelli J, Giacchetti G, Sabatelli S, Olivieri F, Rippo MR. Pro-Osteogenic and Anti-Inflammatory Synergistic Effect of Orthosilicic Acid, Vitamin K2, Curcumin, Polydatin and Quercetin Combination in Young and Senescent Bone Marrow-Derived Mesenchymal Stromal Cells. Int J Mol Sci 2023; 24:ijms24108820. [PMID: 37240169 DOI: 10.3390/ijms24108820] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
During aging, bone marrow mesenchymal stromal cells (MSCs)-the precursors of osteoblasts-undergo cellular senescence, losing their osteogenic potential and acquiring a pro-inflammatory secretory phenotype. These dysfunctions cause bone loss and lead to osteoporosis. Prevention and intervention at an early stage of bone loss are important, and naturally active compounds could represent a valid help in addition to diet. Here, we tested the hypothesis that the combination of two pro-osteogenic factors, namely orthosilicic acid (OA) and vitamin K2 (VK2), and three other anti-inflammatory compounds, namely curcumin (CUR), polydatin (PD) and quercetin (QCT)-that mirror the nutraceutical BlastiMin Complex® (Mivell, Italy)-would be effective in promoting MSC osteogenesis, even of replicative senescent cells (sMSCs), and inhibiting their pro-inflammatory phenotype in vitro. Results showed that when used at non-cytotoxic doses, (i) the association of OA and VK2 promoted MSC differentiation into osteoblasts, even when cultured without other pro-differentiating factors; and (ii) CUR, PD and QCT exerted an anti-inflammatory effect on sMSCs, and also synergized with OA and VK2 in promoting the expression of the pivotal osteogenic marker ALP in these cells. Overall, these data suggest a potential role of using a combination of all of these natural compounds as a supplement to prevent or control the progression of age-related osteoporosis.
Collapse
Affiliation(s)
- Chiara Giordani
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Giulia Matacchione
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Angelica Giuliani
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Debora Valli
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy
| | | | - Antonella Antonelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Gilberta Giacchetti
- Clinic of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Sofia Sabatelli
- Clinic of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy
- Clinic of Laboratory and Precision Medicine, IRCCS Istituto Nazionale di Ricovero e Cura per Anziani, 60121 Ancona, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
10
|
Rastrelli G, Vignozzi L, Corona G, Maggi M. Pharmacotherapy of male hypogonadism. Curr Opin Pharmacol 2023; 68:102323. [PMID: 36525815 DOI: 10.1016/j.coph.2022.102323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 12/15/2022]
Abstract
Hypogonadism is frequent with a prevalence of 2% in the general population. Hypogonadism may derive from any condition able to disrupt the hypothalamic-pituitary-testis (HPT) axis at one or more levels. Hypogonadism may be classified according to the age of onset, its potential reversibility and level of the HPT axis damage. The latter categorization is useful to decide on the treatment. Damages to the hypothalamus-pituitary may benefit from either GnRH, gonadotropin or T therapy with the former carrying the advantage of stimulating spermatogenesis. Conversely, when the testis is damaged, T therapy is the only option and restoration of spermatogenesis is not possible. Therefore, the choice of therapy is primarily based on the diagnosis and patients' needs and both should be carefully considered.
Collapse
Affiliation(s)
- Giulia Rastrelli
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Mario Serio Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Linda Vignozzi
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Mario Serio Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Giovanni Corona
- Endocrinology Unit, Medical Department, Azienda Usl, Maggiore-Bellaria Hospital, Bologna, Italy.
| | - Mario Maggi
- Endocrinology Unit, Mario Serio Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
11
|
Beneficial Effects of Yoghurts and Probiotic Fermented Milks and Their Functional Food Potential. Foods 2022; 11:foods11172691. [PMID: 36076876 PMCID: PMC9455928 DOI: 10.3390/foods11172691] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Probiotic fermented milks and yoghurts are acidified and fermented by viable bacteria, usually L. bulgaricus and S. thermophilus, resulting in a thicker product with a longer shelf life. They are a nutrition-dense food, providing a good source of calcium, phosphorus, potassium, vitamin A, vitamin B2, and vitamin B12. Additionally, they deliver high biological value proteins and essential fatty acids. There is accumulating evidence suggesting that yoghurt and fermented milk consumption is related to a number of health advantages, including the prevention of osteoporosis, diabetes, and cardiovascular diseases, as well as the promotion of gut health and immune system modulation. This review aims at presenting and critically reviewing the beneficial effects from the consumption of probiotic fermented milks in human health, whilst revealing potential applications in the food industry.
Collapse
|