1
|
Stefan N, Yki-Järvinen H, Neuschwander-Tetri BA. Metabolic dysfunction-associated steatotic liver disease: heterogeneous pathomechanisms and effectiveness of metabolism-based treatment. Lancet Diabetes Endocrinol 2024:S2213-8587(24)00318-8. [PMID: 39681121 DOI: 10.1016/s2213-8587(24)00318-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 12/18/2024]
Abstract
The global epidemic of metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing worldwide. People with MASLD can progress to cirrhosis and hepatocellular carcinoma and are at increased risk of developing type 2 diabetes, cardiovascular disease, chronic kidney disease, and extrahepatic cancers. Most people with MASLD die from cardiac-related causes. This outcome is attributed to the shared pathogenesis of MASLD and cardiometabolic diseases, involving unhealthy dietary habits, dysfunctional adipose tissue, insulin resistance, and subclinical inflammation. In addition, the steatotic and inflamed liver affects the vasculature and heart via increased glucose production and release of procoagulant factors, dyslipidaemia, and dysregulated release of hepatokines and microRNAs. However, there is substantial heterogeneity in the contributors to the pathophysiology of MASLD, which might influence its rate of progression, its relationship with cardiometabolic diseases, and the response to therapy. The most effective non-pharmacological treatment approaches for people with MASLD include weight loss. Paradoxically, some effective pharmacological approaches to improve liver health in people with MASLD are associated with no change in bodyweight or even with weight gain, and similar response heterogeneity has been observed for changes in cardiometabolic risk factors. In this Review, we address the heterogeneity of MASLD with respect to its pathogenesis, outcomes, and metabolism-based treatment responses. Although there is currently insufficient evidence for the implementation of precision medicine for risk prediction, prevention, and treatment of MASLD, we discuss whether knowledge about this heterogeneity might help achieving this goal in the future.
Collapse
Affiliation(s)
- Norbert Stefan
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany.
| | - Hannele Yki-Järvinen
- Department of Medicine, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | | |
Collapse
|
2
|
Hermanson JB, Tolba SA, Chrisler EA, Leone VA. Gut microbes, diet, and genetics as drivers of metabolic liver disease: a narrative review outlining implications for precision medicine. J Nutr Biochem 2024; 133:109704. [PMID: 39029595 PMCID: PMC11480923 DOI: 10.1016/j.jnutbio.2024.109704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is rapidly increasing in prevalence, impacting over a third of the global population. The advanced form of MASLD, Metabolic dysfunction-associated steatohepatitis (MASH), is on track to become the number one indication for liver transplant. FDA-approved pharmacological agents are limited for MASH, despite over 400 ongoing clinical trials, with only a single drug (resmetirom) currently on the market. This is likely due to the heterogeneous nature of disease pathophysiology, which involves interactions between highly individualized genetic and environmental factors. To apply precision medicine approaches that overcome interpersonal variability, in-depth insights into interactions between genetics, nutrition, and the gut microbiome are needed, given that each have emerged as dynamic contributors to MASLD and MASH pathogenesis. Here, we discuss the associations and molecular underpinnings of several of these factors individually and outline their interactions in the context of both patient-based studies and preclinical animal model systems. Finally, we highlight gaps in knowledge that will require further investigation to aid in successfully implementing precision medicine to prevent and alleviate MASLD and MASH.
Collapse
Affiliation(s)
- Jake B Hermanson
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Samar A Tolba
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Evan A Chrisler
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Vanessa A Leone
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
3
|
Keating SE, Chawla Y, De A, George ES. Lifestyle intervention for metabolic dysfunction-associated fatty liver disease: a 24-h integrated behavior perspective. Hepatol Int 2024; 18:959-976. [PMID: 38717691 PMCID: PMC11450077 DOI: 10.1007/s12072-024-10663-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/13/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION The prevalence, health and socioeconomic burden of metabolic dysfunction-associated fatty liver disease (MAFLD) is growing, increasing the need for novel evidence-based lifestyle approaches. Lifestyle is the cornerstone for MAFLD management and co-existing cardiometabolic dysfunction. The aim of this review was to evaluate the evidence for lifestyle management of MAFLD, with a specific lens on 24-hour integrated behaviour and provide practical recommendations for implementation of the evidence. RESULTS Weight loss ≥ 7-10% is central to lifestyle management; however, liver and cardiometabolic benefits are attainable with improved diet quality and exercise even without weight loss. Lifestyle intervention for MAFLD should consider an integrated '24-h' approach that is cognisant of diet, physical activity/exercise, sedentary behavior, smoking, alcohol intake and sleep. Dietary management emphasises energy deficit and improved diet quality, especially the Mediterranean diet, although sociocultural adaptations to meet preferences should be considered. Increasing physical activity and reducing sedentary behavior can prevent MAFLD, with strongest evidence in MAFLD supporting regular structured moderate-vigorous aerobic exercise for 150-240 min/week. Resistance training in addition to aerobic exercise should be considered and prioritised for those who are losing body mass via diet and/or pharmacological approaches and those with sarcopenia, to minimise bone and lean mass loss. Limited evidence suggests that sleep is important for MAFLD prevention. Emerging novel approaches to diet and exercise may address some of the key barriers to behaviour change (e.g. lack of time, access to resources and social support). FUTURE DIRECTIONS Large-scale multidisciplinary trials in people with MAFLD with long-term follow-up, that can be scaled up into mainstream healthcare, are required. Future management guidelines should consider the heterogeneity of MAFLD and specialised models of care that coordinate the health workforce to manage the increased and growing MAFLD population.
Collapse
Affiliation(s)
- Shelley E Keating
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia.
| | - Yogesh Chawla
- Kalinga Institute of Medical Sciences (KIMS), Bhubaneshwar, India
| | - Arka De
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Elena S George
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| |
Collapse
|
4
|
Amini-Salehi E, Letafatkar N, Norouzi N, Joukar F, Habibi A, Javid M, Sattari N, Khorasani M, Farahmand A, Tavakoli S, Masoumzadeh B, Abbaspour E, Karimzad S, Ghadiri A, Maddineni G, Khosousi MJ, Faraji N, Keivanlou MH, Mahapatro A, Gaskarei MAK, Okhovat P, Bahrampourian A, Aleali MS, Mirdamadi A, Eslami N, Javid M, Javaheri N, Pra SV, Bakhsi A, Shafipour M, Vakilpour A, Ansar MM, Kanagala SG, Hashemi M, Ghazalgoo A, Kheirandish M, Porteghali P, Heidarzad F, Zeinali T, Ghanaei FM, Hassanipour S, Ulrich MT, Melson JE, Patel D, Nayak SS. Global Prevalence of Nonalcoholic Fatty Liver Disease: An Updated Review Meta-Analysis comprising a Population of 78 million from 38 Countries. Arch Med Res 2024; 55:103043. [PMID: 39094335 DOI: 10.1016/j.arcmed.2024.103043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/09/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a global health challenge, with a rising rate in line with other metabolic diseases. We aimed to assess the global prevalence of NAFLD in adult and pediatric populations. METHODS PubMed, Scopus and Web of Science databases were systematically searched up to May 2023. Heterogeneity was assessed using Cochran's Q test and I2 statistics, and random-effects model was used for meta-analysis. Analyses were performed using STATA version 18. RESULTS A total of 479 studies with 78,001,755 participants from 38 countries were finally included. The global prevalence of NAFLD was estimated to be 30.2% (95% CI: 28.7-31.7%). Regionally, the prevalence of NAFLD was as follows: Asia 30.9% (95% CI: 29.2-32.6%), Australia 16.1% (95% CI: 9.0-24.8%), Europe 30.2% (95% CI: 25.6-35.0%), North America 29% (95% CI: 25.8-32.3%), and South America 34% (95% CI: 16.9-53.5%). Countries with a higher human development index (HDI) had significantly lower prevalence of NAFLD (coefficient = -0.523, p = 0.005). Globally, the prevalence of NAFLD in men and women was 36.6% (95% CI: 34.7-38.4%) and 25.5% (95% CI: 23.9-27.1%), respectively. The prevalence of NAFLD in adults, adults with obesity, children, and children with obesity was 30.2% (95% CI: 28.8-31.7%), 57.5% (95% CI: 43.6-70.9%), 14.3% (95% CI: 10.3-18.8%), and 38.0% (95% CI: 31.5-44.7%), respectively. CONCLUSION The prevalence of NAFLD is remarkably high, particularly in countries with lower HDI. This substantial prevalence in both adults and children underscores the need for disease management protocols to reduce the burden.
Collapse
Affiliation(s)
- Ehsan Amini-Salehi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Negin Letafatkar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Naeim Norouzi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Farahnaz Joukar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Arman Habibi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mona Javid
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Nazila Sattari
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehrdad Khorasani
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Farahmand
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Shervin Tavakoli
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Behnaz Masoumzadeh
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Elaheh Abbaspour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Department of Radiology, Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Sahand Karimzad
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ghadiri
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Gautam Maddineni
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Mohammad Javad Khosousi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Niloofar Faraji
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Abinash Mahapatro
- Department of Internal Medicine, Hi-Tech Medical College and Hospital, Rourkela, Odisha, India
| | | | - Paria Okhovat
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Bahrampourian
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Maryam Sadat Aleali
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Arian Mirdamadi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Narges Eslami
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohamadreza Javid
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Naz Javaheri
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Arash Bakhsi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Shafipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Azin Vakilpour
- Department of Internal Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Malek Moein Ansar
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Biochemistry and Medical Physics, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Mohamad Hashemi
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Arezoo Ghazalgoo
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Masoumeh Kheirandish
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Parham Porteghali
- Department of Internal Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Forough Heidarzad
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Taraneh Zeinali
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Fariborz Mansour Ghanaei
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Soheil Hassanipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Michael T Ulrich
- Department of Internal Medicine, Riverside University Health System Medical Center, Moreno Valley, CA, USA
| | - Joshua E Melson
- Division of Gastroenterology, Department of Medicine, University of Arizona Medical Center-Banner Health, Tucson, AZ, USA
| | - Dhruvan Patel
- Division of Gastroenterology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
5
|
Zhang D, Zhao Y, Zhang G, Lank D, Cooke S, Wang S, Nuotio-Antar A, Tong X, Yin L. Suppression of hepatic ChREBP⍺-CYP2C50 axis-driven fatty acid oxidation sensitizes mice to diet-induced MASLD/MASH. Mol Metab 2024; 85:101957. [PMID: 38740087 PMCID: PMC11145360 DOI: 10.1016/j.molmet.2024.101957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
OBJECTIVES Compromised hepatic fatty acid oxidation (FAO) has been observed in human MASH patients and animal models of MASLD/MASH. It remains poorly understood how and when the hepatic FAO pathway is suppressed during the progression of MASLD towards MASH. Hepatic ChREBP⍺ is a classical lipogenic transcription factor that responds to the intake of dietary sugars. METHODS We examined its role in regulating hepatocyte fatty acid oxidation (FAO) and the impact of hepatic Chrebpa deficiency on sensitivity to diet-induced MASLD/MASH in mice. RESULTS We discovered that hepatocyte ChREBP⍺ is both necessary and sufficient to maintain FAO in a cell-autonomous manner independently of its DNA-binding activity. Supplementation of synthetic PPAR⍺/δ agonist is sufficient to restore FAO in Chrebp-/- primary mouse hepatocytes. Hepatic ChREBP⍺ was decreased in mouse models of diet-induced MAFSLD/MASH and in patients with MASH. Hepatocyte-specific Chrebp⍺ knockout impaired FAO, aggravated liver steatosis and inflammation, leading to early-onset fibrosis in response to diet-induced MASH. Conversely, liver overexpression of ChREBP⍺-WT or its non-lipogenic mutant enhanced FAO, reduced lipid deposition, and alleviated liver injury, inflammation, and fibrosis. RNA-seq analysis identified the CYP450 epoxygenase (CYP2C50) pathway of arachidonic acid metabolism as a novel target of ChREBP⍺. Over-expression of CYP2C50 partially restores hepatic FAO in primary hepatocytes with Chrebp⍺ deficiency and attenuates preexisting MASH in the livers of hepatocyte-specific Chrebp⍺-deleted mice. CONCLUSIONS Our findings support the protective role of hepatocyte ChREBPa against diet-induced MASLD/MASH in mouse models in part via promoting CYP2C50-driven FAO.
Collapse
Affiliation(s)
- Deqiang Zhang
- Department of Molecular & Integrative Physiology, USA; Caswell Diabetes Institute, University of Michigan Medical School, NCRC Building 20-3843, 2800 Plymouth Road, Ann Arbor, MI 48105, USA
| | - Yuee Zhao
- Department of Molecular & Integrative Physiology, USA; Caswell Diabetes Institute, University of Michigan Medical School, NCRC Building 20-3843, 2800 Plymouth Road, Ann Arbor, MI 48105, USA; Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Rd, Furong District, Changsha, Hunan Province 410011, PR China
| | - Gary Zhang
- Department of Molecular & Integrative Physiology, USA; Caswell Diabetes Institute, University of Michigan Medical School, NCRC Building 20-3843, 2800 Plymouth Road, Ann Arbor, MI 48105, USA
| | - Daniel Lank
- Department of Pharmacology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | - Sarah Cooke
- Neurosciences Graduate Program, Case Western Reserve University School of Medicine, Cleveland, OH 44016, USA
| | - Sujuan Wang
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Rd, Furong District, Changsha, Hunan Province 410011, PR China
| | - Alli Nuotio-Antar
- Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xin Tong
- Department of Molecular & Integrative Physiology, USA; Caswell Diabetes Institute, University of Michigan Medical School, NCRC Building 20-3843, 2800 Plymouth Road, Ann Arbor, MI 48105, USA
| | - Lei Yin
- Department of Molecular & Integrative Physiology, USA; Caswell Diabetes Institute, University of Michigan Medical School, NCRC Building 20-3843, 2800 Plymouth Road, Ann Arbor, MI 48105, USA.
| |
Collapse
|
6
|
Lonardo A, Zheng MH. Does an Aspirin a Day Take the MASLD Away? Adv Ther 2024; 41:2559-2575. [PMID: 38748333 DOI: 10.1007/s12325-024-02885-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/22/2024] [Indexed: 06/29/2024]
Abstract
Although aspirin is deeply rooted in the most ancient history of medicine, the mechanism of action of this drug was only identified a few decades ago. Aspirin has several indications ranging from its long-known analgesic and antipyretic properties to the more recently discovered antithrombotic, chemopreventive and anti-eclampsia actions. In addition, a recent line of research has identified aspirin as a drug with potential hepatologic indications. This article specifically focuses on the nonalcoholic fatty liver disease/nonalcoholic metabolic dysfunction fatty liver disease/metabolic dysfunction-associated steatotic liver disease (NAFLD/MAFLD/MASLD) field. To this end, the most recently published randomized controlled trial on aspirin for non-cirrhotic MASLD is summarized and discussed. Moreover, previous epidemiologic evidence supporting the notion that aspirin exerts antisteatotic and antifibrotic hepatic effects, which may result in the primary prevention of hepatocellular carcinoma, is also addressed. Next, the putative mechanisms involved are examined, with reference to the effects on adipose tissue and liver and sex differences in the action of aspirin. It is concluded that these novel findings on aspirin as a "hepatologic drug" deserve additional in-depth evaluation.
Collapse
Affiliation(s)
- Amedeo Lonardo
- Department of Internal Medicine, Ospedale Civile di Baggiovara (-2023), Azienda Ospedaliero-Universitaria di Modena, 41100, Modena, Italy.
| | - Ming-Hua Zheng
- Department of Hepatology, MAFLD Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Wenzhou Key Laboratory of Hepatology, Wenzhou, 325000, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, 325000, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, 325000, China
| |
Collapse
|
7
|
El-Kassas M, Awad A, Elbadry M, Arab JP. Tailored Model of Care for Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease. Semin Liver Dis 2024; 44:54-68. [PMID: 38272067 DOI: 10.1055/a-2253-9181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease (NAFLD), is increasing globally, creating a growing public health concern. However, this disease is often not diagnosed, and accurate data on its epidemiology are limited in many geographical regions, making it challenging to provide proper care and implement effective national plans. To combat the increasing disease burden, screening and diagnosis must reach a significant number of high-risk subjects. Addressing MASLD as a health care challenge requires a multidisciplinary approach involving prevention, diagnosis, treatment, and care, with collaboration between multiple stakeholders in the health care system. This approach must be guided by national and global strategies, to be combined with efficient models of care developed through a bottom-up process. This review article highlights the pillars of the MASLD model of care (MoC), including screening, risk stratification, and establishing a clinical care pathway for management, in addition to discussing the impact of nomenclature change on the proposed MoC.
Collapse
Affiliation(s)
- Mohamed El-Kassas
- Endemic Medicine Department, Faculty of Medicine, Helwan University, Cairo, Egypt
- Steatotic Liver Disease Study Foundation in Middle East and North Africa (SLMENA), Cairo, Egypt
| | - Abeer Awad
- Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Elbadry
- Endemic Medicine Department, Faculty of Medicine, Helwan University, Cairo, Egypt
- Steatotic Liver Disease Study Foundation in Middle East and North Africa (SLMENA), Cairo, Egypt
| | - Juan Pablo Arab
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University and London Health Sciences Centre, London, Ontario, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine, Western University, London, Ontario, Canada
- Department of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
8
|
Guo Z, Wu Q, Xie P, Wang J, Lv W. Immunomodulation in non-alcoholic fatty liver disease: exploring mechanisms and applications. Front Immunol 2024; 15:1336493. [PMID: 38352880 PMCID: PMC10861763 DOI: 10.3389/fimmu.2024.1336493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) exhibits increased lipid enrichment in hepatocytes. The spectrum of this disease includes stages such as nonalcoholic simple fatty liver (NAFL), nonalcoholic steatohepatitis (NASH), and liver fibrosis. Changes in lifestyle behaviors have been a major factor contributing to the increased cases of NAFLD patients globally. Therefore, it is imperative to explore the pathogenesis of NAFLD, identify therapeutic targets, and develop new strategies to improve the clinical management of the disease. Immunoregulation is a strategy through which the organism recognizes and eliminates antigenic foreign bodies to maintain physiological homeostasis. In this process, multiple factors, including immune cells, signaling molecules, and cytokines, play a role in governing the evolution of NAFLD. This review seeks to encapsulate the advancements in research regarding immune regulation in NAFLD, spanning from underlying mechanisms to practical applications.
Collapse
Affiliation(s)
- Ziwei Guo
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qinjuan Wu
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Pengfei Xie
- Guang'anmen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jiuchong Wang
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenliang Lv
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Lonardo A. The heterogeneity of metabolic syndrome presentation and challenges this causes in its pharmacological management: a narrative review focusing on principal risk modifiers. Expert Rev Clin Pharmacol 2023; 16:891-911. [PMID: 37722710 DOI: 10.1080/17512433.2023.2259306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
INTRODUCTION Metabolic syndrome (MetS), i.e. the cluster of cardiometabolic risk factors comprising visceral obesity, impaired glucose metabolism, arterial hypertension and atherogenic dyslipidemia, is prevalent globally and exacts a heavy toll on health care expenditures. AREAS COVERED The pathophenotypes of individual traits of the MetS in adults are discussed first, with strong emphasis on nonalcoholic fatty liver disease (NAFLD) and sex differences. Next, I discuss recent studies on phenotypic and outcome heterogeneity of the MetS, highlighting the role of NAFLD, sex, reproductive status, and depressive disorders. In the second half of the article, the therapeutic implications of the variable MetS types and features are analyzed, focusing on the most recent developments, and guidelines. EXPERT OPINION I have identified physiological, pathological, social and medical sources of phenotypical heterogeneity in the MetS and its constitutive traits. Improved understanding of these variables may be utilized in the setting of future precision medicine approaches in the field of metabolic disorders and target organ damage.
Collapse
Affiliation(s)
- Amedeo Lonardo
- Operating Unit of Metabolic Syndrome, Azienda Ospedaliero-Unversitaria di Modena, Ospedale Civile di Baggiovara, Baggiovara, Modena, Italy
| |
Collapse
|