1
|
Zhou J, Guo L, Ma T, Qiu T, Wang S, Tian S, Zhang L, Hu F, Li W, Liu Z, Hu Y, Wang T, Kong C, Yang J, Zhou J, Li H. N-acetylgalactosaminyltransferase-4 protects against hepatic ischemia/reperfusion injury by blocking apoptosis signal-regulating kinase 1 N-terminal dimerization. Hepatology 2022; 75:1446-1460. [PMID: 34662438 DOI: 10.1002/hep.32202] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND AIMS Ischemia-reperfusion (I/R) injury is an inevitable complication of liver transplantation (LT) and compromises its prognosis. Glycosyltransferases have been recognized as promising targets for disease therapy, but their roles remain open for study in hepatic I/R (HIR) injury. Here, we aim to demonstrate the exact function and molecular mechanism of a glycosyltransferase, N-acetylgalactosaminyltransferase-4 (GALNT4), in HIR injury. APPROACH AND RESULTS By an RNA-sequencing data-based correlation analysis, we found a close correlation between GALNT4 expression and HIR-related molecular events in a murine model. mRNA and protein expression of GALNT4 were markedly up-regulated upon reperfusion surgery in both clinical samples from subjects who underwent LT and in a mouse model. We found that GALNT4 deficiency significantly exacerbated I/R-induced liver damage, inflammation, and cell death, whereas GALNT4 overexpression led to the opposite phenotypes. Our in-depth mechanistic exploration clarified that GALNT4 directly binds to apoptosis signal-regulating kinase 1 (ASK1) to inhibit its N-terminal dimerization and subsequent phosphorylation, leading to a robust inactivation of downstream c-Jun N-terminal kinase (JNK)/p38 and NF-κB signaling. Intriguingly, the inhibitory capacity of GALNT4 on ASK1 activation is independent of its glycosyltransferase activity. CONCLUSIONS GALNT4 represents a promising therapeutic target for liver I/R injury and improves liver surgery prognosis by inactivating the ASK1-JNK/p38 signaling pathway.
Collapse
Affiliation(s)
- Jiangqiao Zhou
- Department of Organ TransplantationRenmin HospitalSchool of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Lina Guo
- Department of Organ TransplantationRenmin HospitalSchool of Basic Medical SciencesWuhan UniversityWuhanChina
- Institute of Model AnimalWuhan UniversityWuhanChina
| | - Tengfei Ma
- Institute of Model AnimalWuhan UniversityWuhanChina
- Department of NeurologyHuanggang Central HospitalHuanggangChina
- Huanggang Institute of Translational MedicineHuanggangChina
| | - Tao Qiu
- Department of Organ TransplantationRenmin HospitalSchool of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Sichen Wang
- Department of Organ TransplantationRenmin HospitalSchool of Basic Medical SciencesWuhan UniversityWuhanChina
- Institute of Model AnimalWuhan UniversityWuhanChina
| | - Song Tian
- Institute of Model AnimalWuhan UniversityWuhanChina
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Li Zhang
- Institute of Model AnimalWuhan UniversityWuhanChina
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Fengjiao Hu
- Institute of Model AnimalWuhan UniversityWuhanChina
- Medical Science Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Wei Li
- Institute of Model AnimalWuhan UniversityWuhanChina
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhen Liu
- Institute of Model AnimalWuhan UniversityWuhanChina
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yufeng Hu
- Medical Science Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Tianyu Wang
- Department of Organ TransplantationRenmin HospitalSchool of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Chenyang Kong
- Department of Organ TransplantationRenmin HospitalSchool of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Juan Yang
- Institute of Model AnimalWuhan UniversityWuhanChina
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Junjie Zhou
- Institute of Model AnimalWuhan UniversityWuhanChina
- Medical Science Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Hongliang Li
- Department of Organ TransplantationRenmin HospitalSchool of Basic Medical SciencesWuhan UniversityWuhanChina
- Institute of Model AnimalWuhan UniversityWuhanChina
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Medical Science Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
2
|
Ye Z, Guo H, Wang L, Li Y, Xu M, Zhao X, Song X, Chen Z, Huang R. GALNT4 primes monocytes adhesion and transmigration by regulating O-Glycosylation of PSGL-1 in atherosclerosis. J Mol Cell Cardiol 2022; 165:54-63. [PMID: 34974060 DOI: 10.1016/j.yjmcc.2021.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/18/2021] [Accepted: 12/24/2021] [Indexed: 12/31/2022]
Abstract
Atherosclerosis is a major underlying cause of cardiovascular disease. Genome wide association studies have predicted that GalNAc-T4 (GALNT4), which responsible for initiating step of mucin-type O-glycosylation, plays a causal role in the susceptibility to cardiovascular diseases, whereas the precise mechanism remains obscure. Thus, we sought to determine the role and mechanism of GALNT4 in atherosclerosis. Firstly, we found the expression of GALNT4 and protein O-glycosylation were both increased in plaque as atherosclerosis progressed in ApoE-/- mice by immunohistochemistry. And the expression of GALNT4 was also increased in human monocytes treated with ACS (acute coronary syndrome) sera and subjected to LPS and ox-LDL in vitro. Moreover, silencing expression of GALNT4 by shRNA lentivirus alleviated atherosclerotic plaque formation and monocyte/macrophage infiltration in ApoE-/- mice. Functional investigations demonstrate that GALNT4 knockdown inhibited P-selectin-induced activation of β2 integrin on the surface of monocytes, decreased monocytes adhesion under flow condition with P-selectin stimulation, as well as suppressed monocytes transmigration triggered by monocyte chemotactic protein- 1(MCP-1). In contrast, GALNT4 overexpression enhanced monocytes adhesion and transmigration. Furthermore, Vicia Villosa Lectin (VVL) pull down and PSGL-1 immunoprecipitation assays showed that GALNT4 overexpression increased O-Glycosylation of PSGL-1 and P-selectin induce phosphorylation of Akt/mTOR and IκBα/NFκB on monocytes. Conversely, knockdown of GALNT4 decreased VVL binding and attenuated the activation of Akt/mTOR and IκBα/NFκB. Additionally, mTOR inhibitor rapamycin blocked these effects of GALNT4 overexpression on monocytes. Collectively, GALNT4 catalyzed PSGL-1 O-glycosylation that involved in P-selectin induced monocytes adhesion and transmigration via Akt/mTOR and NFκB pathway. Thus, GALNT4 may be a potential therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Zhishuai Ye
- Division of Cardiovascular Diseases, Beijing Friendship Hospital, Capital Medical University, Yong'an Road, Beijing 100053, China; Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Zhongshan Road, Dalian 116011, China
| | - Hongzhou Guo
- Division of Cardiovascular Diseases, Beijing Friendship Hospital, Capital Medical University, Yong'an Road, Beijing 100053, China
| | - Liping Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dagong Road, Panjin 124221, China
| | - Yan Li
- Department of Anatomy and Physiolgy, College of Basic Medical Sciences, Shanghai Jiao Tong University, No.280 Chongqing, South Road, Shanghai 200025, China
| | - Mingyue Xu
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Zhongshan Road, Dalian 116011, China
| | - Xin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Anzhen Road, Beijing 100029, China
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Anzhen Road, Beijing 100029, China
| | - Zhaoyang Chen
- Cardiology department, Union Hospital, Fujian Medical University, 29 Xin-Quan Road, Fuzhou 350001, China.
| | - Rongchong Huang
- Division of Cardiovascular Diseases, Beijing Friendship Hospital, Capital Medical University, Yong'an Road, Beijing 100053, China; Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Zhongshan Road, Dalian 116011, China.
| |
Collapse
|
3
|
Kato K, Hansen L, Clausen H. Polypeptide N-acetylgalactosaminyltransferase-Associated Phenotypes in Mammals. Molecules 2021; 26:5504. [PMID: 34576978 PMCID: PMC8472655 DOI: 10.3390/molecules26185504] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 01/31/2023] Open
Abstract
Mucin-type O-glycosylation involves the attachment of glycans to an initial O-linked N-acetylgalactosamine (GalNAc) on serine and threonine residues on proteins. This process in mammals is initiated and regulated by a large family of 20 UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferases (GalNAc-Ts) (EC 2.4.1.41). The enzymes are encoded by a large gene family (GALNTs). Two of these genes, GALNT2 and GALNT3, are known as monogenic autosomal recessive inherited disease genes with well characterized phenotypes, whereas a broad spectrum of phenotypes is associated with the remaining 18 genes. Until recently, the overlapping functionality of the 20 members of the enzyme family has hindered characterizing the specific biological roles of individual enzymes. However, recent evidence suggests that these enzymes do not have full functional redundancy and may serve specific purposes that are found in the different phenotypes described. Here, we summarize the current knowledge of GALNT and associated phenotypes.
Collapse
Affiliation(s)
- Kentaro Kato
- Department of Eco-Epidemiology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Lars Hansen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Mærsk Building, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark;
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Mærsk Building, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark;
| |
Collapse
|
4
|
Wandall HH, Nielsen MAI, King-Smith S, de Haan N, Bagdonaite I. Global functions of O-glycosylation: promises and challenges in O-glycobiology. FEBS J 2021; 288:7183-7212. [PMID: 34346177 DOI: 10.1111/febs.16148] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022]
Abstract
Mucin type O-glycosylation is one of the most diverse types of glycosylation, playing essential roles in tissue development and homeostasis. In complex organisms, O-GalNAc glycans comprise a substantial proportion of the glycocalyx, with defined functions in hemostatic, gastrointestinal, and respiratory systems. Furthermore, O-GalNAc glycans are important players in host-microbe interactions, and changes in O-glycan composition are associated with certain diseases and metabolic conditions, which in some instances can be used for diagnosis or therapeutic intervention. Breakthroughs in O-glycobiology have gone hand in hand with the development of new technologies, such as advancements in mass spectrometry, as well as facilitation of genetic engineering in mammalian cell lines. High-throughput O-glycoproteomics have enabled us to draw a comprehensive map of O-glycosylation, and mining this information has supported the definition and confirmation of functions related to site-specific O-glycans. This includes protection from proteolytic cleavage, as well as modulation of binding affinity or receptor function. Yet, there is still much to discover, and among the important next challenges will be to define the context-dependent functions of O-glycans in different stages of cellular differentiation, cellular metabolism, host-microbiome interactions, and in disease. In this review, we present the achievements and the promises in O-GalNAc glycobiology driven by technological advances in analytical methods, genetic engineering, and systems biology.
Collapse
Affiliation(s)
- Hans H Wandall
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Mathias A I Nielsen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Sarah King-Smith
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Noortje de Haan
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Ieva Bagdonaite
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Joshi H, Vastrad B, Joshi N, Vastrad C, Tengli A, Kotturshetti I. Identification of Key Pathways and Genes in Obesity Using Bioinformatics Analysis and Molecular Docking Studies. Front Endocrinol (Lausanne) 2021; 12:628907. [PMID: 34248836 PMCID: PMC8264660 DOI: 10.3389/fendo.2021.628907] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/19/2021] [Indexed: 01/01/2023] Open
Abstract
Obesity is an excess accumulation of body fat. Its progression rate has remained high in recent years. Therefore, the aim of this study was to diagnose important differentially expressed genes (DEGs) associated in its development, which may be used as novel biomarkers or potential therapeutic targets for obesity. The gene expression profile of E-MTAB-6728 was downloaded from the database. After screening DEGs in each ArrayExpress dataset, we further used the robust rank aggregation method to diagnose 876 significant DEGs including 438 up regulated and 438 down regulated genes. Functional enrichment analysis was performed. These DEGs were shown to be significantly enriched in different obesity related pathways and GO functions. Then protein-protein interaction network, target genes - miRNA regulatory network and target genes - TF regulatory network were constructed and analyzed. The module analysis was performed based on the whole PPI network. We finally filtered out STAT3, CORO1C, SERPINH1, MVP, ITGB5, PCM1, SIRT1, EEF1G, PTEN and RPS2 hub genes. Hub genes were validated by ICH analysis, receiver operating curve (ROC) analysis and RT-PCR. Finally a molecular docking study was performed to find small drug molecules. The robust DEGs linked with the development of obesity were screened through the expression profile, and integrated bioinformatics analysis was conducted. Our study provides reliable molecular biomarkers for screening and diagnosis, prognosis as well as novel therapeutic targets for obesity.
Collapse
Affiliation(s)
- Harish Joshi
- Department of Endocrinology, Endocrine and Diabetes Care Center, Hubbali, India
| | - Basavaraj Vastrad
- Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, India
| | - Nidhi Joshi
- Department of Medicine, Dr. D. Y. Patil Medical College, Kolhapur, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, India
- *Correspondence: Chanabasayya Vastrad,
| | - Anandkumar Tengli
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru and JSS Academy of Higher Education & Research, Mysuru, India
| | - Iranna Kotturshetti
- Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, India
| |
Collapse
|
6
|
Mucin-Type O-GalNAc Glycosylation in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:25-60. [PMID: 34495529 DOI: 10.1007/978-3-030-70115-4_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mucin-type GalNAc O-glycosylation is one of the most abundant and unique post-translational modifications. The combination of proteome-wide mapping of GalNAc O-glycosylation sites and genetic studies with knockout animals and genome-wide analyses in humans have been instrumental in our understanding of GalNAc O-glycosylation. Combined, such studies have revealed well-defined functions of O-glycans at single sites in proteins, including the regulation of pro-protein processing and proteolytic cleavage, as well as modulation of receptor functions and ligand binding. In addition to isolated O-glycans, multiple clustered O-glycans have an important function in mammalian biology by providing structural support and stability of mucins essential for protecting our inner epithelial surfaces, especially in the airways and gastrointestinal tract. Here the many O-glycans also provide binding sites for both endogenous and pathogen-derived carbohydrate-binding proteins regulating critical developmental programs and helping maintain epithelial homeostasis with commensal organisms. Finally, O-glycan changes have been identified in several diseases, most notably in cancer and inflammation, where the disease-specific changes can be used for glycan-targeted therapies. This chapter will review the biosynthesis, the biology, and the translational perspectives of GalNAc O-glycans.
Collapse
|
7
|
Bagdonaite I, Pallesen EM, Ye Z, Vakhrushev SY, Marinova IN, Nielsen MI, Kramer SH, Pedersen SF, Joshi HJ, Bennett EP, Dabelsteen S, Wandall HH. O-glycan initiation directs distinct biological pathways and controls epithelial differentiation. EMBO Rep 2020; 21:e48885. [PMID: 32329196 PMCID: PMC7271655 DOI: 10.15252/embr.201948885] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 03/03/2020] [Accepted: 03/16/2020] [Indexed: 12/17/2022] Open
Abstract
Post-translational modifications (PTMs) greatly expand the function and potential for regulation of protein activity, and O-glycosylation is among the most abundant and diverse PTMs. Initiation of O-GalNAc glycosylation is regulated by 20 distinct GalNAc-transferases (GalNAc-Ts), and deficiencies in individual GalNAc-Ts are associated with human disease, causing subtle but distinct phenotypes in model organisms. Here, we generate a set of isogenic keratinocyte cell lines lacking either of the three dominant and differentially expressed GalNAc-Ts. Through the ability of keratinocytes to form epithelia, we investigate the phenotypic consequences of the loss of individual GalNAc-Ts. Moreover, we probe the cellular responses through global transcriptomic, differential glycoproteomic, and differential phosphoproteomic analyses. We demonstrate that loss of individual GalNAc-T isoforms causes distinct epithelial phenotypes through their effect on specific biological pathways; GalNAc-T1 targets are associated with components of the endomembrane system, GalNAc-T2 targets with cell-ECM adhesion, and GalNAc-T3 targets with epithelial differentiation. Thus, GalNAc-T isoforms serve specific roles during human epithelial tissue formation.
Collapse
Affiliation(s)
- Ieva Bagdonaite
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Emil Mh Pallesen
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Zilu Ye
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Irina N Marinova
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mathias I Nielsen
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Signe H Kramer
- Cell Biology and Physiology, Department of Science, University of Copenhagen, Copenhagen, Denmark
| | - Stine F Pedersen
- Cell Biology and Physiology, Department of Science, University of Copenhagen, Copenhagen, Denmark
| | - Hiren J Joshi
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Eric P Bennett
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,School of Dentistry, University of Copenhagen, Copenhagen, Denmark
| | - Sally Dabelsteen
- School of Dentistry, University of Copenhagen, Copenhagen, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Lu S, Zhong J, Huang K, Zhou H. Association of IL-10-1082A/G polymorphism with cardiovascular disease risk: Evidence from a case-control study to an updated meta-analysis. Mol Genet Genomic Med 2019; 7:e888. [PMID: 31571432 PMCID: PMC6825845 DOI: 10.1002/mgg3.888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 06/19/2019] [Accepted: 07/01/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Previous studies have generated controversial results about the association of interleukin 10 (IL-10) gene polymorphisms (-1082G/A) in the progression of cardiovascular disease (CVD). Therefore, this study processed a systemic meta-analysis to verify this association. METHODS The publication studies on the IL-10 (-1082G/A) polymorphism and CVDs risk were obtained by searching PubMed and Embase databases. We analyzed the genotype data for meta-analysis. The results were evaluated by odds ratios (ORs) and 95% confidence intervals (CIs). Meanwhile, our meta-analysis was also performed sensitivity analyses, heterogeneity test, and identification of publication bias. RESULTS The present meta-analysis suggested that the risk with allele G is lower than with allele A for CVD. The G allele of IL-10 (-1082) could increase the risk of CVDs in the 31 case-control studies for all genetic models. (OR = 1.10, 95% CI: 1.04-1.15 for the allele model A vs. G; OR = 0.87, 95% CI: 0.72-1.04 for the dominant model GG+AG vs. AA; OR = 1.03, 95% CI: 1.02-1.05 for the recessive model GG vs. AG + AA; OR = 1.06, 95% CI = 1.03-1.10 for the homozygote comparison model GG vs. AA; and OR = 0.88, 95% CI = 0.73-1.06 for the heterozygote comparison model AG vs. AA). CONCLUSIONS In genetic models, the association between the IL-10 (-1082G/A) polymorphism and CVDs risk was significant. This meta-analysis proposes that the IL-10 (-1082G/A) polymorphism may serve as a risk factor for CVDs.
Collapse
Affiliation(s)
- Shijuan Lu
- Department of Clinical PharmacologyXiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of PharmacogeneticsChangshaP.R. China
- Department of CardiologyHaikou People’s Hospital, Central South University Xiangya School of Medicine Affiliated Haikou HospitalHaikouP.R. China
| | - Jianghua Zhong
- Department of CardiologyHaikou People’s Hospital, Central South University Xiangya School of Medicine Affiliated Haikou HospitalHaikouP.R. China
| | - Kang Huang
- Department of CardiologyHaikou People’s Hospital, Central South University Xiangya School of Medicine Affiliated Haikou HospitalHaikouP.R. China
| | - Honghao Zhou
- Department of Clinical PharmacologyXiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of PharmacogeneticsChangshaP.R. China
| |
Collapse
|
9
|
van der Ende MY, Said MA, van Veldhuisen DJ, Verweij N, van der Harst P. Genome-wide studies of heart failure and endophenotypes: lessons learned and future directions. Cardiovasc Res 2019; 114:1209-1225. [PMID: 29912321 DOI: 10.1093/cvr/cvy083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 04/16/2018] [Indexed: 12/28/2022] Open
Abstract
Heart failure (HF) is a complex clinical syndrome resulting from structural or functional impairments of ventricular filling or ejection of blood. HF has a poor prognosis and the burden to society remains tremendous. The unfulfilled expectation is that expanding our knowledge of the genetic architecture of HF will help to quickly advance the quality of risk assessment, diagnoses, and treatment. To date, genome-wide association studies (GWAS) of HF have led to disappointing results with only limited progress in our understanding and tempering the earlier expectations. However, the analyses of traits closely related to HF (also called 'endophenotypes') have led to promising and novel findings. For example, GWAS of NT-proBNP levels not only identified variants in the NNPA-NPPB locus but also substantiated data suggesting that natriuretic peptides in itself are associated with a lower risk of hypertension and HF. Many other genetic associates currently await experimental follow-up in which genes are prioritized based on bioinformatic analyses and various model organisms are employed to obtain functional insights. Promising genes with identified function could later be used in personalized medicine. Also, targeting specific pathogenic gene mutations is promising to protect future generations from HF, such as recently done in human embryos carrying the cardiomyopathy-associated MYBPC3 mutation. This review discusses the current status of GWAS of HF and its endophenotypes. In addition, future directions such as functional follow-up and application of GWAS results are discussed.
Collapse
Affiliation(s)
- Maaike Yldau van der Ende
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, RB Groningen, The Netherlands
| | - Mir Abdullah Said
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, RB Groningen, The Netherlands
| | - Dirk Jan van Veldhuisen
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, RB Groningen, The Netherlands
| | - Niek Verweij
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, RB Groningen, The Netherlands
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, RB Groningen, The Netherlands
| |
Collapse
|
10
|
Badgett MJ, Boyes B, Orlando R. Predicting the Retention Behavior of Specific O-Linked Glycopeptides. J Biomol Tech 2017; 28:122-126. [PMID: 28785176 DOI: 10.7171/jbt.17-2803-003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
O-Linked glycosylation is a common post-translational modification that can alter the overall structure, polarity, and function of proteins. Reverse-phase (RP) chromatography is the most common chromatographic approach to analyze O-glycosylated peptides and their unmodified counterparts, even though this approach often does not provide adequate separation of these two species. Hydrophilic interaction liquid chromatography (HILIC) can be a solution to this problem, as the polar glycan interacts with the polar stationary phase and potentially offers the ability to resolve the peptide from its modified form(s). In this paper, HILIC is used to separate peptides with O-N-acetylgalactosamine (O-GalNAc), O-N-acetylglucosamine (O-GlcNAc), and O-fucose additions from their native forms, and coefficients representing the extent of hydrophilicity were derived using linear regression analysis as a means to predict the retention times of peptides with these modifications.
Collapse
Affiliation(s)
- Majors J Badgett
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA; and
| | - Barry Boyes
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA; and.,Advanced Materials Technology, Wilmington, Delaware 19810, USA
| | - Ron Orlando
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA; and
| |
Collapse
|
11
|
Guo L, Li D, Li M, Li L, Huang Y. Variant in GALNT3 Gene Linked with Reduced Coronary Artery Disease Risk in Chinese Population. DNA Cell Biol 2017; 36:529-534. [PMID: 28453302 DOI: 10.1089/dna.2017.3688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Our previous study found expression of GALNT3 gene was reduced in coronary artery disease (CAD) patients, and it contributed to endothelial injury by regulating apoptosis and matrix metalloproteinase (MMP) expression. GALNT3 gene may be a potential target for future therapeutic intervention of CAD. However, none reports linking the GALNT3 gene to susceptibility of CAD. This study investigated the variant associations of GALNT3 gene and CAD. Thirteen single nucleotide polymorphism (SNP) in and around the GALNT3 gene were tagged and analyzed in CAD patients (n = 1515) and control individuals (n = 5019), and the SNPs with CAD were tested with multiple logistic regression analysis in an additive genetic model (with one degree of freedom) after adjusting for age and sex. Expression of GALNT3 gene was detected by real-time PCR and Western blot. Luciferase reporter assays were used to detect the allele-specific effect of rs4621175 on transcriptional activity. Two GALNT3 markers, rs13427924 and rs4621175, were significantly associated with CAD (odds ratio [OR] = 0.87, p = 1.01 × 10-3 and OR = 0.75, p = 2.51 × 10-4, respectively), and the risk A allele of rs4621175 was associated with lower GALNT3 expression in both mRNA and protein level; also, A allele showed decreased reporter activity. In addition, we found the level of GALNT3 negatively correlated with MMP-2 gene expression. This study identified GALNT3 as a novel gene that rendered patients susceptible to CAD, and the A allele of a disease-associated variant rs4621175 linked reduced CAD risk through decreased GALNT3 expression. These results confirmed the role of GALNT3 gene in CAD and provided new insights into the genetic regulation of the GALNT3 gene with respect to the pathogenesis of CAD.
Collapse
Affiliation(s)
- Liwei Guo
- 1 Department of Forensic Medicine, Xinxiang Medical University , Xinxiang, China
| | - Duan Li
- 2 Department of Basic Medicine, Xinxiang Medical University , Xinxiang, China
| | - Mengting Li
- 3 State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing, China
| | - Lin Li
- 3 State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing, China
| | - Yanmei Huang
- 1 Department of Forensic Medicine, Xinxiang Medical University , Xinxiang, China
| |
Collapse
|
12
|
Johansson Å, Eriksson N, Lindholm D, Varenhorst C, James S, Syvänen AC, Axelsson T, Siegbahn A, Barratt BJ, Becker RC, Himmelmann A, Katus HA, Steg PG, Storey RF, Wallentin L. Genome-wide association and Mendelian randomization study of NT-proBNP in patients with acute coronary syndrome. Hum Mol Genet 2016; 25:1447-56. [PMID: 26908625 DOI: 10.1093/hmg/ddw012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/14/2016] [Indexed: 01/28/2023] Open
Abstract
N-terminal pro-B-type natriuretic peptide (NT-proBNP) is a strong predictor of mortality in coronary artery disease and is widely employed as a prognostic biomarker. However, a causal relationship between NT-proBNP and clinical endpoints has not been established. We have performed a genome-wide association and Mendelian randomization study of NT-proBNP. We used a discovery set of 3740 patients from the PLATelet inhibition and patient Outcomes (PLATO) trial, which enrolled 18 624 patients with acute coronary syndrome (ACS). A further set of 5492 patients, from the same trial, was used for replication. Genetic variants at two novel loci (SLC39A8 and POC1B/GALNT4) were associated with NT-proBNP levels and replicated together with the previously known NPPB locus. The most significant SNP (rs198389, pooled P = 1.07 × 10(-15)) in NPPB interrupts an E-box consensus motif in the gene promoter. The association in SLC39A8 is driven by a deleterious variant (rs13107325, pooled P = 5.99 × 10(-10)), whereas the most significant SNP in POC1B/GALNT4 (rs11105306, pooled P = 1.02 × 10(-16)) is intronic. The SLC39A8 SNP was associated with higher risk of cardiovascular (CV) death (HR = 1.39, 95% CI: 1.08-1.79, P = 0.0095), but the other loci were not associated with clinical endpoints. We have identified two novel loci to be associated with NT-proBNP in patients with ACS. Only the SLC39A8 variant, but not the NPPB variant, was associated with a clinical endpoint. Due to pleotropic effects of SLC39A8, these results do not suggest that NT-proBNP levels have a direct effect on mortality in ACS patients. PLATO Clinical Trial Registration: www.clinicaltrials.gov; NCT00391872.
Collapse
Affiliation(s)
- Åsa Johansson
- Uppsala Clinical Research Center and Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 752 37, Sweden,
| | | | - Daniel Lindholm
- Uppsala Clinical Research Center and Department of Medical Sciences, Cardiology
| | | | - Stefan James
- Uppsala Clinical Research Center and Department of Medical Sciences, Cardiology
| | | | - Tomas Axelsson
- Department of Medical Sciences, Molecular Medicine, Science for Life Laboratory and
| | - Agneta Siegbahn
- Uppsala Clinical Research Center and Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala 751 85, Sweden
| | | | - Richard C Becker
- Division of Cardiovascular Health and Disease, Heart, Lung and Vascular Institute, Academic Health Center, Cincinnati, OH 45267-0542, USA
| | | | - Hugo A Katus
- Medizinishe Klinik, Universitätsklinikum Heidelberg, Heidelberg 69120, Germany
| | - Philippe Gabriel Steg
- INSERM-Unité 1148, Paris 75019, France, Assistance Publique-Hôpitaux de Paris, Département Hospitalo-Universitaire FIRE, Hôpital Bichat, Paris 75018, France, Université Paris-Diderot, Sorbonne-Paris Cité, Paris 75013, France, NHLI Imperial College, ICMS, Royal Brompton Hospital, London SW3 6NP, UK and
| | - Robert F Storey
- Department of Cardiovascular Science, University of Sheffield, Sheffield S10 2RX, UK
| | - Lars Wallentin
- Uppsala Clinical Research Center and Department of Medical Sciences, Cardiology
| |
Collapse
|
13
|
Chia J, Goh G, Bard F. Short O-GalNAc glycans: regulation and role in tumor development and clinical perspectives. Biochim Biophys Acta Gen Subj 2016; 1860:1623-39. [PMID: 26968459 DOI: 10.1016/j.bbagen.2016.03.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/03/2016] [Accepted: 03/03/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND While the underlying causes of cancer are genetic modifications, changes in cellular states mediate cancer development. Tumor cells display markedly changed glycosylation states, of which the O-GalNAc glycans called the Tn and TF antigens are particularly common. How these antigens get over-expressed is not clear. The expression levels of glycosylation enzymes fail to explain it. SCOPE OF REVIEW We describe the regulation of O-GalNAc glycosylation initiation and extension with emphasis on the initiating enzymes ppGalNAcTs (GALNTs), and introduce the GALA pathway--a change in GALNTs compartmentation within the secretory pathway that regulates Tn levels. We discuss the roles of O-GalNAc glycans and GALNTs in tumorigenic processes and finally consider diagnostic and therapeutic perspectives. MAJOR CONCLUSIONS Contrary to a common hypothesis, short O-glycans in tumors are not the result of an incomplete glycosylation process but rather reveal the activation of regulatory pathways. Surprisingly, high Tn levels reveal a major shift in the O-glycoproteome rather than a shortening of O-glycans. These changes are driven by membrane trafficking events. GENERAL SIGNIFICANCE Many attempts to use O-glycans for biomarker, antibody and therapeutic vaccine development have been made, but suffer limitations including poor sensitivity and/or specificity that may in part derive from lack of a mechanistic understanding. Deciphering how short O-GalNAc glycans are regulated would open new perspectives to exploit this biology for therapeutic usage. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Joanne Chia
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Germaine Goh
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Frederic Bard
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore; Department of Biochemistry, National University of Singapore, 21 Lower Kent Ridge, Road, 119077, Singapore.
| |
Collapse
|
14
|
Swann J, Murry J, Young JAT. Cytosolic sulfotransferase 1A1 regulates HIV-1 minus-strand DNA elongation in primary human monocyte-derived macrophages. Virol J 2016; 13:30. [PMID: 26906565 PMCID: PMC4765207 DOI: 10.1186/s12985-016-0491-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/19/2016] [Indexed: 11/23/2022] Open
Abstract
Background The cellular sulfonation pathway modulates key steps of virus replication. This pathway comprises two main families of sulfonate-conjugating enzymes: Golgi sulfotransferases, which sulfonate proteins, glycoproteins, glycolipids and proteoglycans; and cytosolic sulfotransferases (SULTs), which sulfonate various small molecules including hormones, neurotransmitters, and xenobiotics. Sulfonation controls the functions of numerous cellular factors such as those involved in cell-cell interactions, cell signaling, and small molecule detoxification. We previously showed that the cellular sulfonation pathway regulates HIV-1 gene expression and reactivation from latency. Here we show that a specific cellular sulfotransferase can regulate HIV-1 replication in primary human monocyte-derived macrophages (MDMs) by yet another mechanism, namely reverse transcription. Methods MDMs were derived from monocytes isolated from donor peripheral blood mononuclear cells (PBMCs) obtained from the San Diego Blood Bank. After one week in vitro cell culture under macrophage-polarizing conditions, MDMs were transfected with sulfotranserase-specific or control siRNAs and infected with HIV-1 or SIV constructs expressing a luciferase reporter. Infection levels were subsequently monitored by luminescence. Western blotting was used to assay siRNA knockdown and viral protein levels, and qPCR was used to measure viral RNA and DNA products. Results We demonstrate that the cytosolic sulfotransferase SULT1A1 is highly expressed in primary human MDMs, and through siRNA knockdown experiments, we show that this enzyme promotes infection of MDMs by single cycle VSV-G pseudotyped human HIV-1 and simian immunodeficiency virus vectors and by replication-competent HIV-1. Quantitative PCR analysis revealed that SULT1A1 affects HIV-1 replication in MDMs by modulating the kinetics of minus-strand DNA elongation during reverse transcription. Conclusions These studies have identified SULT1A1 as a cellular regulator of HIV-1 reverse transcription in primary human MDMs. The normal substrates of this enzyme are small phenolic-like molecules, raising the possibility that one or more of these substrates may be involved. Targeting SULT1A1 and/or its substrate(s) may offer a novel host-directed strategy to improve HIV-1 therapeutics. Electronic supplementary material The online version of this article (doi:10.1186/s12985-016-0491-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Justine Swann
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA. .,University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Jeff Murry
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA. .,Gilead Sciences, 333 Lakeside Drive, Foster City, CA, 94401, USA.
| | - John A T Young
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA. .,Roche Innovation Center Basel, F.Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| |
Collapse
|
15
|
Guo L, Wang L, Li H, Yang X, Yang B, Li M, Huang J, Gu D. Down regulation of GALNT3 contributes to endothelial cell injury via activation of p38 MAPK signaling pathway. Atherosclerosis 2016; 245:94-100. [PMID: 26714046 DOI: 10.1016/j.atherosclerosis.2015.12.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/08/2015] [Accepted: 12/14/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The GALNT3 gene encodes polypeptide N-acetylgalactosaminyl transferase 3 (GalNAc-T3), a member of the GalNAc-Ts family that transfers the N-acetylgalactosamine to the hydroxyl group of serine and threonine residue in the first step of O-linked oligosaccharide biosynthesis. Emerging evidences have linked GalNAc-Ts family to coronary artery disease (CAD). However the effect of GALNT3 in CAD is unknown. The present study investigated the function and mechanisms of GALNT3 gene in endothelial injury. METHODS AND RESULTS The GALNT3 mRNA level was decreased by 48.2% in CAD patients (n = 58), compared with that of controls (n = 120). Expression of GALNT3 was also decreased in human umbilical vein endothelial cells (HUVECs) treated with CAD sera and subjected to hypoxia in vitro. Knockdown of GALNT3 promoted apoptosis and up-regulated the expression of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-14 (MMP-14). Conversely, overexpression of GALNT3 significantly inhibited HUVECs apoptosis and down-regulated the expression of MMP-2 and MMP-14 genes, in addition, overexpression of GALNT3 attenuated hypoxia-induced apoptosis and expression of MMP-2 and MMP-14. Finally, the ratio of cytosolic p-p38 MAPK/p38 MAPK expression was significantly increased with GALNT3 knockdown and lower with GALNT3 overexpression, while the p38 MAPK inhibitor SB203580 blocked the effects of GALNT3 knockdown. CONCLUSIONS Expression of GALNT3 was reduced in CAD patients, and down regulation of GALNT3 contributed to endothelial injury by promoting apoptosis and up-regulating the expression of MMP-2 and MMP-14 genes via p38 MAPK activation. GALNT3 may be a potential target for future therapeutic intervention for CAD.
Collapse
Affiliation(s)
- Liwei Guo
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Laiyuan Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Hongfan Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xueli Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengting Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianfeng Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dongfeng Gu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
16
|
Richardson K, Schnitzler GR, Lai CQ, Ordovas JM. Functional Genomics Analysis of Big Data Identifies Novel Peroxisome Proliferator-Activated Receptor γ Target Single Nucleotide Polymorphisms Showing Association With Cardiometabolic Outcomes. ACTA ACUST UNITED AC 2015; 8:842-51. [PMID: 26518621 DOI: 10.1161/circgenetics.115.001174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/22/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cardiovascular disease and type 2 diabetes mellitus represent overlapping diseases where a large portion of the variation attributable to genetics remains unexplained. An important player in their pathogenesis is peroxisome proliferator-activated receptor γ (PPARγ) that is involved in lipid and glucose metabolism and maintenance of metabolic homeostasis. We used a functional genomics methodology to interrogate human chromatin immunoprecipitation-sequencing, genome-wide association studies, and expression quantitative trait locus data to inform selection of candidate functional single nucleotide polymorphisms (SNPs) falling in PPARγ motifs. METHODS AND RESULTS We derived 27 328 chromatin immunoprecipitation-sequencing peaks for PPARγ in human adipocytes through meta-analysis of 3 data sets. The PPARγ consensus motif showed greatest enrichment and mapped to 8637 peaks. We identified 146 SNPs in these motifs. This number was significantly less than would be expected by chance, and Inference of Natural Selection from Interspersed Genomically coHerent elemenTs analysis indicated that these motifs are under weak negative selection. A screen of these SNPs against genome-wide association studies for cardiometabolic traits revealed significant enrichment with 16 SNPs. A screen against the MuTHER expression quantitative trait locus data revealed 8 of these were significantly associated with altered gene expression in human adipose, more than would be expected by chance. Several SNPs fall close, or are linked by expression quantitative trait locus to lipid-metabolism loci including CYP26A1. CONCLUSIONS We demonstrated the use of functional genomics to identify SNPs of potential function. Specifically, that SNPs within PPARγ motifs that bind PPARγ in adipocytes are significantly associated with cardiometabolic disease and with the regulation of transcription in adipose. This method may be used to uncover functional SNPs that do not reach significance thresholds in the agnostic approach of genome-wide association studies.
Collapse
Affiliation(s)
- Kris Richardson
- From the Nutrition and Genomics Laboratory, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, MA (K.R., C.-Q.L., J.M.O.); Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (G.R.S.); Department of Clinical Investigation, Centro Nacional Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.M.O.); and Department of Nutritional Genomics, Instituto Madrileno de Estudios Avanzados en Alimentacion, Madrid, Spain (J.M.O).
| | - Gavin R Schnitzler
- From the Nutrition and Genomics Laboratory, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, MA (K.R., C.-Q.L., J.M.O.); Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (G.R.S.); Department of Clinical Investigation, Centro Nacional Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.M.O.); and Department of Nutritional Genomics, Instituto Madrileno de Estudios Avanzados en Alimentacion, Madrid, Spain (J.M.O)
| | - Chao-Qiang Lai
- From the Nutrition and Genomics Laboratory, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, MA (K.R., C.-Q.L., J.M.O.); Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (G.R.S.); Department of Clinical Investigation, Centro Nacional Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.M.O.); and Department of Nutritional Genomics, Instituto Madrileno de Estudios Avanzados en Alimentacion, Madrid, Spain (J.M.O)
| | - Jose M Ordovas
- From the Nutrition and Genomics Laboratory, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, MA (K.R., C.-Q.L., J.M.O.); Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (G.R.S.); Department of Clinical Investigation, Centro Nacional Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.M.O.); and Department of Nutritional Genomics, Instituto Madrileno de Estudios Avanzados en Alimentacion, Madrid, Spain (J.M.O)
| |
Collapse
|
17
|
Takeuchi F, Isono M, Yamamoto K, Yokota M, Akiyama K, Katsuya T, Kim HS, Park JE, Jang Y, Lee JY, Lee JY, Kato N. Heterogeneous Effects of Association Between Blood Pressure Loci and Coronary Artery Disease in East Asian Individuals. Circ J 2015; 79:830-8. [DOI: 10.1253/circj.cj-14-0841] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine
| | - Masato Isono
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine
| | - Ken Yamamoto
- Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University
| | - Mitsuhiro Yokota
- Department of Genome Science, Aichi-Gakuin University, School of Dentistry
| | - Koichi Akiyama
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine
| | - Tomohiro Katsuya
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine
- Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine
| | - Hyo-Soo Kim
- Department of Internal Medicine, Cardiovascular Center, Seoul National University Hospital
| | | | - Yangsoo Jang
- Cardiology Division, Department of Internal Medicine, Cardiovascular Genome Center, Yonsei University College of Medicine,
| | - Ji-Young Lee
- Center for Genome Science, Korea National Institute of Health, KCDC
| | - Jong-Young Lee
- Center for Genome Science, Korea National Institute of Health, KCDC
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine
| | | |
Collapse
|
18
|
Liu Y, Liu W, Xu L, Liu H, Zhang W, Zhu Y, Xu J, Gu J. GALNT4 predicts clinical outcome in patients with clear cell renal cell carcinoma. J Urol 2014; 192:1534-41. [PMID: 24769034 DOI: 10.1016/j.juro.2014.04.084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2014] [Indexed: 12/21/2022]
Abstract
PURPOSE We investigated the clinical significance of GALNT4 expression in patients with clear cell renal cell carcinoma. MATERIALS AND METHODS Enrolled in this study were 104 patients treated with curative nephrectomy at Zhongshan Hospital, Shanghai during 2004. Of the cohort 23 patients died of disease, 33 experienced recurrence and 3 died of another cause. GALNT4 density was assessed by immunohistochemistry in patient specimens. Univariate and multivariate Cox models, and ROC analysis were used to analyze the impact of prognostic factors on overall and relapse-free survival. Kaplan-Meier analysis with the log rank test was done to compare clinical outcomes between subgroups. RESULTS Intratumor GALNT4 expression was significantly lower than peritumor expression. Low GALNT4 expression was associated with poor overall and relapse-free survival (p = 0.001 and 0.004, respectively). Intratumor GALNT4 expression, which negatively correlated with tumor size (p = 0.032), necrosis (p = 0.013) and TNM stage (p = 0.017), was an independent prognostic indicator for overall and relapse-free survival (HR 3.088, p = 0.020 and 2.173, p = 0.047, respectively). Extending the TNM staging system according to GALNT4 expression showed a better prognostic value for overall and relapse-free survival (AUC 0.786, p = 0.029 and 0.761, p = 0.040, respectively). CONCLUSIONS Intratumor GALNT4 expression is a potential independent prognostic factor for overall and relapse-free survival in patients with clear cell renal cell carcinoma. Further external validation and functional analysis should be performed to assess its potential prognostic and therapeutic value in patients with clear cell renal cell carcinoma.
Collapse
Affiliation(s)
- Yidong Liu
- Key Laboratory of Glycoconjugate Research, Ministry of Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Weisi Liu
- Key Laboratory of Glycoconjugate Research, Ministry of Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Le Xu
- Department of Urology, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Haiou Liu
- Key Laboratory of Glycoconjugate Research, Ministry of Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Weijuan Zhang
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Yu Zhu
- Department of Urology, Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Jiejie Xu
- Key Laboratory of Glycoconjugate Research, Ministry of Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China.
| | - Jianxin Gu
- Key Laboratory of Glycoconjugate Research, Ministry of Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
19
|
Ali Mohamoud HS, Manwar Hussain MR, El-Harouni AA, Shaik NA, Qasmi ZU, Merican AF, Baig M, Anwar Y, Asfour H, Bondagji N, Al-Aama JY. First comprehensive in silico analysis of the functional and structural consequences of SNPs in human GalNAc-T1 gene. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2014; 2014:904052. [PMID: 24723968 PMCID: PMC3960557 DOI: 10.1155/2014/904052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/12/2013] [Accepted: 11/17/2013] [Indexed: 02/03/2023]
Abstract
GalNAc-T1, a key candidate of GalNac-transferases genes family that is involved in mucin-type O-linked glycosylation pathway, is expressed in most biological tissues and cell types. Despite the reported association of GalNAc-T1 gene mutations with human disease susceptibility, the comprehensive computational analysis of coding, noncoding and regulatory SNPs, and their functional impacts on protein level, still remains unknown. Therefore, sequence- and structure-based computational tools were employed to screen the entire listed coding SNPs of GalNAc-T1 gene in order to identify and characterize them. Our concordant in silico analysis by SIFT, PolyPhen-2, PANTHER-cSNP, and SNPeffect tools, identified the potential nsSNPs (S143P, G258V, and Y414D variants) from 18 nsSNPs of GalNAc-T1. Additionally, 2 regulatory SNPs (rs72964406 and #x26; rs34304568) were also identified in GalNAc-T1 by using FastSNP tool. Using multiple computational approaches, we have systematically classified the functional mutations in regulatory and coding regions that can modify expression and function of GalNAc-T1 enzyme. These genetic variants can further assist in better understanding the wide range of disease susceptibility associated with the mucin-based cell signalling and pathogenic binding, and may help to develop novel therapeutic elements for associated diseases.
Collapse
Affiliation(s)
- Hussein Sheikh Ali Mohamoud
- Human Genetics Research Centre, Division of Biomedical Sciences (BMS), Saint George's University of London (SGUL), London, UK
- Princess Al-Jawhara Al-Ibrahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Ramzan Manwar Hussain
- Princess Al-Jawhara Al-Ibrahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ashraf A. El-Harouni
- Princess Al-Jawhara Al-Ibrahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noor Ahmad Shaik
- Princess Al-Jawhara Al-Ibrahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zaheer Ulhaq Qasmi
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Amir Feisal Merican
- Institute of Biological Sciences and Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare (CRYSTAL, UM), University of Malaya, Kuala Lumpur, Malaysia
| | - Mukhtiar Baig
- Faculty of Medicine, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Yasir Anwar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Asfour
- Princess Al-Jawhara Al-Ibrahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabeel Bondagji
- Princess Al-Jawhara Al-Ibrahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jumana Yousuf Al-Aama
- Princess Al-Jawhara Al-Ibrahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
20
|
Erbilgin A, Civelek M, Romanoski CE, Pan C, Hagopian R, Berliner JA, Lusis AJ. Identification of CAD candidate genes in GWAS loci and their expression in vascular cells. J Lipid Res 2013; 54:1894-905. [PMID: 23667179 PMCID: PMC3679391 DOI: 10.1194/jlr.m037085] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/19/2013] [Indexed: 11/20/2022] Open
Abstract
Recent genome-wide association studies (GWAS) have identified 35 loci that significantly associate with coronary artery disease (CAD) susceptibility. The majority of the genes represented in these loci have not previously been studied in the context of atherosclerosis. To characterize the roles of these candidate genes in the vessel wall, we determined their expression levels in endothelial, smooth muscle, and macrophage cells isolated from healthy, prelesioned, and lesioned mouse aortas. We also performed expression quantitative locus (eQTL) mapping of these genes in human endothelial cells under control and proatherogenic conditions. Of the 57 genes studied, 31 were differentially expressed in one or more cell types in disease state in mice, and the expression levels of 8 were significantly associated with the CAD SNPs in human cells, 7 of which were also differentially expressed in mice. By integrating human and mouse results, we predict that PPAP2B, GALNT4, MAPKAPK5, TCTN1, SRR, SNF8, and ICAM1 play a causal role in the susceptibility to atherosclerosis through a role in the vasculature. Additionally, we highlight the genetic complexity of a subset of CAD loci through the differential expression of multiple candidate genes per locus and the involvement of genes that lie outside linkage disequilibrium blocks.
Collapse
Affiliation(s)
- Ayca Erbilgin
- Departments of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Los Angeles, CA
| | - Mete Civelek
- Medicine, David Geffen School of Medicine, Los Angeles, CA
| | | | - Calvin Pan
- Medicine, David Geffen School of Medicine, Los Angeles, CA
| | - Raffi Hagopian
- Medicine, David Geffen School of Medicine, Los Angeles, CA
| | - Judith A. Berliner
- Pathology and Laboratory Medicine, David Geffen School of Medicine, Los Angeles, CA
| | - Aldons J. Lusis
- Departments of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Los Angeles, CA
- Medicine, David Geffen School of Medicine, Los Angeles, CA
- Human Genetics, and David Geffen School of Medicine, Los Angeles, CA
| |
Collapse
|
21
|
Abstract
Mucin-type O-glycosylation is an evolutionarily conserved protein modification present on membrane-bound and secreted proteins. Aberrations in O-glycosylation are responsible for certain human diseases and are associated with disease risk factors. Recent studies have demonstrated essential roles for mucin-type O-glycosylation in protein secretion, stability, processing, and function. Here, we summarize our current understanding of the diverse roles of mucin-type O-glycosylation during eukaryotic development. Appreciating how this conserved modification operates in developmental processes will provide insight into its roles in human disease and disease susceptibilities.
Collapse
Affiliation(s)
- Duy T Tran
- Developmental Glycobiology Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892-4370, USA
| | | |
Collapse
|
22
|
Schjoldager KTBG, Clausen H. Site-specific protein O-glycosylation modulates proprotein processing - deciphering specific functions of the large polypeptide GalNAc-transferase gene family. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1820:2079-94. [PMID: 23022508 DOI: 10.1016/j.bbagen.2012.09.014] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 09/17/2012] [Accepted: 09/19/2012] [Indexed: 01/18/2023]
Abstract
BACKGROUND Posttranslational modifications (PTMs) greatly expand the function and regulation of proteins, and glycosylation is the most abundant and diverse PTM. Of the many different types of protein glycosylation, one is quite unique; GalNAc-type (or mucin-type) O-glycosylation, where biosynthesis is initiated in the Golgi by up to twenty distinct UDP-N-acetyl-α-d-galactosamine:polypeptide N-acetylgalactosaminyltransferases (GalNAc-Ts). These GalNAc-Ts are differentially expressed in cells and have different (although partly overlapping) substrate specificities, which provide for both unique functions and considerable redundancy. Recently we have begun to uncover human diseases associated with deficiencies in GalNAc-T genes (GALNTs). Thus deficiencies in individual GALNTs produce cell and protein specific effects and subtle distinct phenotypes such as hyperphosphatemia with hyperostosis (GALNT3) and dysregulated lipid metabolism (GALNT2). These phenotypes appear to be caused by deficient site-specific O-glycosylation that co-regulates proprotein convertase (PC) processing of FGF23 and ANGPTL3, respectively. SCOPE OF REVIEW Here we summarize recent progress in uncovering the interplay between human O-glycosylation and protease regulated processing and describes other important functions of site-specific O-glycosylation in health and disease. MAJOR CONCLUSIONS Site-specific O-glycosylation modifies pro-protein processing and other proteolytic events such as ADAM processing and thus emerges as an important co-regulator of limited proteolytic processing events. GENERAL SIGNIFICANCE Our appreciation of this function may have been hampered by our sparse knowledge of the O-glycoproteome and in particular sites of O-glycosylation. New strategies for identification of O-glycoproteins have emerged and recently the concept of SimpleCells, i.e. human cell lines made deficient in O-glycan extension by zinc finger nuclease gene targeting, was introduced for broad O-glycoproteome analysis.
Collapse
|
23
|
Bhattacharya A, Ziebarth JD, Cui Y. Systematic analysis of microRNA targeting impacted by small insertions and deletions in human genome. PLoS One 2012; 7:e46176. [PMID: 23049969 PMCID: PMC3457991 DOI: 10.1371/journal.pone.0046176] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 08/30/2012] [Indexed: 01/23/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNA that play an important role in posttranscriptional regulation of mRNA. Genetic variations in miRNAs or their target sites have been shown to alter miRNA function and have been associated with risk for several diseases. Previous studies have focused on the most abundant type of genetic variations, single nucleotide polymorphisms (SNPs) that affect miRNA-mRNA interactions. Here, we systematically identified small insertions and deletions (indels) in miRNAs and their target sites, and investigated the effects of indels on miRNA targeting. We studied the distribution of indels in miRNAs and their target sites and found that indels in mature miRNAs, experimentally supported miRNA target sites and PAR-CLIP footprints have significantly lower density compared to flanking regions. We identified over 20 indels in the seed regions of miRNAs, which may disrupt the interactions between these miRNAs and their target genes. We also identified hundreds of indels that alter experimentally supported miRNA target sites. We mapped these genes to human disease pathways to identify indels that affect miRNA targeting in these pathways. We also used the results of genome-wide association studies (GWAS) to identify potential links between miRNA-related indels and diseases.
Collapse
Affiliation(s)
- Anindya Bhattacharya
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Jesse D. Ziebarth
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Yan Cui
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
24
|
Bennett EP, Mandel U, Clausen H, Gerken TA, Fritz TA, Tabak LA. Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology 2012; 22:736-56. [PMID: 22183981 PMCID: PMC3409716 DOI: 10.1093/glycob/cwr182] [Citation(s) in RCA: 612] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 12/14/2011] [Accepted: 12/14/2011] [Indexed: 12/15/2022] Open
Abstract
Glycosylation of proteins is an essential process in all eukaryotes and a great diversity in types of protein glycosylation exists in animals, plants and microorganisms. Mucin-type O-glycosylation, consisting of glycans attached via O-linked N-acetylgalactosamine (GalNAc) to serine and threonine residues, is one of the most abundant forms of protein glycosylation in animals. Although most protein glycosylation is controlled by one or two genes encoding the enzymes responsible for the initiation of glycosylation, i.e. the step where the first glycan is attached to the relevant amino acid residue in the protein, mucin-type O-glycosylation is controlled by a large family of up to 20 homologous genes encoding UDP-GalNAc:polypeptide GalNAc-transferases (GalNAc-Ts) (EC 2.4.1.41). Therefore, mucin-type O-glycosylation has the greatest potential for differential regulation in cells and tissues. The GalNAc-T family is the largest glycosyltransferase enzyme family covering a single known glycosidic linkage and it is highly conserved throughout animal evolution, although absent in bacteria, yeast and plants. Emerging studies have shown that the large number of genes (GALNTs) in the GalNAc-T family do not provide full functional redundancy and single GalNAc-T genes have been shown to be important in both animals and human. Here, we present an overview of the GalNAc-T gene family in animals and propose a classification of the genes into subfamilies, which appear to be conserved in evolution structurally as well as functionally.
Collapse
Affiliation(s)
- Eric P Bennett
- Department of Odontology, Copenhagen Center for Glycomics, University of Copenhagen, Nørre Alle 20, DK-2200 Copenhagen N, Denmark.
| | | | | | | | | | | |
Collapse
|
25
|
Ma L, Koyota S, Myoen Y, Yamashita T, Yatabe N, Koizumi Y, Aosasa M, Nishimichi N, Matsuda H, Sugiyama T. Generation of intracellular single-chain antibodies directed against polypeptide GalNAc-transferase using a yeast two-hybrid system. Biochem Biophys Res Commun 2012; 418:628-33. [PMID: 22290229 DOI: 10.1016/j.bbrc.2012.01.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 01/13/2012] [Indexed: 10/14/2022]
Abstract
Mucin-type O-glycosylation is initiated by a large number of UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferases (GalNAc-T). Although extensive in vitro studies using synthetic peptides as substrates suggest that most GalNAc-Ts exhibit overlapping substrate specificities, many studies have shown that individual GalNAc-Ts play an important role in both animals and humans. Further investigations of the functions of individual GalNAc-Ts including in vivo substrate proteins and O-glycosylation sites are necessary. In this study, we attempted to generate single-chain variable fragment (scFv) antibodies to bind to GalNAc-T1, T2, T3, and T4 using a yeast two-hybrid system for screening a naive chicken scFv library. Several different scFvs were isolated against a single target GalNAc-T isoform specifically under expressed in yeast and were confirmed to be expressed in mammalian cells and to retain binding activity inside the cells. Generation of these specific antibodies provides an opportunity to modify and exploit antibodies for specific applications in investigations of GalNAc-T functions.
Collapse
Affiliation(s)
- Li Ma
- Department of Biochemistry, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Phenotype prediction of nonsynonymous single nucleotide polymorphisms in human phase II drug/xenobiotic metabolizing enzymes: perspectives on molecular evolution. SCIENCE CHINA-LIFE SCIENCES 2010; 53:1252-62. [DOI: 10.1007/s11427-010-4062-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Accepted: 05/27/2010] [Indexed: 12/18/2022]
|
27
|
Tabak LA. The role of mucin-type O-glycans in eukaryotic development. Semin Cell Dev Biol 2010; 21:616-21. [PMID: 20144722 DOI: 10.1016/j.semcdb.2010.02.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 01/22/2010] [Accepted: 02/01/2010] [Indexed: 01/09/2023]
Abstract
Newly emerging genetic studies have revealed that a subset of the family of glycosyltransferases responsible for the formation of mucin-type O glycans is essential for normal development. As additional genetic, biochemical and physical tools are developed to interrogate the complex structure and surface location of this under-studied class of carbohydrate, no doubt additional roles will be elucidated.
Collapse
Affiliation(s)
- Lawrence A Tabak
- Section on Biological Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|