1
|
Willman JT, Gonzalez JM, Nguyen-Cong K, Hamel S, Lordi V, Oleynik II. Accuracy, transferability, and computational efficiency of interatomic potentials for simulations of carbon under extreme conditions. J Chem Phys 2024; 161:084709. [PMID: 39193946 DOI: 10.1063/5.0218705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/14/2024] [Indexed: 08/29/2024] Open
Abstract
Large-scale atomistic molecular dynamics (MD) simulations provide an exceptional opportunity to advance the fundamental understanding of carbon under extreme conditions of high pressures and temperatures. However, the fidelity of these simulations depends heavily on the accuracy of classical interatomic potentials governing the dynamics of many-atom systems. This study critically assesses several popular empirical potentials for carbon, as well as machine learning interatomic potentials (MLIPs), in their ability to simulate a range of physical properties at high pressures and temperatures, including the diamond equation of state, its melting line, shock Hugoniot, uniaxial compressions, and the structure of liquid carbon. Empirical potentials fail to accurately predict the behavior of carbon under high pressure-temperature conditions. In contrast, MLIPs demonstrate quantum accuracy, with Spectral Neighbor Analysis Potential (SNAP) and atomic cluster expansion (ACE) being the most accurate in reproducing the density functional theory results. ACE displays remarkable transferability despite not being specifically trained for extreme conditions. Furthermore, ACE and SNAP exhibit superior computational performance on graphics processing unit-based systems in billion atom MD simulations, with SNAP emerging as the fastest. In addition to offering practical guidance in selecting an interatomic potential with a fine balance of accuracy, transferability, and computational efficiency, this work also highlights transformative opportunities for groundbreaking scientific discoveries facilitated by quantum-accurate MD simulations with MLIPs on emerging exascale supercomputers.
Collapse
Affiliation(s)
| | - Joseph M Gonzalez
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| | - Kien Nguyen-Cong
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Sebastien Hamel
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Vincenzo Lordi
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Ivan I Oleynik
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| |
Collapse
|
2
|
Stevenson S, Dorn HC. Fullertubes: A 30-Year Story of Prediction, Experimental Validation, and Applications for a Long-Missing Family of Soluble Carbon Molecules. Acc Chem Res 2024; 57:2154-2165. [PMID: 39042832 PMCID: PMC11309000 DOI: 10.1021/acs.accounts.4c00302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
ConspectusDuring the last 30 years, theoretical scientists imagined segmental families of monolayer carbon tubules with fullerene-based end-caps. These fullertube molecules would possess structural features of both fullerenes (hemispherical end-caps) and tubular belts of single-walled carbon nanotubes (SWCNTs). Yet, their experimental verification remained elusive for decades. It was not until 2020-2023 that segmental families of fullertubes were finally confirmed in the lab. The shocking irony is that these fullertubes were unwittingly coproduced alongside fullerenes (e.g., C60, C70, C84) in both flame and electric arc soot since the 1990s. Yet, nobody knew these "hidden" families of fullertubes were experimentally present in their extracted soot due to their low abundance and the absence of isolation methodology.This eruption of fullertube discoveries in 2020-2023 was brought to fruition by structural data, both DFT and experimental. This "Treasure Trove" of new molecules during this four-year window occurred with only microgram quantities. Typically, milligram levels of purified samples are required for X-ray crystallography and 13C NMR structural analysis. The breakthrough for experimentally verifying the missing fullertubes was an aminopropanol reagent to selectively react with and remove spheroidal carbon (e.g., C60, C70, C84) as hydrophilic derivatives. In contrast, there was suppressed reaction with fullertubes, which remained in organic solvent. It is well established that high symmetry (3-, 5-, and 6-fold) hemispheres for C60-Ih and other fullerenes and metallofullerenes are prerequisite end-caps for fullertubes. For the case of [5,5] C130 fullertubes, this requirement results in only eight 3-, 5-, and 6-fold symmetry structural isomers possible from a total of 39,393 possible isolated pentagon rule (IPR) isomers. From this C130 list of 8 candidate isolated pentagon rule (IPR) high symmetry isomers, surprisingly only one structure matched the DFT polarizability versus chromatographic retention parameter (a new gold standard for isomer identification). The simultaneous emergence of DFT computations of other properties (e.g., total energy, HOMO-LUMO gap, UV-vis) for large carbon molecules provided support for structural determination. Experimental approaches (e.g., mass spectrometry, UV-vis, XPS, Raman, and STEM) provided additional layers of structural elucidation at the microgram level. For the first time, we developed a chemical isolation protocol that would allow the preparation and isolation of soluble pristine fullertubes in the range of C90-C200. To date, applications of SWCNTs for use in nanoscale computer applications requires purities greater than 99.999%. Although this stringent mandate has not yet been demonstrated using SWCNT samples, this high level of purity appears achievable for metallic [5,5] D5d-C120 and semiconductor [10,0] D5h-C120 [10,766] fullertubes. Moreover, commercial production of pristine fullertubes should easily be feasible by the flame method due to its continuous operation and inexpensive feedstock. For application development, theoretical and electrochemical experimental data show that fullertubes exhibit high catalytic activity in oxygen reduction reactions. In the medical sector, pristine fullertube dispersions exhibit antimicrobial effects on Mycobacterium smegmatis and M. abscessus.
Collapse
Affiliation(s)
- Steven Stevenson
- Department
of Chemistry, FIRST Molecules Center of Research, Purdue University Fort Wayne, Fort Wayne, Indiana 46805, United States
| | - Harry C. Dorn
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| |
Collapse
|
3
|
Gao X, Fang W, Li W, Wang P, Khan K, Tang Y, Wang T. Effects of Multidimensional Carbon-Based Nanomaterials on the Low-Carbon and High-Performance Cementitious Composites: A Critical Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2196. [PMID: 38793263 PMCID: PMC11122989 DOI: 10.3390/ma17102196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
Cementitious composites are ubiquitous in construction, and more and more research is focused on improving mechanical properties and environmental effects. However, the jury is still out on which material can achieve low-carbon and high-performance cementitious composites. This article compares the mechanical and environmental performance of zero-dimensional fullerenes, one-dimensional carbon nanotubes (CNTs), two-dimensional graphene oxide (GO), and three-dimensional nano-graphite platelets (NGPs) on cementitious composites. The literature review shows that two-dimensional (2D) GO has the best mechanical and environmental performance, followed by 3D NGPs, 1D CNTs, and 0D fullerenes. Specifically, GO stands out for its lower energy consumption (120-140 MJ/kg) and CO2 emissions (0.17 kg/kg). When the optimal dosage (0.01-0.05 wt%) of GO is selected, due to its high specific surface area and strong adhesion to the matrix, the compressive strength of the cementitious composites is improved by nearly 50%. This study will help engineers and researchers better utilize carbon-based nanomaterials and provide guidance and direction for future research in related fields.
Collapse
Affiliation(s)
- Xiumei Gao
- College of Civil & Transportation Engineering, Shenzhen University, Shenzhen 518060, China; (X.G.); (W.F.)
| | - Wujun Fang
- College of Civil & Transportation Engineering, Shenzhen University, Shenzhen 518060, China; (X.G.); (W.F.)
- MCC Group, Central Research Institute of Building and Construction (Shenzhen) Co., Ltd., Shenzhen 518055, China
| | - Weiwen Li
- College of Civil & Transportation Engineering, Shenzhen University, Shenzhen 518060, China; (X.G.); (W.F.)
| | - Peng Wang
- College of Civil & Transportation Engineering, Shenzhen University, Shenzhen 518060, China; (X.G.); (W.F.)
| | - Kashan Khan
- Department of Civil Engineering, Tianjin University, Tianjin 300072, China;
| | - Yihong Tang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China;
| | - Teng Wang
- Department of Civil Engineering, The University of Hong Kong, Hong Kong 999077, China;
| |
Collapse
|
4
|
Liu X, Tang X, He Y, Wang F. Microemulsion nanoreactor applied for the synthesis of iron-based catalysts for carbon nanotube formation. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
5
|
Kadhim MM, Mahmood EA, Abbasi V, Poor Heravi MR, Habibzadeh S, Mohammadi-Aghdam S, Soleimani-Amiri S. Investigation of the substituted-titanium nanocages using computational chemistry. J Mol Graph Model 2023; 118:108317. [PMID: 36162160 DOI: 10.1016/j.jmgm.2022.108317] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/14/2022] [Accepted: 08/23/2022] [Indexed: 10/14/2022]
Abstract
We are investigated substitution effects of titanium heteroatoms on band gap, charge and local reactivity of C20-nTin heterofullerenes (n = 1-5), at different levels and basis sets. The C18Ti2-2 nanocage is considered as the most kinetically stable species with the widest band gap of 2.86 eV, in which two carbon atoms are substituted by two Ti atoms in equatorial position, individually. The charges on carbon atoms of C20 are roughly zero, while high positive charge (1.256) on the surface of C19Ti1 prompts this heteofullerene for hydrogen storage. The positive atomic charge on Ti atoms and negative atomic charge on their adjacent C atoms implies that these sites can be influenced more readily by nucleophilic and electrophilic regents, respectively. We examined the usefulness of local reactivity descriptors to predict the reactivity of Ti-C atomic sites on the external surface of the heterofullerenes. The properties determined include Fukui function (F.F.); f (k) and local softness s (k) on the surfaces of the investigated hollow cages. Geometry optimization results reveal that titanium atoms can be comfortably incorporated into the CC network of fullerene. It is most likely associated with the triple-coordination characteristic of titanium atoms, which can well match with the sp2-hybridized carbon bonding structure. According to the values of f (k) and s (k) for the C15Ti5 heterofullerene; the carbon atoms in the cap regions exhibit a different reactivity pattern than those in the equatorial portion of the heterofullerene. The titanium impurity can significantly improve the fullerene's surface reactivity and it allows controlling their surface properties. The band gap of C20-nTin …..(H2)n structures is decreased with increasing n. Hence, C15Ti5 is found as the best hydrogen adsorbent.
Collapse
Affiliation(s)
- Mustafa M Kadhim
- Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, Iraq
| | - Evan Abdulkareem Mahmood
- Medical Laboratory Sciences Department, College of Health Sciences, University of Human Development, Sulaymaniyah, Iraq
| | - Vahideh Abbasi
- Department of Chemistry, University of Zanjan, Zanjan, Iran
| | | | - Sepideh Habibzadeh
- Department of Chemistry, Payame Noor University, P. O. Box: 19395-3697, Tehran, Iran
| | | | | |
Collapse
|
6
|
Khalid A, Yi W, Yoo S, Abbas S, Si J, Hou X, Hou J. Single-chirality of single-walled carbon nanotubes (SWCNTs) through chromatography and its potential biological applications. NEW J CHEM 2023. [DOI: 10.1039/d2nj04056e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gel chromatography is used to separate single-chirality and selective-diameter SWCNTs. We also explore the use of photothermal therapy and biosensor applications based on single-chirality, selected-diameter, and unique geometric shape.
Collapse
Affiliation(s)
- Asif Khalid
- Key Laboratory for Information Photonic Technology of Shaanxi & Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronics Science and Engineering, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China
| | - Wenhui Yi
- Key Laboratory for Information Photonic Technology of Shaanxi & Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronics Science and Engineering, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China
| | - Sweejiang Yoo
- Key Laboratory for Information Photonic Technology of Shaanxi & Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronics Science and Engineering, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China
| | - Shakeel Abbas
- Key Laboratory for Information Photonic Technology of Shaanxi & Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronics Science and Engineering, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China
| | - Jinhai Si
- Key Laboratory for Information Photonic Technology of Shaanxi & Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronics Science and Engineering, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China
| | - Xun Hou
- Key Laboratory for Information Photonic Technology of Shaanxi & Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronics Science and Engineering, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China
| | - Jin Hou
- Department of Pharmacology, School of Basic Medical Science, Xi’an Medical University, Xi’an, Shaanxi, 710021, China
| |
Collapse
|
7
|
Mousavian P, Esrafili MD, Sardroodi JJ. A computational study of CH4 storage on Sc functionalized C48B12 heterofullerene. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Computational simulation-based study of novel ZnO Buckyball structures. J Mol Graph Model 2022; 116:108241. [DOI: 10.1016/j.jmgm.2022.108241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/21/2022] [Accepted: 05/30/2022] [Indexed: 11/18/2022]
|
9
|
Maust RL, Li P, Shao B, Zeitler SM, Sun PB, Reid HW, Zakharov LN, Golder MR, Jasti R. Controlled Polymerization of Norbornene Cycloparaphenylenes Expands Carbon Nanomaterials Design Space. ACS CENTRAL SCIENCE 2021; 7:1056-1065. [PMID: 34235266 PMCID: PMC8228593 DOI: 10.1021/acscentsci.1c00345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 06/13/2023]
Abstract
Carbon-based materials-such as graphene nanoribbons, fullerenes, and carbon nanotubes-elicit significant excitement due to their wide-ranging properties and many possible applications. However, the lack of methods for precise synthesis, functionalization, and assembly of complex carbon materials has hindered efforts to define structure-property relationships and develop new carbon materials with unique properties. To overcome this challenge, we employed a combination of bottom-up organic synthesis and controlled polymer synthesis. We designed norbornene-functionalized cycloparaphenylenes (CPPs), a family of macrocycles that map onto armchair carbon nanotubes of varying diameters. Through ring-opening metathesis polymerization, we accessed homopolymers as well as block and statistical copolymers constructed from "carbon nanohoops" with a high degree of structural control. These soluble, sp2-carbon-dense polymers exhibit tunable fluorescence emission and supramolecular responses based on composition and sequence. This work represents an important advance toward bridging the gap between small molecules and functional carbon-based materials.
Collapse
Affiliation(s)
- Ruth L. Maust
- Department
of Chemistry and Biochemistry and Materials Science Institute and
Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Penghao Li
- Department
of Chemistry and Biochemistry and Materials Science Institute and
Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Baihao Shao
- Department
of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Sarah M. Zeitler
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Peiguan B. Sun
- Department
of Chemistry and Biochemistry and Materials Science Institute and
Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Harrison W. Reid
- Department
of Chemistry and Biochemistry and Materials Science Institute and
Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Lev N. Zakharov
- CAMCOR
− Center for Advanced Materials Characterization in Oregon, University of Oregon, Eugene, Oregon 97403, United States
| | - Matthew R. Golder
- Department
of Chemistry, Molecular Engineering and Science Institute, University of Washington, Seattle, Washington 98195, United States
| | - Ramesh Jasti
- Department
of Chemistry and Biochemistry and Materials Science Institute and
Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
10
|
Fuertes-Espinosa C, Pujals M, Ribas X. Supramolecular Purification and Regioselective Functionalization of Fullerenes and Endohedral Metallofullerenes. Chem 2020. [DOI: 10.1016/j.chempr.2020.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Jayabalaji G, Ramya L, Meena Devi J. Investigation on the structural, thermal and hydration properties of gold-fullerene nanocomposite. J CHEM SCI 2020. [DOI: 10.1007/s12039-020-01773-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Koenig RM, Tian HR, Seeler TL, Tepper KR, Franklin HM, Chen ZC, Xie SY, Stevenson S. Fullertubes: Cylindrical Carbon with Half-Fullerene End-Caps and Tubular Graphene Belts, Their Chemical Enrichment, Crystallography of Pristine C 90- D5h(1) and C 100- D5d(1) Fullertubes, and Isolation of C 108, C 120, C 132, and C 156 Cages of Unknown Structures. J Am Chem Soc 2020; 142:15614-15623. [PMID: 32830484 DOI: 10.1021/jacs.0c08529] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a chemical separation method to isolate fullertubes: a new and soluble allotrope of carbon whose structure merges nanotube, graphene, and fullerene subunits. Fullertubes possess single-walled carbon nanotube belts resembling a rolled graphene midsection, but with half-fullerene end-caps. Unlike nanotubes, fullertubes are reproducible in structure, possess a defined molecular weight, and are soluble in pristine form. The high reactivity of amines with spheroidal fullerene cages enables their removal and allows a facile isolation of C96-D3d(3), C90-D5h(1), and C100-D5d(1) fullertubes. A nonchromatographic step (Stage 1) uses a selective reaction of carbon cages with aminopropanol to permit a highly enriched sample of fullertubes. Spheroidal fullerenes are reacted and removed by attaching water-soluble groups onto their cage surfaces. With this enriched (100-1000 times) fullertube mixture, Stage 2 becomes a simple HPLC collection with a single column. This two-stage separation approach permits fullertubes in scalable quantities. Characterization of purified C100-D5d(1) fullertubes is done with samples isolated in pristine and unfunctionalized form. Surprisingly, C60 and C100-D5d(1) are both purplish in solution. For X-ray crystallographic analysis, we used decapyrrylcorannulene (DPC). Isomerically purified C90 and C100 fullertubes were mixed with DPC to obtain black cocrystals of 2DPC{C90-D5h(1)}·4(toluene) and 2DPC{C100-D5d(1)}·4(toluene), respectively. A serendipitous outcome of this chemical separation approach is the enrichment and purification of several unreported larger carbon species, e.g., C120, C132, and C156. Isolation of these higher cage species represents a significant advance in the unknown experimental arena of C100-C200 structures. Our findings represent seminal experimental evidence for the existence of two mathematically predicted families of fullertubes: one family with an axial hexagon with the other series based on an axial pentagon ring. Fullertubes have been predicted theoretically, and herein is their experimental evidence, isolation, and initial characterization.
Collapse
Affiliation(s)
- Ryan M Koenig
- Purdue University Fort Wayne, Department of Chemistry, Fort Wayne Indiana 46805, United States
| | - Han-Rui Tian
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tiffany L Seeler
- Purdue University Fort Wayne, Department of Chemistry, Fort Wayne Indiana 46805, United States
| | - Katelyn R Tepper
- Purdue University Fort Wayne, Department of Chemistry, Fort Wayne Indiana 46805, United States
| | - Hannah M Franklin
- Purdue University Fort Wayne, Department of Chemistry, Fort Wayne Indiana 46805, United States
| | - Zuo-Chang Chen
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Su-Yuan Xie
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Steven Stevenson
- Purdue University Fort Wayne, Department of Chemistry, Fort Wayne Indiana 46805, United States
| |
Collapse
|
13
|
Qi S, Wang D, Li W, Zhang R, Liu F, Zhang J, Liu Z, Guo Y, Wang F, Wen G. Mass production of nitrogen and oxygen codoped carbon nanotubes by a delicately-designed Pechini method for supercapacitors and electrocatalysis. NANOSCALE 2019; 11:17425-17435. [PMID: 31531440 DOI: 10.1039/c9nr06319f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Heteroatom-doped carbon nanotubes (CNTs) have great potential in various fields owing to their extraordinary electronic, structural, and mechanical properties. However, large-scale production of heteroatom-doped CNTs in a simple, economical, and highly efficient manner still remains challenging. Here, we report a modified Pechini method (MPM) for high-yield synthesis of N- and O-codoped CNTs (N,O-CNTs), by rapid pyrolysis of a NiCo-polymer precursor forming via a simple sol-gel process. The carbon source (i.e., citric acid) is inexpensive, and the NiCo-polymer material is the single precursor for the preparation of N,O-CNTs via a thermolysis process without the introduction of additional catalysts or carrier gas. Appropriate NiCo-organic coordination and controlled pyrolysis (i.e. heating rate, pyrolysis temperature, and holding time) are demonstrated to play vital roles in this MPM, which are critical for quick generation of small NiCo nanocatalysts with high catalytic activity and simultaneous formation of sufficient space inside the material. The growth mechanism is well studied. Benefitting from the hierarchically porous structure and the synergistic effect of N,O-codoping in the CNTs, the as-synthesized N,O-CNTs manifest excellent electrochemical performance in both supercapacitors and electrocatalysis. Density functional theory simulations show that N and O dopants could increase the densities of states of CNTs near the Fermi level and charge densities of adjacent C atoms, thus leading to improved electrochemical activity. We anticipate that this work will open up a new avenue for a high-yield and economical synthesis of heteroatom-doped CNTs for energy-related applications and beyond.
Collapse
Affiliation(s)
- Shuai Qi
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Dong Wang
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Weijian Li
- College of nuclear equipment and nuclear engineering, Yantai University, Yantai 264000, China
| | - Rui Zhang
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Feng Liu
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Junting Zhang
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Zhiyuan Liu
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Yana Guo
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Fagang Wang
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Guangwu Wen
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China. and Shandong Industrial Ceramics Research & Design Institute Co., Ltd., No. 128 Yumin Road, Zibo 255000, China
| |
Collapse
|
14
|
Daggag D, Dorlus T, Dinadayalane T. Binding of histidine and proline with graphene: DFT study. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.05.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Peng X, Li C, Zhang Y, Chen S, Long Y. Carbon dots synthesized by the
m
‐trihydroxybenzene as the carbon source and its application on the detection of pH value. LUMINESCENCE 2019; 34:341-346. [DOI: 10.1002/bio.3613] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/22/2018] [Accepted: 01/15/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Xiaoxiao Peng
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine PolymersHunan University of Science and Technology Xiangtan P. R. China
- Key Laboratory of Theoretical Organic Chemistry and Function MoleculeMinistry of Education Xiangtan P. R. China
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and ConversionSchool of Chemistry and Chemical Engineering Xiangtan P. R. China
| | - Chenchen Li
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine PolymersHunan University of Science and Technology Xiangtan P. R. China
- Key Laboratory of Theoretical Organic Chemistry and Function MoleculeMinistry of Education Xiangtan P. R. China
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and ConversionSchool of Chemistry and Chemical Engineering Xiangtan P. R. China
| | - Yubing Zhang
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine PolymersHunan University of Science and Technology Xiangtan P. R. China
- Key Laboratory of Theoretical Organic Chemistry and Function MoleculeMinistry of Education Xiangtan P. R. China
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and ConversionSchool of Chemistry and Chemical Engineering Xiangtan P. R. China
| | - Shu Chen
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine PolymersHunan University of Science and Technology Xiangtan P. R. China
- Key Laboratory of Theoretical Organic Chemistry and Function MoleculeMinistry of Education Xiangtan P. R. China
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and ConversionSchool of Chemistry and Chemical Engineering Xiangtan P. R. China
| | - Yunfei Long
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine PolymersHunan University of Science and Technology Xiangtan P. R. China
- Key Laboratory of Theoretical Organic Chemistry and Function MoleculeMinistry of Education Xiangtan P. R. China
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and ConversionSchool of Chemistry and Chemical Engineering Xiangtan P. R. China
| |
Collapse
|
16
|
De Marchi L, Pretti C, Gabriel B, Marques PAAP, Freitas R, Neto V. An overview of graphene materials: Properties, applications and toxicity on aquatic environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 631-632:1440-1456. [PMID: 29727968 DOI: 10.1016/j.scitotenv.2018.03.132] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/10/2018] [Accepted: 03/11/2018] [Indexed: 06/08/2023]
Abstract
Due to unique chemical and physical properties, nanomaterials from the Graphene family are being increasingly introduced in all fields of science. The specific roles they can occupy within different applications are attracting increased attention by several industrial sectors. These carbon nanoparticles are released into the environment especially accumulating in aquatic systems. Since the discovery of graphene, a number of research actives are being conducted to find out the toxic potential of the Graphene family materials to different organism's models. Although their toxicity effects are well described for biomedical applications, few data were produced with the specific aim of assessing the toxic effects of these carbon nanomaterials in the aquatic environment. The purpose of this review is to compile up-to-date information on properties, applications and characterization methods of graphene family materials in aquatic environments and identified biological toxic impacts of these NMs, with special focus on graphene oxide based on the most recent literature.
Collapse
Affiliation(s)
- Lucia De Marchi
- Department of Biology & Center for Environmental and Marine Studies (CESAM), 3810-193 Aveiro, Portugal; Centre for Mechanical Technology and Automation, Mechanical Engineering Department, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, Pisa 56122, Italy
| | - Bárbara Gabriel
- Centre for Mechanical Technology and Automation, Mechanical Engineering Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paula A A P Marques
- Centre for Mechanical Technology and Automation, Mechanical Engineering Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & Center for Environmental and Marine Studies (CESAM), 3810-193 Aveiro, Portugal
| | - Victor Neto
- Centre for Mechanical Technology and Automation, Mechanical Engineering Department, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
17
|
A First-Principle Theoretical Study of Mechanical and Electronic Properties in Graphene Single-Walled Carbon Nanotube Junctions. MATERIALS 2017; 10:ma10111300. [PMID: 29137203 PMCID: PMC5706247 DOI: 10.3390/ma10111300] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/03/2017] [Accepted: 11/08/2017] [Indexed: 12/02/2022]
Abstract
The new three-dimensional structure that the graphene connected with SWCNTs (G-CNTs, Graphene Single-Walled Carbon Nanotubes) can solve graphene and CNTs′ problems. A comprehensive study of the mechanical and electrical performance of the junctions was performed by first-principles theory. There were eight types of junctions that were constituted by armchair and zigzag graphene and (3,3), (4,0), (4,4), and (6,0) CNTs. First, the junction strength was investigated. Generally, the binding energy of armchair G-CNTs was stronger than that of zigzag G-CNTs, and it was the biggest in the armchair G-CNTs (6,0). Likewise, the electrical performance of armchair G-CNTs was better than that of zigzag G-CNTs. Charge density distribution of G-CNTs (6,0) was the most homogeneous. Next, the impact factors of the electronic properties of armchair G-CNTs were investigated. We suggest that the band gap is increased with the length of CNTs, and its value should be dependent on the combined effect of both the graphene’s width and the CNTs’ length. Last, the relationship between voltage and current (U/I) were studied. The U/I curve of armchair G-CNTs (6,0) possessed a good linearity and symmetry. These discoveries will contribute to the design and production of G-CNT-based devices.
Collapse
|
18
|
Linard EN, Apul OG, Karanfil T, van den Hurk P, Klaine SJ. Bioavailability of Carbon Nanomaterial-Adsorbed Polycyclic Aromatic Hydrocarbons to Pimphales promelas: Influence of Adsorbate Molecular Size and Configuration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:9288-9296. [PMID: 28700222 DOI: 10.1021/acs.est.7b02164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Despite carbon nanomaterials' (CNMs) potential to alter the bioavailability of adsorbed contaminants, information characterizing the relationship between adsorption behavior and bioavailability of CNM-adsorbed contaminants is still limited. To investigate the influence of CNM morphology and organic contaminant (OC) physicochemical properties on this relationship, adsorption isotherms were generated for a suite of polycyclic aromatic hydrocarbons (PAHs) on multiwalled carbon nanotubes (MWCNTs) and exfoliated graphene (GN) in conjunction with determining the bioavailability of the adsorbed PAHs to Pimphales promelas using bile analysis via fluorescence spectroscopy. Although it appeared that GN adsorbed PAHs indiscriminately compared to MWCNTs, the subsequent bioavailability of GN-adsorbed PAHs was more sensitive to PAH morphology than MWCNTs. GN was effective at reducing bioavailability of linear PAHs by ∼70%, but had little impact on angular PAHs. MWCNTs were sensitive to molecular size, where bioavailability of two-ringed naphthalene was reduced by ∼80%, while bioavailability of the larger PAHs was reduced by less than 50%. Furthermore, the reduction in bioavailability of CNM-adsorbed PAHs was negatively correlated with the amount of CNM surface area covered by the adsorbed-PAHs. This study shows that the variability in bioavailability of CNM-adsorbed PAHs is largely driven by PAH size, configuration and surface area coverage.
Collapse
Affiliation(s)
- Erica N Linard
- Institute of Environmental Toxicology, Clemson University , Pendleton, South Carolina 29670, United States
- Interdisciplinary Graduate Program in Environmental Toxicology, Clemson University , Clemson, South Carolina 29634, United States
| | - Onur G Apul
- School of Sustainable Engineering and the Built Environment, Arizona State University , Tempe, Arizona 85287-9309, United States
- Department of Civil and Environmental Engineering, University of Massachusetts Lowell , Lowell Massachusetts 01854, United States
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Sciences, Clemson University , Clemson, South Carolina 29634, United States
| | - Peter van den Hurk
- Institute of Environmental Toxicology, Clemson University , Pendleton, South Carolina 29670, United States
- Department of Biological Sciences, Clemson University , Clemson, South Carolina 29634, United States
| | - Stephen J Klaine
- Institute of Environmental Toxicology, Clemson University , Pendleton, South Carolina 29670, United States
| |
Collapse
|
19
|
Attractive force-driven superhardening of graphene membranes as a pin-point breaking of continuum mechanics. Sci Rep 2017; 7:46083. [PMID: 28417957 PMCID: PMC5394694 DOI: 10.1038/srep46083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/10/2017] [Indexed: 11/08/2022] Open
Abstract
Bending at the nanometre scale can substantially modify the mechanical, chemical and electronic properties of graphene membranes. The subsequent response of chemical bonds leads to deviations from plate idealisation in continuum mechanics. However, those phenomena have thus far been investigated exclusively by measuring the electronic properties of graphene deformed by compressing and stretching with local-probe techniques. Here, we report that the interatomic-attractive forces applied on the convexly-curved graphene by the probe tip give rise to a pin-point breaking of the plate idealisation in the continuum mechanics, facilitating atomically-localised enhancements in its chemical reactivity and mechanical strength. Thorough characterisations were conducted by atomic force microscopy and force field spectroscopy on hollow nanotubes, rolled-up graphene, with different diameters. Their topmost parts supplied well-defined curvatures of the convex graphene. We found that a significant enhancement in the out-of-plane Young's modulus from 13 to 163 GPa, "superhardening", was realised with the nonlinear transition of bond configurations. Our findings provide a fundamental understanding of the relationships between the structure of atomistic membranes and the dynamic behaviour of approaching exterior atoms or molecules and their subsequent interplay with chemical and mechanical properties. Thus, these results encourage the application of such membranes in functionally-controllable materials or devices.
Collapse
|
20
|
|
21
|
Koleilat GI, Vosgueritchian M, Lei T, Zhou Y, Lin DW, Lissel F, Lin P, To JWF, Xie T, England K, Zhang Y, Bao Z. Surpassing the Exciton Diffusion Limit in Single-Walled Carbon Nanotube Sensitized Solar Cells. ACS NANO 2016; 10:11258-11265. [PMID: 28024326 DOI: 10.1021/acsnano.6b06358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Semiconducting single-walled carbon nanotube (s-SWNT) light sensitized devices, such as infrared photodetectors and solar cells, have recently been widely reported. Despite their excellent individual electrical properties, efficient carrier transport from one carbon nanotube to another remains a fundamental challenge. Specifically, photovoltaic devices with active layers made from s-SWNTs have suffered from low efficiencies caused by three main challenges: the overwhelming presence of high-bandgap polymers in the films, the weak bandgap offset between the LUMO of the s-SWNTs and the acceptor C60, and the limited exciton diffusion length from one SWNT to another of around 5 nm that limits the carrier extraction efficiency. Herein, we employ a combination of processing and device architecture design strategies to address each of these transport challenges and fabricate photovoltaic devices with s-SWNT films well beyond the exciton diffusion limit of 5 nm. While our solution processing method minimizes the presence of undesired polymers in our active films, our interfacial designs led to a significant increase in current generation with the addition of a highly doped C60 layer (n-doped C60), resulting in increased carrier separation efficiency from the s-SWNTs films. We create a dense interconnected nanoporous mesh of s-SWNTs using solution shearing and infiltrate it with the acceptor C60. Thus, our final engineered bulk heterojunction allows carriers from deep within to be extracted by the C60 registering a 10-fold improvement in performance from our preliminary structures.
Collapse
Affiliation(s)
- Ghada I Koleilat
- Department of Chemical Engineering, Stanford University , Stanford, California 94305, United States
| | - Michael Vosgueritchian
- Department of Chemical Engineering, Stanford University , Stanford, California 94305, United States
| | - Ting Lei
- Department of Chemical Engineering, Stanford University , Stanford, California 94305, United States
| | - Yan Zhou
- Department of Chemical Engineering, Stanford University , Stanford, California 94305, United States
| | - Debora W Lin
- Department of Chemical Engineering, Stanford University , Stanford, California 94305, United States
| | - Franziska Lissel
- Department of Chemical Engineering, Stanford University , Stanford, California 94305, United States
| | - Pei Lin
- School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, People's Republic of China
| | - John W F To
- Department of Chemical Engineering, Stanford University , Stanford, California 94305, United States
| | - Tian Xie
- Department of Chemical Engineering, Stanford University , Stanford, California 94305, United States
| | - Kemar England
- Department of Chemical Engineering, Stanford University , Stanford, California 94305, United States
| | - Yue Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, People's Republic of China
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
22
|
Contreras ML, Villarroel I, Rozas R. Hydrogen physisorption energies for bumpy, saturated, nitrogen-doped single-walled carbon nanotubes. Struct Chem 2016. [DOI: 10.1007/s11224-016-0767-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Zhu X, Sollogoub M, Zhang Y. Biological applications of hydrophilic C60 derivatives (hC60s)- a structural perspective. Eur J Med Chem 2016; 115:438-52. [PMID: 27049677 DOI: 10.1016/j.ejmech.2016.03.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 12/25/2022]
Abstract
Reactive oxygen species (ROS) generation and radical scavenging are dual properties of hydrophilic C60 derivatives (hC60s). hC60s eliminate radicals in dark, while they produce reactive oxygen species (ROS) in the presence of irradiation and oxygen. Compared to the pristine C60 suspension, the aqueous solution of hC60s is easier to handle in vivo. hC60s are diverse and could be placed into two general categories: covalently modified C60 derivatives and pristine C60 solubilized non-covalently by macromolecules. In order to present in detail, the above categories are broken down into 8 parts: C60(OH)n, C60 with carboxylic acid, C60 with quaternary ammonium salts, C60 with peptide, C60 containing sugar, C60 modified covalently or non-covalently solubilized by cyclodextrins (CDs), pristine C60 delivered by liposomes, functionalized C60-polymer and pristine C60 solubilized by polymer. Each hC60 shows the propensity to be ROS producer or radical scavenger. This preference is dependent on hC60s structures. For example, major application of C60(OH)n is radical scavenger, while pristine C60/γ-CD complex usually serves as ROS producer. In addition, the electron acceptability and innate hydrophobic surface confer hC60s with O2 uptake inhibition, HIV inhibition and membrane permeability. In this review, we summarize the preparation methods and biological applications of hC60s according to the structures.
Collapse
Affiliation(s)
- Xiaolei Zhu
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire (UMR 8232), 4 Place Jussieu, 75005 Paris, France
| | - Matthieu Sollogoub
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire (UMR 8232), 4 Place Jussieu, 75005 Paris, France
| | - Yongmin Zhang
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire (UMR 8232), 4 Place Jussieu, 75005 Paris, France; Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan 430056, China.
| |
Collapse
|
24
|
Sundholm D, Wirz LN, Schwerdtfeger P. Novel hollow all-carbon structures. NANOSCALE 2015; 7:15886-15894. [PMID: 26361224 DOI: 10.1039/c5nr04370k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A new family of cavernous all-carbon structures is proposed. These molecular cage structures are constructed by edge subdivisions and leapfrog transformations from cubic polyhedra or their duals. The obtained structures were then optimized at the density functional level. These hollow carbon structures represent a new class of carbon allotropes which could lead to many interesting applications.
Collapse
Affiliation(s)
- Dage Sundholm
- University of Helsinki, Department of Chemistry, P.O. Box 55 (A.I. Virtanens plats 1), FIN-00014 University of Helsinki, Finland.
| | | | | |
Collapse
|
25
|
Zhou M, Guo S. Electrocatalytic Interface Based on Novel Carbon Nanomaterials for Advanced Electrochemical Sensors. ChemCatChem 2015. [DOI: 10.1002/cctc.201500198] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Törpe A, Belton DJ. Improved spectrophotometric analysis of fullerenes C60 and C70 in high-solubility organic solvents. ANAL SCI 2015; 31:125-30. [PMID: 25746811 DOI: 10.2116/analsci.31.125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fullerenes are among a number of recently discovered carbon allotropes that exhibit unique and versatile properties. The analysis of these materials is of great importance and interest. We present previously unreported spectroscopic data for C60 and C70 fullerenes in high-solubility solvents, including error bounds, so as to allow reliable colorimetric analysis of these materials. The Beer-Lambert-Bouguer law is found to be valid at all wavelengths. The measured data were highly reproducible, and yielded high-precision molar absorbance coefficients for C60 and C70 in o-xylene and o-dichlorobenzene, which both exhibit a high solubility for these fullerenes, and offer the prospect of improved extraction efficiency. A photometric method for a C60/C70 mixture analysis was validated with standard mixtures, and subsequently improved for real samples by correcting for light scattering, using a power-law fit. The method was successfully applied to the analysis of C60/C70 mixtures extracted from fullerene soot.
Collapse
|
27
|
Moradi M, Aghakhani A, Eshraghi MJ. Dispersion-corrected DFT study on the carbon monoxide sensing by B2C nanotubes: effects of dopant and interferences. Struct Chem 2015. [DOI: 10.1007/s11224-015-0582-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Bruce MI, Cole ML, Ellis BG, Gaudio M, Nicholson BK, Parker CR, Skelton BW, White AH. The series of carbon-chain complexes {Ru(dppe)Cp∗}2{μ-(C C) } (x= 4–8, 11): Synthesis, structures, properties and some reactions. Polyhedron 2015. [DOI: 10.1016/j.poly.2014.04.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Umadevi D, Narahari Sastry G. Graphane versus graphene: a computational investigation of the interaction of nucleobases, aminoacids, heterocycles, small molecules (CO2, H2O, NH3, CH4, H2), metal ions and onium ions. Phys Chem Chem Phys 2015; 17:30260-9. [DOI: 10.1039/c5cp05094d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We compared the binding affinity of graphane and graphene with various molecules and ions.
Collapse
Affiliation(s)
- Deivasigamani Umadevi
- Centre for Molecular Modeling
- CSIR – Indian Institute of Chemical Technology
- Hyderabad - 500 607
- India
| | - G. Narahari Sastry
- Centre for Molecular Modeling
- CSIR – Indian Institute of Chemical Technology
- Hyderabad - 500 607
- India
| |
Collapse
|
30
|
How structural parameters affect the reactivity of saturated and non-saturated nitrogen-doped single-walled carbon nanotubes of different chiralities: a density functional theory approach. Struct Chem 2014. [DOI: 10.1007/s11224-014-0535-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Ghafouri R, Ektefa F. Functionalization of carbon ad-dimer defective single-walled carbon nanotubes through 1,3-dipolar cycloaddition: a DFT study. Struct Chem 2014. [DOI: 10.1007/s11224-014-0507-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Andreev YG, Panchmatia PM, Liu Z, Parker SC, Islam MS, Bruce PG. The Shape of TiO2-B Nanoparticles. J Am Chem Soc 2014; 136:6306-12. [DOI: 10.1021/ja412387c] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yuri G. Andreev
- School
of Chemistry, University of St Andrews, St Andrews KY16 9ST, U.K
| | - Pooja M. Panchmatia
- School
of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, U.K
| | - Zheng Liu
- School
of Chemistry, University of St Andrews, St Andrews KY16 9ST, U.K
| | | | - M. Saiful Islam
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K
| | - Peter G. Bruce
- School
of Chemistry, University of St Andrews, St Andrews KY16 9ST, U.K
| |
Collapse
|
33
|
Gu J, Du Q, Han Y, He Z, Li W, Zhang J. Nitrogen-doped carbon supports with terminated hydrogen and their effects on active gold species: a density functional study. Phys Chem Chem Phys 2014; 16:25498-507. [DOI: 10.1039/c4cp01793e] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The stabilities of gold species on N-doped graphene increase with its valence state. Au2Cl6 interacts preferentially with HCl on N-doped supports, enhancing the stability of Au catalysts for acetylene hydrochlorination.
Collapse
Affiliation(s)
- Junjie Gu
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072, P. R. China
| | - Qian Du
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072, P. R. China
| | - You Han
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072, P. R. China
| | - Zhenghua He
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072, P. R. China
| | - Wei Li
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072, P. R. China
| | - Jinli Zhang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072, P. R. China
| |
Collapse
|
34
|
Exploring surface reactivity of phosphorous-doped (6,0) and (4,4) BC3 nanotubes: a DFT study. J Mol Model 2013; 19:4877-86. [DOI: 10.1007/s00894-013-1978-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
|
35
|
Adsorption of isoniazid and pyrazinamide drug molecules onto nitrogen-doped single-wall carbon nanotubes: an ab initio study. Struct Chem 2013. [DOI: 10.1007/s11224-013-0327-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Zheng W, Ren S, Tian D, Hao C. The dynamic motion of a M (M = Ca, Yb) atom inside the C74 (D 3h) cage: a relativistic DFT study. J Mol Model 2013; 19:4521-7. [DOI: 10.1007/s00894-013-1958-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/22/2013] [Indexed: 11/24/2022]
|
37
|
|
38
|
Yang T, Zhao X, Nagase S. 1,3-Dipolar cycloadditions of Stone-Wales defective single-walled carbon nanotubes: A theoretical study. J Comput Chem 2013; 34:2223-32. [DOI: 10.1002/jcc.23368] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/17/2013] [Accepted: 05/19/2013] [Indexed: 01/08/2023]
Affiliation(s)
- Tao Yang
- Institute for Chemical Physics & Department of Chemistry; State Key Laboratory of Electrical Insulation and Power Equipment; Xi'an Jiaotong University; Xi'an; 710049; China
| | - Xiang Zhao
- Institute for Chemical Physics & Department of Chemistry; State Key Laboratory of Electrical Insulation and Power Equipment; Xi'an Jiaotong University; Xi'an; 710049; China
| | - Shigeru Nagase
- Fukui Institute for Fundamental Chemistry; Kyoto University; Kyoto; 606-8103; Japan
| |
Collapse
|
39
|
Farmanzadeh D, Ghazanfary S. DFT studies of functionalized zigzag and armchair boron nitride nanotubes as nanovectors for drug delivery of collagen amino acids. Struct Chem 2013. [DOI: 10.1007/s11224-013-0292-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
40
|
Umadevi D, Sastry GN. Impact of the Chirality and Curvature of Carbon Nanostructures on Their Interaction with Aromatics and Amino Acids. Chemphyschem 2013; 14:2570-8. [DOI: 10.1002/cphc.201300089] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Indexed: 11/07/2022]
|
41
|
A theoretical study on surface modification of a nanosized BC3 tube using C2H4 and its derivatives. Struct Chem 2013. [DOI: 10.1007/s11224-013-0276-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Affiliation(s)
- Martha Mojica
- Departamento de Química, División de Ciencias Básicas e Ingeniería; Universidad Autónoma Metropolitana-Iztapalapa; 09340 México D. F. México
| | - Julio A. Alonso
- Departamento de Física Teórica, Atómica y Óptica; Universidad de Valladolid; 47011 Valladolid Spain
| | - Francisco Méndez
- Departamento de Química, División de Ciencias Básicas e Ingeniería; Universidad Autónoma Metropolitana-Iztapalapa; 09340 México D. F. México
| |
Collapse
|
43
|
Electronic structure and surface reactivity of BC3 nanotubes from first-principle calculations. Struct Chem 2013. [DOI: 10.1007/s11224-013-0269-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Saha S, Dinadayalane TC, Leszczynska D, Leszczynski J. DFT-based reactivity study of (5,5) armchair boron nitride nanotube (BNNT). Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.01.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Abi T, Karmakar T, Taraphder S. Proton affinity of polar amino acid sidechain analogues anchored to the outer wall of single walled carbon nanotubes. COMPUT THEOR CHEM 2013. [DOI: 10.1016/j.comptc.2013.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
|
47
|
Esrafili MD. Influence of oxygen/sulfur-termination on electronic structure and surface electrostatic potential of (6,0) carbon nanotube: a DFT study. Struct Chem 2013. [DOI: 10.1007/s11224-012-0191-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Furlan S, Giannozzi P. The interactions of nitrogen dioxide with graphene-stabilized Rh clusters: a DFT study. Phys Chem Chem Phys 2013; 15:15896-904. [DOI: 10.1039/c3cp50696g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
49
|
Computational study on C−H…π interactions of acetylene with benzene, 1,3,5-trifluorobenzene and coronene. J Mol Model 2012; 19:2855-64. [DOI: 10.1007/s00894-012-1729-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 11/12/2012] [Indexed: 11/25/2022]
|
50
|
Gajewicz A, Rasulev B, Dinadayalane TC, Urbaszek P, Puzyn T, Leszczynska D, Leszczynski J. Advancing risk assessment of engineered nanomaterials: application of computational approaches. Adv Drug Deliv Rev 2012; 64:1663-93. [PMID: 22664229 DOI: 10.1016/j.addr.2012.05.014] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 05/20/2012] [Accepted: 05/25/2012] [Indexed: 02/06/2023]
Abstract
Nanotechnology that develops novel materials at size of 100nm or less has become one of the most promising areas of human endeavor. Because of their intrinsic properties, nanoparticles are commonly employed in electronics, photovoltaic, catalysis, environmental and space engineering, cosmetic industry and - finally - in medicine and pharmacy. In that sense, nanotechnology creates great opportunities for the progress of modern medicine. However, recent studies have shown evident toxicity of some nanoparticles to living organisms (toxicity), and their potentially negative impact on environmental ecosystems (ecotoxicity). Lack of available data and low adequacy of experimental protocols prevent comprehensive risk assessment. The purpose of this review is to present the current state of knowledge related to the risks of the engineered nanoparticles and to assess the potential of efficient expansion and development of new approaches, which are offered by application of theoretical and computational methods, applicable for evaluation of nanomaterials.
Collapse
Affiliation(s)
- Agnieszka Gajewicz
- Laboratory of Environmental Chemometrics, Institute for Environmental and Human Health Protection, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | | | | | | | | | | | | |
Collapse
|