1
|
Vaitiekiene A, Kulboke M, Bieseviciene M, Kaunaite A, Markeviciute A, Bartnykaite A, Kireilis B, Rinkuniene D, Jankauskas A, Gaidamavicius I, Gerbutavicius R, Vaitiekus D, Sakalyte G, Vaskelyte JJ. Evaluation of Subclinical Cancer Therapy-Related Cardiac Dysfunction in Patients Undergoing Hematopoietic Stem Cell Transplantation: An Echocardiography Study. Cancers (Basel) 2024; 16:3808. [PMID: 39594762 PMCID: PMC11592334 DOI: 10.3390/cancers16223808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Hematopoietic stem cell transplantation (HSCT) is a potentially curative procedure that is used in various hematological malignancies. However, among an increasing number of HSCT, the amount of cancer therapy-related cardiac dysfunction (CTRCD) is increasing as well. This study aimed to determine the prevalence of subclinical CTRCD in HSCT patients 12 months after HSCT and to assess the impact of clinical factors on the development of CTRCD. Material and Methods: We included 55 patients who underwent autologous or allogeneic HSCT. The patients were assessed using an echocardiography method before and 12 months after a HSCT procedure. Results: Our study revealed that during the 12-month follow-up period, asymptomatic CTRCD was observed in 15 patients (27.3%), 6 experienced moderate CTRCD, and 9 experienced mild CTRCD. Patients with previous use of anthracyclines tended to have CTRCD more often: nine patients (60%) in the CTRCD group and nine patients (22.5%) in non-CTRCD group. Patients who received the BEAM regimen for conditioning also experienced CTRCD more often: five patients (33.3%) in CTRCD group vs. two patients (5%) in the non-CTRCD group. Conclusions: Our study showed that asymptomatic CTRCD was found in 27.3% of the patients 12 months after HSCT. The BEAM chemotherapy conditioning protocol following prior anthracycline use were identified as factors contributing to the development of CTRCD.
Collapse
Affiliation(s)
- Audrone Vaitiekiene
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Migle Kulboke
- Department of Oncology and Hematology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Oncology Institute, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Monika Bieseviciene
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Austeja Kaunaite
- Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Auste Markeviciute
- Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Agne Bartnykaite
- Oncology Research Laboratory, Oncology Institute, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Benas Kireilis
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Diana Rinkuniene
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Antanas Jankauskas
- Department of Radiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Institute of Cardiology, Lithuanian University of Health Sciences, 47181 Kaunas, Lithuania
| | - Ignas Gaidamavicius
- Department of Oncology and Hematology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Oncology Institute, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Rolandas Gerbutavicius
- Department of Oncology and Hematology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Oncology Institute, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Domas Vaitiekus
- Department of Oncology and Hematology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Oncology Institute, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Gintare Sakalyte
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Institute of Cardiology, Lithuanian University of Health Sciences, 47181 Kaunas, Lithuania
| | - Jolanta Justina Vaskelyte
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Institute of Cardiology, Lithuanian University of Health Sciences, 47181 Kaunas, Lithuania
| |
Collapse
|
2
|
Tsakiris DA, Gavriilaki E, Chanou I, Meyer SC. Hemostasis and complement in allogeneic hematopoietic stem cell transplantation: clinical significance of two interactive systems. Bone Marrow Transplant 2024; 59:1349-1359. [PMID: 39004655 PMCID: PMC11452340 DOI: 10.1038/s41409-024-02362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024]
Abstract
Hematopoietic stem cell transplantation (HCT) represents a curative treatment option for certain malignant and nonmalignant hematological diseases. Conditioning regimens before HCT, the development of graft-versus-host disease (GVHD) in the allogeneic setting, and delayed immune reconstitution contribute to early and late complications by inducing tissue damage or humoral alterations. Hemostasis and/or the complement system are biological regulatory defense systems involving humoral and cellular reactions and are variably involved in these complications after allogeneic HCT. The hemostasis and complement systems have multiple interactions, which have been described both under physiological and pathological conditions. They share common tissue targets, such as the endothelium, which suggests interactions in the pathogenesis of several serious complications in the early or late phase after HCT. Complications in which both systems interfere with each other and thus contribute to disease pathogenesis include transplant-associated thrombotic microangiopathy (HSCT-TMA), sinusoidal obstruction syndrome/veno-occlusive disease (SOS/VOD), and GVHD. Here, we review the current knowledge on changes in hemostasis and complement after allogeneic HCT and how these changes may define clinical impact.
Collapse
Affiliation(s)
| | - Eleni Gavriilaki
- Second Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioanna Chanou
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, Thessaloniki, Greece
| | - Sara C Meyer
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Gent DG, Saif M, Dobson R, Wright DJ. Cardiovascular Disease After Hematopoietic Stem Cell Transplantation in Adults: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2024; 6:475-495. [PMID: 39239331 PMCID: PMC11372032 DOI: 10.1016/j.jaccao.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 09/07/2024] Open
Abstract
The use of hematopoietic cell transplantation (HCT) has expanded in the last 4 decades to include an older and more comorbid population. These patients face an increased risk of cardiovascular disease after HCT. The risk varies depending on several factors, including the type of transplant (autologous or allogeneic). Many therapies used in HCT have the potential to be cardiotoxic. Cardiovascular complications after HCT include atrial arrhythmias, heart failure, myocardial infarction, and pericardial effusions. Before HCT, patients should undergo a comprehensive cardiovascular assessment, with ongoing surveillance tailored to their individual level of cardiovascular risk. In this review, we provide an overview of cardiotoxicity after HCT and outline our approach to risk assessment and ongoing care.
Collapse
Affiliation(s)
- David G Gent
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
| | - Muhammad Saif
- The Clatterbridge Cancer Centre, Liverpool, United Kingdom
| | - Rebecca Dobson
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
| | - David J Wright
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
| |
Collapse
|
4
|
Tong K, Meng Y, Zhang L, Lei X, Liu Q, Guan X, Yu J, Dou Y. Risk factors and survival outcomes in children with early cardiotoxicity after allogeneic hematopoietic stem cell transplantation. Ann Hematol 2024; 103:2485-2497. [PMID: 38709259 DOI: 10.1007/s00277-024-05787-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
Cardiotoxicity in children is a potentially fatal complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT); therefore, early identification of risk factors can improve patient prognosis. However, there are few data on the clinical characteristics of early-stage cardiotoxicity in children after allo-HSCT. We conducted a retrospective single-center study of pediatric patients who underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT) between January 2016 and December 2022 at the Children's Hospital Affiliated with Chongqing Medical University to evaluate the clinical characteristics of early cardiac events (ECEs) after allo-HSCT and their impact on survival outcomes. We enrolled 444 patients who underwent allo-HSCT-304 males (68%) and 140 females (32%)-with a median age of 3.3 years (1.8-6.5 years) at transplantation. We found that 73 patients (16.4%) had ECEs after allo-HSCT. The ECEs included valvular disease (n = 46), pericardial effusion (n = 38), arrhythmia (n = 9), heart failure (n = 16), and dilated cardiomyopathy (n = 1). Female sex, age ≥ 6 years, body mass index (BMI) < 16 kg/m2 and HLA-type mismatches were risk factors for ECEs. We designed a stratified cardiac risk score that included these risk factors, and the higher the score was, the greater the cumulative incidence of ECEs. The occurrence of an ECE was closely associated with a lower overall survival (OS) rate and greater nonrelapse mortality (NRM). In addition, stratified analysis based on the number of combined ECEs showed that the greater the number of combined ECEs was, the more significant the negative impact on OS rates.
Collapse
Affiliation(s)
- Ke Tong
- Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yan Meng
- Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Luying Zhang
- Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xiaoying Lei
- Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Qihui Liu
- Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xianmin Guan
- Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jie Yu
- Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Ying Dou
- Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
5
|
Rotz SJ, Bhatt NS, Hamilton BK, Duncan C, Aljurf M, Atsuta Y, Beebe K, Buchbinder D, Burkhard P, Carpenter PA, Chaudhri N, Elemary M, Elsawy M, Guilcher GMT, Hamad N, Karduss A, Peric Z, Purtill D, Rizzo D, Rodrigues M, Ostriz MBR, Salooja N, Schoemans H, Seber A, Sharma A, Srivastava A, Stewart SK, Baker KS, Majhail NS, Phelan R. International recommendations for screening and preventative practices for long-term survivors of transplantation and cellular therapy: a 2023 update. Bone Marrow Transplant 2024; 59:717-741. [PMID: 38413823 DOI: 10.1038/s41409-023-02190-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 02/29/2024]
Abstract
As hematopoietic cell transplantation (HCT) and cellular therapy expand to new indications and international access improves, the volume of HCT performed annually continues to rise. Parallel improvements in HCT techniques and supportive care entails more patients surviving long-term, creating further emphasis on survivorship needs. Survivors are at risk for developing late complications secondary to pre-, peri- and post-transplant exposures and other underlying risk-factors. Guidelines for screening and preventive practices for HCT survivors were originally published in 2006 and updated in 2012. To review contemporary literature and update the recommendations while considering the changing practice of HCT and cellular therapy, an international group of experts was again convened. This review provides updated pediatric and adult survivorship guidelines for HCT and cellular therapy. The contributory role of chronic graft-versus-host disease (cGVHD) to the development of late effects is discussed but cGVHD management is not covered in detail. These guidelines emphasize special needs of patients with distinct underlying HCT indications or comorbidities (e.g., hemoglobinopathies, older adults) but do not replace more detailed group, disease, or condition specific guidelines. Although these recommendations should be applicable to the vast majority of HCT recipients, resource constraints may limit their implementation in some settings.
Collapse
Affiliation(s)
- Seth J Rotz
- Division of Pediatric Hematology, Oncology, and Blood and Marrow Transplantation, Pediatric Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
- Blood and Marrow Transplant Program, Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | | | - Betty K Hamilton
- Blood and Marrow Transplant Program, Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Christine Duncan
- Dana Farber/Boston Children's Cancer and Blood Disorders Center, Harvard University, Boston, MA, USA
| | - Mahmoud Aljurf
- King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Yoshiko Atsuta
- Department of Registry Science for Transplant and Cellular Therapy, Aichi Medical University School of Medicine, Nagakute, Japan
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagakute, Japan
| | - Kristen Beebe
- Phoenix Children's Hospital and Mayo Clinic Arizona, Phoenix, AZ, USA
| | - David Buchbinder
- Division of Hematology, Children's Hospital of Orange County, Orange, CA, USA
| | - Peggy Burkhard
- National Bone Marrow Transplant Link, Southfield, MI, USA
| | | | - Naeem Chaudhri
- King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Mohamed Elemary
- Hematology and BMT, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mahmoud Elsawy
- Division of Hematology, Dalhousie University, Halifax, NS, Canada
- QEII Health Sciences Center, Halifax, NS, Canada
| | - Gregory M T Guilcher
- Section of Pediatric Oncology/Transplant and Cellular Therapy, Alberta Children's Hospital, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nada Hamad
- Department of Haematology, St Vincent's Hospital Sydney, Sydney, NSW, Australia
- St Vincent's Clinical School Sydney, University of New South Wales, Sydney, NSW, Australia
- School of Medicine Sydney, University of Notre Dame Australia, Sydney, WA, Australia
| | - Amado Karduss
- Bone Marrow Transplant Program, Clinica las Americas, Medellin, Colombia
| | - Zinaida Peric
- BMT Unit, Department of Hematology, University Hospital Centre Zagreb and School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Duncan Purtill
- Fiona Stanley Hospital, Murdoch, WA, Australia
- PathWest Laboratory Medicine, Nedlands, WA, Australia
| | - Douglas Rizzo
- Medical College of Wisconsin, Milwaukee, WI, USA
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Maria Belén Rosales Ostriz
- Division of hematology and bone marrow transplantation, Instituto de trasplante y alta complejidad (ITAC), Buenos Aires, Argentina
| | - Nina Salooja
- Centre for Haematology, Imperial College London, London, UK
| | - Helene Schoemans
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium
- Department of Public Health and Primary Care, ACCENT VV, KU Leuven-University of Leuven, Leuven, Belgium
| | | | - Akshay Sharma
- Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alok Srivastava
- Department of Haematology, Christian Medical College, Vellore, India
| | - Susan K Stewart
- Blood & Marrow Transplant Information Network, Highland Park, IL, 60035, USA
| | | | - Navneet S Majhail
- Sarah Cannon Transplant and Cellular Therapy Network, Nashville, TN, USA
| | - Rachel Phelan
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Pediatric Hematology/Oncology/Blood and Marrow Transplant, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
6
|
Hayek SS, Zaha VG, Bogle C, Deswal A, Langston A, Rotz S, Vasbinder A, Yang E, Okwuosa T. Cardiovascular Management of Patients Undergoing Hematopoietic Stem Cell Transplantation: From Pretransplantation to Survivorship: A Scientific Statement From the American Heart Association. Circulation 2024; 149:e1113-e1127. [PMID: 38465648 DOI: 10.1161/cir.0000000000001220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Hematopoietic stem cell transplantation can cure various disorders but poses cardiovascular risks, especially for elderly patients and those with cardiovascular diseases. Cardiovascular evaluations are crucial in pretransplantation assessments, but guidelines are lacking. This American Heart Association scientific statement summarizes the data on transplantation-related complications and provides guidance for the cardiovascular management throughout transplantation. Hematopoietic stem cell transplantation consists of 4 phases: pretransplantation workup, conditioning therapy and infusion, immediate posttransplantation period, and long-term survivorship. Complications can occur during each phase, with long-term survivors facing increased risks for late effects such as cardiovascular disease, secondary malignancies, and endocrinopathies. In adults, arrhythmias such as atrial fibrillation and flutter are the most frequent acute cardiovascular complication. Acute heart failure has an incidence ranging from 0.4% to 2.2%. In pediatric patients, left ventricular systolic dysfunction and pericardial effusion are the most common cardiovascular complications. Factors influencing the incidence and risk of complications include pretransplantation therapies, transplantation type (autologous versus allogeneic), conditioning regimen, comorbid conditions, and patient age. The pretransplantation cardiovascular evaluation consists of 4 steps: (1) initial risk stratification, (2) exclusion of high-risk cardiovascular disease, (3) assessment of cardiac reserve, and (4) optimization of cardiovascular reserve. Clinical risk scores could be useful tools for the risk stratification of adult patients. Long-term cardiovascular management of hematopoietic stem cell transplantation survivors includes optimizing risk factors, monitoring, and maintaining a low threshold for evaluating cardiovascular causes of symptoms. Future research should prioritize refining risk stratification and creating evidence-based guidelines and strategies to optimize outcomes in this growing patient population.
Collapse
|
7
|
Vaitiekiene A, Kulboke M, Bieseviciene M, Jankauskas A, Bartnykaite A, Rinkuniene D, Strazdiene I, Lidziute E, Jankauskaite D, Gaidamavicius I, Bucius P, Lapinskas T, Gerbutavicius R, Juozaityte E, Vaskelyte JJ, Vaitiekus D, Sakalyte G. T1 Mapping in Cardiovascular Magnetic Resonance-A Marker of Diffuse Myocardial Fibrosis in Patients Undergoing Hematopoietic Stem Cell Transplantation. J Pers Med 2024; 14:412. [PMID: 38673039 PMCID: PMC11051481 DOI: 10.3390/jpm14040412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Introduction: Hematopoietic stem cell transplantation (HSCT) recipients are at increased risk of cardiovascular diseases. In our study, we aimed to find subclinical changes in myocardial tissue after HSCT with the help of cardiovascular magnetic resonance (CMR) tissue imaging techniques. Methods: The data of 44 patients undergoing autologous and allogeneic HSCT in the Hospital of Lithuanian University of Health Sciences Kaunas Clinics from October 2021 to February 2023 were analyzed. Bioethics approval for the prospective study was obtained (No BE-2-96). CMR was performed two times: before enrolling for the HSCT procedure (before starting mobilization chemotherapy for autologous HSCT and before starting the conditioning regimen for allogeneic HSCT) and 12 ± 1 months after HSCT. LV end-diastolic volume, LV end-systolic volume, LV mass and values indexed to body surface area (BSA), and LV ejection fraction were calculated. T1 and T2 mapping values were measured. Results: There was a statistically significant change in T1 mapping values. Before HSCT, mean T1 mapping was 1226.13 ± 39.74 ms, and after HSCT, it was 1248.70 ± 41.07 ms (p = 0.01). The other parameters did not differ significantly. Conclusions: Increases in T1 mapping values following HSCT can show the progress of diffuse myocardial fibrosis and may reflect subclinical injury. T2 mapping values remain the same and do not show edema and active inflammation processes at 12 months after HSCT.
Collapse
Affiliation(s)
- Audrone Vaitiekiene
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Migle Kulboke
- Department of Oncology and Hematology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Oncology Institute, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Monika Bieseviciene
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Antanas Jankauskas
- Department of Radiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Institute of Cardiology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Agne Bartnykaite
- Oncology Research Laboratory, Oncology Institute, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Diana Rinkuniene
- Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Igne Strazdiene
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Emilija Lidziute
- Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Darija Jankauskaite
- Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Ignas Gaidamavicius
- Department of Oncology and Hematology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Oncology Institute, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Paulius Bucius
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Tomas Lapinskas
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Rolandas Gerbutavicius
- Department of Oncology and Hematology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Oncology Institute, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Elona Juozaityte
- Department of Oncology and Hematology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Oncology Institute, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Jolanta Justina Vaskelyte
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Institute of Cardiology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Domas Vaitiekus
- Department of Oncology and Hematology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Oncology Institute, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Gintare Sakalyte
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Institute of Cardiology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| |
Collapse
|
8
|
Rotz SJ, Bhatt NS, Hamilton BK, Duncan C, Aljurf M, Atsuta Y, Beebe K, Buchbinder D, Burkhard P, Carpenter PA, Chaudhri N, Elemary M, Elsawy M, Guilcher GM, Hamad N, Karduss A, Peric Z, Purtill D, Rizzo D, Rodrigues M, Ostriz MBR, Salooja N, Schoemans H, Seber A, Sharma A, Srivastava A, Stewart SK, Baker KS, Majhail NS, Phelan R. International Recommendations for Screening and Preventative Practices for Long-Term Survivors of Transplantation and Cellular Therapy: A 2023 Update. Transplant Cell Ther 2024; 30:349-385. [PMID: 38413247 PMCID: PMC11181337 DOI: 10.1016/j.jtct.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 02/29/2024]
Abstract
As hematopoietic cell transplantation (HCT) and cellular therapy expand to new indications and international access improves, the number of HCTs performed annually continues to rise. Parallel improvements in HCT techniques and supportive care entails more patients surviving long term, creating further emphasis on survivorship needs. Survivors are at risk for developing late complications secondary to pretransplantation, peritransplantation, and post-transplantation exposures and other underlying risk factors. Guidelines for screening and preventive practices for HCT survivors were originally published in 2006 and then updated in 2012. An international group of experts was convened to review the contemporary literature and update the recommendations while considering the changing practices of HCT and cellular therapy. This review provides updated pediatric and adult survivorship guidelines for HCT and cellular therapy. The contributory role of chronic graft-versus-host disease (cGVHD) to the development of late effects is discussed, but cGVHD management is not covered in detail. These guidelines emphasize the special needs of patients with distinct underlying HCT indications or comorbidities (eg, hemoglobinopathies, older adults) but do not replace more detailed group-, disease-, or condition-specific guidelines. Although these recommendations should be applicable to the vast majority of HCT recipients, resource constraints may limit their implementation in some settings.
Collapse
Affiliation(s)
- Seth J Rotz
- Department of Pediatric Hematology, Oncology, and Blood and Marrow Transplantation, Pediatric Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Blood and Marrow Transplant Program, Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, Ohio.
| | - Neel S Bhatt
- Fred Hutchinson Cancer Center, Seattle, Washington
| | - Betty K Hamilton
- Blood and Marrow Transplant Program, Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Christine Duncan
- Dana Farber/Boston Children's Cancer and Blood Disorders Center, Harvard University, Boston, Massachusetts
| | - Mahmoud Aljurf
- King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Yoshiko Atsuta
- Department of Registry Science for Transplant and Cellular Therapy, Aichi Medical University School of Medicine, Japanese Data Center for Hematopoietic Cell Transplantation, Nagakute, Japan
| | - Kristen Beebe
- Phoenix Children's Hospital and Mayo Clinic Arizona, Phoenix, Arizona
| | - David Buchbinder
- Division of Hematology, Children's Hospital of Orange County, Orange, California
| | | | | | - Naeem Chaudhri
- King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Mohamed Elemary
- Hematology and BMT, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Mahmoud Elsawy
- Division of Hematology, Dalhousie University, QEII Health Sciences Center, Halifax, Nova Scotia, Canada
| | - Gregory Mt Guilcher
- Section of Pediatric Oncology/Transplant and Cellular Therapy, Alberta Children's Hospital, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Nada Hamad
- Department of Haematology, St Vincent's Hospital Sydney, St Vincent's Clinical School Sydney, University of New South Wales, School of Medicine Sydney, University of Notre Dame Australia, Australia
| | - Amado Karduss
- Bone Marrow Transplant Program, Clinica las Americas, Medellin, Colombia
| | - Zinaida Peric
- BMT Unit, Department of Hematology, University Hospital Centre Zagreb and School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Duncan Purtill
- Fiona Stanley Hospital, Murdoch, PathWest Laboratory Medicine WA, Australia
| | - Douglas Rizzo
- Medical College of Wisconsin, Milwaukee, Wisconsin; Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Maria Belén Rosales Ostriz
- Division of hematology and bone marrow transplantation, Instituto de trasplante y alta complejidad (ITAC), Buenos Aires, Argentina
| | - Nina Salooja
- Centre for Haematology, Imperial College London, London, United Kingdom
| | - Helene Schoemans
- Department of Hematology, University Hospitals Leuven, Department of Public Health and Primary Care, ACCENT VV, KU Leuven, University of Leuven, Leuven, Belgium
| | | | - Akshay Sharma
- Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Alok Srivastava
- Department of Haematology, Christian Medical College, Vellore, India
| | | | | | - Navneet S Majhail
- Sarah Cannon Transplant and Cellular Therapy Network, Nashville, Tennessee
| | - Rachel Phelan
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Division of Pediatric Hematology/Oncology/Blood and Marrow Transplant, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
9
|
Vaitiekiene A, Kulboke M, Bieseviciene M, Bartnykaite A, Kireilis B, Rinkuniene D, Jankauskas A, Zemaitis J, Gaidamavicius I, Gerbutavicius R, Vaitiekus D, Vaskelyte JJ, Sakalyte G. Early Impact of Mobilization Process on Cardiac Function and Size in Patients Undergoing Autologous Hematopoietic Stem Cell Transplantation. J Clin Med 2024; 13:773. [PMID: 38337467 PMCID: PMC10856069 DOI: 10.3390/jcm13030773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Background: The hematopoietic stem cell transplantation (HSCT) process is known to cause cardiac toxicity of different grades. In this paper, we aimed to evaluate the impact of mobilization procedure of hematopoietic stem cells for autologous HSCT process for left and right ventricle sizes and functions. Material and Methods: The data of 47 patients undergoing autologous HSCT were analyzed. All patients underwent hematopoietic stem cell mobilization with chemotherapy and filgrastim at 10 µg/kg/d. Echocardiography was performed two times: before enrolling in the transplantation process and after mobilization before the conditioning regimen for transplantation. Changes in left and right ventricle (RV) diameter and systolic and diastolic function of the left ventricle and systolic function of the RV were measured. Results: A statistically significant difference was observed in the change of right ventricular function (S')-it slightly decreased. Mean S' before mobilization was 13.93 ± 2.85 cm/s, and after mobilization it was 12.19 ± 2.64 cm/s (p = 0.003). No statistically significant change in left ventricular diameter and systolic and diastolic function and RV diameter was observed. Conclusions: The mobilization procedure in patients undergoing autologous HSCT is associated with reduced RV systolic function. S' could be used as a reliable tool to evaluate early cardiotoxicity in HSCT patients and guide further follow-up.
Collapse
Affiliation(s)
- Audrone Vaitiekiene
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania (J.J.V.)
| | - Migle Kulboke
- Department of Oncology and Hematology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Monika Bieseviciene
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania (J.J.V.)
| | - Agne Bartnykaite
- Oncology Research Laboratory, Oncology Institute, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Benas Kireilis
- Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Diana Rinkuniene
- Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Antanas Jankauskas
- Department of Radiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Institute of Cardiology, Lithuanian University of Health Sciences, 47181 Kaunas, Lithuania
| | - Justinas Zemaitis
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania (J.J.V.)
| | - Ignas Gaidamavicius
- Department of Oncology and Hematology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Rolandas Gerbutavicius
- Department of Oncology and Hematology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Domas Vaitiekus
- Department of Oncology and Hematology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Jolanta Justina Vaskelyte
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania (J.J.V.)
- Institute of Cardiology, Lithuanian University of Health Sciences, 47181 Kaunas, Lithuania
| | - Gintare Sakalyte
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania (J.J.V.)
- Institute of Cardiology, Lithuanian University of Health Sciences, 47181 Kaunas, Lithuania
| |
Collapse
|
10
|
Vasbinder A, Hoeger CW, Catalan T, Anderson E, Chu C, Kotzin M, Xie J, Kaakati R, Berlin HP, Shadid H, Perry D, Pan M, Takiar R, Padalia K, Mills J, Meloche C, Bardwell A, Rochlen M, Blakely P, Leja M, Banerjee M, Riwes M, Magenau J, Anand S, Ghosh M, Pawarode A, Yanik G, Nathan S, Maciejewski J, Okwuosa T, Hayek SS. Cardiovascular Events After Hematopoietic Stem Cell Transplant: Incidence and Risk Factors. JACC CardioOncol 2023; 5:821-832. [PMID: 38205002 PMCID: PMC10774793 DOI: 10.1016/j.jaccao.2023.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/13/2023] [Indexed: 01/12/2024] Open
Abstract
Background Hematopoietic stem cell transplantation (HSCT) is associated with various cardiovascular (CV) complications. Objectives We sought to characterize the incidence and risk factors for short-term and long-term CV events in a contemporary cohort of adult HSCT recipients. Methods We conducted a multicenter observational study of adult patients who underwent autologous or allogeneic HSCT between 2008 and 2019. Data on demographics, clinical characteristics, conditioning regimen, and CV outcomes were collected through chart review. CV outcomes were a composite of CV death, myocardial infarction, heart failure, atrial fibrillation/flutter, stroke, and sustained ventricular tachycardia and were classified as short-term (≤100 days post-HSCT) or long-term (>100 days post-HSCT). Results In 3,354 patients (mean age 55 years; 40.9% female; 30.1% Black) followed for a median time of 2.3 years (Q1-Q3: 1.0-5.4 years), the 100-day and 5-year cumulative incidences of CV events were 4.1% and 13.9%, respectively. Atrial fibrillation/flutter was the most common short- and long-term CV event, with a 100-day incidence of 2.6% and a 5-year incidence of 6.8% followed by heart failure (1.1% at 100 days and 5.4% at 5 years). Allogeneic recipients had a higher incidence of long-term CV events compared to autologous recipients (5-year incidence 16.4% vs 12.1%; P = 0.002). Baseline CV comorbidities were associated with a higher risk of long-term CV events. Conclusions The incidence of short-term CV events in HSCT recipients is relatively low. Long-term events were more common among allogeneic recipients and those with pre-existing CV comorbidities.
Collapse
Affiliation(s)
- Alexi Vasbinder
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Christopher W. Hoeger
- Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Tonimarie Catalan
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Elizabeth Anderson
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Catherine Chu
- Rush Medical College, Rush University, Chicago, Illinois, USA
| | - Megan Kotzin
- Rush Medical College, Rush University, Chicago, Illinois, USA
| | - Jeffrey Xie
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Rayan Kaakati
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Hanna P. Berlin
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Husam Shadid
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Daniel Perry
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael Pan
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Radhika Takiar
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kishan Padalia
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jamie Mills
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Chelsea Meloche
- Division of Cardiovascular Medicine, Texas Heart Institute, Houston, Texas, USA
| | - Alina Bardwell
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthew Rochlen
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Pennelope Blakely
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Monika Leja
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Mousumi Banerjee
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Mary Riwes
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - John Magenau
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sarah Anand
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Monalisa Ghosh
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Attaphol Pawarode
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Gregory Yanik
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sunita Nathan
- Division of Hematology, Oncology and Cell Therapy, Department of Internal Medicine, Rush Medical College, Chicago, Illinois, USA
| | - John Maciejewski
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Tochukwu Okwuosa
- Division of Cardiology, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Salim S. Hayek
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
Zhang Y, Tan Y, Liu T, Fu Y, Lin Y, Shi J, Zhang Y, Deng W, He S, Yang Y, Lv Q, Zhang L, Xie M, Wang J. Decreased ventricular systolic function in chemotherapy-naive patients with acute myeloid leukemia: a three-dimensional speckle-tracking echocardiography study. Front Cardiovasc Med 2023; 10:1140234. [PMID: 37351288 PMCID: PMC10282833 DOI: 10.3389/fcvm.2023.1140234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023] Open
Abstract
Background The relationship between acute myeloid leukemia (AML) or acute lymphoblastic leukemia (ALL) and cardiac function is not well established. This study aimed to evaluate whether AML patients exist early myocardial damages prior to chemotherapy and to investigate its association with cardiovascular biomarkers. Methods Conventional echocardiography and three-dimensional speckle-tracking strain analysis were performed prospectively in 72 acute leukemia (AL) patients before any chemotherapy therapy (of whom 44 were AML patients, 28 ALL patients). The results were compared with those from 58 control group matched for age and gender. Results There were no significant differences in conventional biventricular systolic function parameters between AL patients and controls. The left ventricular global longitudinal strain (LVGLS) and right ventricular free wall longitudinal strain (RVFWLS) were significantly lower in AL patients (-23.0 ± 1.4% vs. -24.1 ± 1.3% and -27.9 ± 7.1% vs. -33.0 ± 4.6%, respectively, P < 0.001 for all). Compared with ALL patients, AML patients had lower LVGLS and RVFWLS (-22.7 ± 1.3% vs. -23.5 ± 1.6% and -26.2 ± 7.6% vs. -30.4 ± 5.5%, respectively, P < 0.05 for all). LVGLS was lower in ALL patients compared with controls (-23.5 ± 1.6% vs. -24.7 ± 1.4%, P < 0.05), however, there was no difference in right ventricular systolic function parameters between the two groups. LVGLS in AL patients was independently correlated with left ventricular ejection fraction (LVEF) and the absolute number of circulating lymphocytes. Conclusions Our findings suggest that baseline myocardial systolic function is lower in AL patients than controls. AML patients had lower baseline LVGLS and RVFWLS than controls and ALL patients. The decreased LVGLS is correlated with LVEF and the absolute number of circulating lymphocytes.
Collapse
Affiliation(s)
- Yichan Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yuting Tan
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Tianshu Liu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yanan Fu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yixia Lin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Jiawei Shi
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yanting Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Wenhui Deng
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Shukun He
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yali Yang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Qing Lv
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Li Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Jing Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
12
|
Singh J. Cardio-oncology and transplantation for acute myeloid leukemia. Best Pract Res Clin Haematol 2023; 36:101465. [PMID: 37353290 DOI: 10.1016/j.beha.2023.101465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
Despite the rapidly evolving treatment landscape for acute myeloid leukemia (AML), allogeneic hematopoietic cell transplantation (allo-HCT) remains an important and potentially curative treatment option for many high-risk AML patients. Cardiovascular disease is an important competing risk throughout allo-HCT and a key driver of morbidity and mortality long after treatment. Cardio-oncology is a new discipline in cardiology which provides multidisciplinary care and expertise to complex cancer patients with the aims of optimizing cardiovascular health plus monitoring and treating potential cardiotoxicity related to cancer treatments. As allogeneic HCT techniques get more sophisticated there will be an increase in transplant eligible older patients with a rise in comorbidities including established cardiovascular disease highlighting the need for close collaboration with cardio-oncology specialists from the time of diagnosis through late survivorship.
Collapse
Affiliation(s)
- Jai Singh
- Atrium Health, Sanger Heart & Vascular Institute, 1237 Harding Place, Suite 5200, Charlotte, NC, 28203, USA.
| |
Collapse
|
13
|
Zhang AB, Wang CC, Zhao P, Tong KT, He Y, Zhu XL, Fu HX, Wang FR, Mo XD, Wang Y, Zhao XY, Zhang YY, Han W, Chen H, Chen Y, Yan CH, Wang JZ, Han TT, Sun YQ, Chen YH, Chang YJ, Xu LP, Liu KY, Huang XJ, Zhang XH. A Prognostic Model Based on Clinical Biomarkers for Heart Failure in Adult Patients Following Allogeneic Hematopoietic Stem Cell Transplantation. Transplant Cell Ther 2023; 29:240.e1-240.e10. [PMID: 36634739 DOI: 10.1016/j.jtct.2022.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/05/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023]
Abstract
Heart failure (HF) is an uncommon but serious cardiovascular complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Unfortunately, knowledge about early mortality prognostic factors in patients with HF after allo-HSCT is limited, and an easy-to-use prognostic model is not available. This study aimed to develop and validate a clinical-biomarker prognostic model capable of predicting HF mortality following allo-HSCT that uses a combination of variables readily available in clinical practice. To investigate this issue, we conducted a retrospective analysis at our center with 154 HF patients who underwent allo-HSCT between 2008 and 2021. The patients were separated according to the time of transplantation, with 100 patients composing the derivation cohort and the other 54 patients composing the external validation cohort. We first calculated the univariable association for each variable with 2-month mortality in the derivation cohort. We then included the variables with a P value <.1 in univariate analysis as candidate predictors in the multivariate analysis using a backward stepwise logistic regression model. Variables remaining in the final model were identified as independent prognostic factors. To predict the prognosis of HF, a scoring system was established, and scores were assigned to the prognostic factors based on the regression coefficient. Finally, 4 strongly significant independent prognostic factors for 2-month mortality from HF were identified using multivariable logistic regression methods with stepwise variable selection: pulmonary infection (P = .005), grade III to IV acute graft-versus-host disease (severe aGVHD; P = .033), lactate dehydrogenase (LDH) >426 U/L (P = .049), and brain natriuretic peptide (BNP) >1799 pg/mL (P = .026). A risk grading model termed the BLIPS score (for BNP, LDH, cardiac troponin I, pulmonary infection, and severe aGVHD) was constructed according to the regression coefficients. The validated internal C-statistic was .870 (95% confidence interval [CI], .798 to .942), and the external C-statistic was .882 (95% CI, .791-.973). According to the calibration plots, the model-predicted probability correlated well with the actual observed frequencies. The clinical use of the prognostic model, according to decision curve analysis, could benefit HF patients. The BLIPS model in our study can serve to identify HF patients at higher risk for mortality early, which might aid designing timely targeted therapies and eventually improving patients' survival and prognosis.
Collapse
Affiliation(s)
- Ao-Bei Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Chen-Cong Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Peng Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Ke-Ting Tong
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Yun He
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Xiao-Lu Zhu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Hai-Xia Fu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Feng-Rong Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Xiao-Dong Mo
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Yuan-Yuan Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Wei Han
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Huan Chen
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Yao Chen
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Chen-Hua Yan
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Jing-Zhi Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Ting-Ting Han
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Yu-Qian Sun
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Yu-Hong Chen
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Ying-Jun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Kai-Yan Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.
| |
Collapse
|
14
|
Welty NE, Gill SI. Cancer Immunotherapy Beyond Checkpoint Blockade: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2022; 4:563-578. [PMID: 36636439 PMCID: PMC9830230 DOI: 10.1016/j.jaccao.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 12/24/2022] Open
Abstract
Avoidance of immune destruction is recognized as one of the hallmarks of cancer development. Although first predicted as a potential antitumor treatment modality more than 50 years ago, the widespread clinical use of cancer immunotherapies has only recently become a reality. Cancer immunotherapy works by reactivation of a stalled pre-existing immune response or by eliciting a de novo immune response, and its toolkit comprises antibodies, vaccines, cytokines, and cell-based therapies. The treatment paradigm in some malignancies has completely changed over the past 10 to 15 years. Massive efforts in preclinical development have led to a surge of clinical trials testing innovative therapeutic approaches as monotherapy and, increasingly, in combination. Here we provide an overview of approved and emerging antitumor immune therapies, focusing on the rich landscape of therapeutic approaches beyond those that block the canonical PD-1/PD-L1 and CTLA-4 axes and placing them in the context of the latest understanding of tumor immunology.
Collapse
Key Words
- BiTE, bispecific T cell engager
- CAR, chimeric antigen receptor
- CRS, cytokine-release syndrome
- FDA, U.S. Food and Drug Administration
- HLA, human leukocyte antigen
- ICI, immune checkpoint inhibitor
- IL, interleukin
- NK, natural killer
- NSCLC, non–small cell lung cancer
- TIL, tumor-infiltrating lymphocyte
- alloHCT, allogeneic hematopoietic stem cell transplantation
- cancer
- immune therapy
- immunotherapy
- innovation
- mAb, monoclonal antibody
- treatment
Collapse
Affiliation(s)
- Nathan E. Welty
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Saar I. Gill
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Address for correspondence: Dr Saar I. Gill, Smilow Center for Translational Research, Room 8-101, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
15
|
Lyon AR, López-Fernández T, Couch LS, Asteggiano R, Aznar MC, Bergler-Klein J, Boriani G, Cardinale D, Cordoba R, Cosyns B, Cutter DJ, de Azambuja E, de Boer RA, Dent SF, Farmakis D, Gevaert SA, Gorog DA, Herrmann J, Lenihan D, Moslehi J, Moura B, Salinger SS, Stephens R, Suter TM, Szmit S, Tamargo J, Thavendiranathan P, Tocchetti CG, van der Meer P, van der Pal HJH. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J 2022; 43:4229-4361. [PMID: 36017568 DOI: 10.1093/eurheartj/ehac244] [Citation(s) in RCA: 1023] [Impact Index Per Article: 341.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
16
|
Cardiovascular Complications in Hematopoietic Stem Cell Transplanted Patients. J Pers Med 2022; 12:jpm12111797. [PMID: 36579521 PMCID: PMC9692512 DOI: 10.3390/jpm12111797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/16/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is the only curative treatment for many patients suffering from hematologic malignancies, solid tumors, inborn errors of metabolism or genetic disorders. Despite decades of successful HSCT, clinical outcomes are still far from satisfactory due to treatment-related complications, including graft-versus-host disease (GvHD) and cardiovascular complications (CVC). CVC may affect patients in the acute period post-HSCT; however, the occurrence is far higher among long-term survivors. Induction treatment using cardiotoxic treatments, e.g., anthracyclines and radiotherapy, conditioning regimens containing cyclophosphamide, and post-HSCT comorbidities, including GvHD, are factors contributing to CVC. Cardiac function evaluation prior to and post-transplantation is an important strategy for choosing the proper conditioning regimen, HSCT protocol and post-HSCT supportive care. Cardiac systolic function evaluation by echocardiography, in addition to serum cardiac biomarkers, such as troponins and brain natriuretic peptides, is recommended as a routine follow-up for HSCT patients. Angiotensin-converting enzyme inhibitors, angiotensin-II-receptor blockers, and beta-blockers, which are mostly used for the treatment of chemotherapy-induced cardiotoxicity, might be used as treatments for HSCT-related CVC. In summary, the present review reveals the urgent need for further investigations concerning HSCT-related CVC both at the preclinical and clinical levels due to the lack of knowledge about CVC and its underlying mechanisms.
Collapse
|
17
|
Lyon AR, López-Fernández T, Couch LS, Asteggiano R, Aznar MC, Bergler-Klein J, Boriani G, Cardinale D, Cordoba R, Cosyns B, Cutter DJ, de Azambuja E, de Boer RA, Dent SF, Farmakis D, Gevaert SA, Gorog DA, Herrmann J, Lenihan D, Moslehi J, Moura B, Salinger SS, Stephens R, Suter TM, Szmit S, Tamargo J, Thavendiranathan P, Tocchetti CG, van der Meer P, van der Pal HJH. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J Cardiovasc Imaging 2022; 23:e333-e465. [PMID: 36017575 DOI: 10.1093/ehjci/jeac106] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
18
|
Perpinia AS, Kadoglou N, Vardaka M, Gkortzolidis G, Karavidas A, Marinakis T, Papachrysostomou C, Makaronis P, Vlachou C, Mantzourani M, Farmakis D, Konstantopoulos K. Pharmaceutical Prevention and Management of Cardiotoxicity in Hematological Malignancies. Pharmaceuticals (Basel) 2022; 15:ph15081007. [PMID: 36015155 PMCID: PMC9412591 DOI: 10.3390/ph15081007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/26/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022] Open
Abstract
Modern treatment modalities in hematology have improved clinical outcomes of patients with hematological malignancies. Nevertheless, many new or conventional anticancer drugs affect the cardiovascular system, resulting in various cardiac disorders, including left ventricular dysfunction, heart failure, arterial hypertension, myocardial ischemia, cardiac rhythm disturbances, and QTc prolongation on electrocardiograms. As these complications may jeopardize the significantly improved outcome of modern anticancer therapies, it is crucial to become familiar with all aspects of cardiotoxicity and provide appropriate care promptly to these patients. In addition, established and new drugs contribute to primary and secondary cardiovascular diseases prevention. This review focuses on the clinical manifestations, preventive strategies, and pharmaceutical management of cardiotoxicity in patients with hematologic malignancies undergoing anticancer drug therapy or hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
| | | | - Maria Vardaka
- Department of Hematology, “G. Gennimatas” General Hospital, 11527 Athens, Greece
| | | | - Apostolos Karavidas
- Department of Cardiology, “G. Gennimatas” General Hospital, 11527 Athens, Greece
| | - Theodoros Marinakis
- Department of Hematology, “G. Gennimatas” General Hospital, 11527 Athens, Greece
| | | | - Panagiotis Makaronis
- Department of Cardiology, “G. Gennimatas” General Hospital, 11527 Athens, Greece
| | - Charikleia Vlachou
- Department of Hematology, “G. Gennimatas” General Hospital, 11527 Athens, Greece
| | - Marina Mantzourani
- First Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, “Laiko” General Hospital, 11527 Athens, Greece
| | | | - Konstantinos Konstantopoulos
- Department of Hematology, Medical School, National and Kapodistrian University of Athens, “Laiko” General Hospital, 11527 Athens, Greece
| |
Collapse
|
19
|
Guida F, Masetti R, Andreozzi L, Zama D, Fabi M, Meli M, Prete A, Lanari M. The Role of Nutrition in Primary and Secondary Prevention of Cardiovascular Damage in Childhood Cancer Survivors. Nutrients 2022; 14:3279. [PMID: 36014785 PMCID: PMC9415958 DOI: 10.3390/nu14163279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 12/03/2022] Open
Abstract
Innovative therapeutic strategies in childhood cancer led to a significant reduction in cancer-related mortality. Cancer survivors are a growing fragile population, at risk of long-term side effects of cancer treatments, thus requiring customized clinical attention. Antineoplastic drugs have a wide toxicity profile that can limit their clinical usage and spoil patients' life, even years after the end of treatment. The cardiovascular system is a well-known target of antineoplastic treatments, including anthracyclines, chest radiotherapy and new molecules, such as tyrosine kinase inhibitors. We investigated nutritional changes in children with cancer from the diagnosis to the end of treatment and dietary habits in cancer survivors. At diagnosis, children with cancer may present variable degrees of malnutrition, potentially affecting drug tolerability and prognosis. During cancer treatment, the usage of corticosteroids can lead to rapid weight gain, exposing children to overweight and obesity. Moreover, dietary habits and lifestyle often dramatically change in cancer survivors, who acquire sedentary behavior and weak adherence to dietary guidelines. Furthermore, we speculated on the role of nutrition in the primary prevention of cardiac damage, investigating the potential cardioprotective role of diet-derived compounds with antioxidative properties. Finally, we summarized practical advice to improve the dietary habits of cancer survivors and their families.
Collapse
Affiliation(s)
- Fiorentina Guida
- Specialty School of Paediatrics, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
| | - Riccardo Masetti
- Paediatric Oncology and Haematology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Laura Andreozzi
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Daniele Zama
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Marianna Fabi
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Matteo Meli
- Specialty School of Paediatrics, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
| | - Arcangelo Prete
- Paediatric Oncology and Haematology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Marcello Lanari
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
20
|
Wilcox NS, Rotz SJ, Mullen M, Song EJ, Hamilton BK, Moslehi J, Armenian S, Wu JC, Rhee JW, Ky B. Sex-Specific Cardiovascular Risks of Cancer and Its Therapies. Circ Res 2022; 130:632-651. [PMID: 35175846 PMCID: PMC8915444 DOI: 10.1161/circresaha.121.319901] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In both cardiovascular disease and cancer, there are established sex-based differences in prevalence and outcomes. Males and females may also differ in terms of risk of cardiotoxicity following cancer therapy, including heart failure, cardiomyopathy, atherosclerosis, thromboembolism, arrhythmias, and myocarditis. Here, we describe sex-based differences in the epidemiology and pathophysiology of cardiotoxicity associated with anthracyclines, hematopoietic stem cell transplant (HCT), hormone therapy and immune therapy. Relative to males, the risk of anthracycline-induced cardiotoxicity is higher in prepubertal females, lower in premenopausal females, and similar in postmenopausal females. For autologous hematopoietic cell transplant, several studies suggest an increased risk of late heart failure in female lymphoma patients, but sex-based differences have not been shown for allogeneic hematopoietic cell transplant. Hormone therapies including GnRH (gonadotropin-releasing hormone) modulators, androgen receptor antagonists, selective estrogen receptor modulators, and aromatase inhibitors are associated with cardiotoxicity, including arrhythmia and venous thromboembolism. However, sex-based differences have not yet been elucidated. Evaluation of sex differences in cardiotoxicity related to immune therapy is limited, in part, due to low participation of females in relevant clinical trials. However, some studies suggest that females are at increased risk of immune checkpoint inhibitor myocarditis, although this has not been consistently demonstrated. For each of the aforementioned cancer therapies, we consider sex-based differences according to cardiotoxicity management. We identify knowledge gaps to guide future mechanistic and prospective clinical studies. Furthering our understanding of sex-based differences in cancer therapy cardiotoxicity can advance the development of targeted preventive and therapeutic cardioprotective strategies.
Collapse
Affiliation(s)
- Nicholas S. Wilcox
- Division of Cardiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Seth J. Rotz
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Pediatric Hematology, Oncology, and Blood and Marrow Transplantation, Pediatric Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - McKay Mullen
- Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Evelyn J. Song
- Division of Hospital Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Betty Ky Hamilton
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Javid Moslehi
- Section of Cardio-Oncology & Immunology, Division of Cardiology and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Saro Armenian
- Department of Population Sciences, City of Hope Comprehensive Cancer Center; Duarte, CA, USA
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford, CA, USA
| | - June Wha Rhee
- Department of Medicine, City of Hope Comprehensive Cancer Center; Duarte, CA, USA
| | - Bonnie Ky
- Division of Cardiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
21
|
Di Nardo M, Ahmad AH, Merli P, Zinter MS, Lehman LE, Rowan CM, Steiner ME, Hingorani S, Angelo JR, Abdel-Azim H, Khazal SJ, Shoberu B, McArthur J, Bajwa R, Ghafoor S, Shah SH, Sandhu H, Moody K, Brown BD, Mireles ME, Steppan D, Olson T, Raman L, Bridges B, Duncan CN, Choi SW, Swinford R, Paden M, Fortenberry JD, Peek G, Tissieres P, De Luca D, Locatelli F, Corbacioglu S, Kneyber M, Franceschini A, Nadel S, Kumpf M, Loreti A, Wösten-Van Asperen R, Gawronski O, Brierley J, MacLaren G, Mahadeo KM. Extracorporeal membrane oxygenation in children receiving haematopoietic cell transplantation and immune effector cell therapy: an international and multidisciplinary consensus statement. THE LANCET. CHILD & ADOLESCENT HEALTH 2022; 6:116-128. [PMID: 34895512 PMCID: PMC9372796 DOI: 10.1016/s2352-4642(21)00336-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 01/03/2023]
Abstract
Use of extracorporeal membrane oxygenation (ECMO) in children receiving haematopoietic cell transplantation (HCT) and immune effector cell therapy is controversial and evidence-based guidelines have not been established. Remarkable advancements in HCT and immune effector cell therapies have changed expectations around reversibility of organ dysfunction and survival for affected patients. Herein, members of the Extracorporeal Life Support Organization (ELSO), Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network (HCT and cancer immunotherapy subgroup), the Pediatric Diseases Working Party of the European Society for Blood and Marrow Transplantation (EBMT), the supportive care committee of the Pediatric Transplantation and Cellular Therapy Consortium (PTCTC), and the Pediatric Intensive Care Oncology Kids in Europe Research (POKER) group of the European Society of Pediatric and Neonatal Intensive Care (ESPNIC) provide consensus recommendations on the use of ECMO in children receiving HCT and immune effector cell therapy. These are the first international, multidisciplinary consensus-based recommendations on the use of ECMO in this patient population. This Review provides a clinical decision support tool for paediatric haematologists, oncologists, and critical care physicians during the difficult decision-making process of ECMO candidacy and management. These recommendations can represent a base for future research studies focused on ECMO selection criteria and bedside management.
Collapse
Affiliation(s)
- Matteo Di Nardo
- Pediatric Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Ali H Ahmad
- Department of Pediatrics, Pediatric Critical Care, Houston, TX, USA
| | - Pietro Merli
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Matthew S Zinter
- Department of Pediatrics, Divisions of Critical Care and Bone Marrow Transplantation, University of California, San Francisco, CA, USA
| | - Leslie E Lehman
- Pediatric Hematology-Oncology, Dana-Farber Cancer Institute, Harvard University, Boston, MA, USA
| | - Courtney M Rowan
- Department of Pediatrics, Division of Critical Care, Indiana University School of Medicine, Riley Hospital for Children, Indianapolis, IN, USA
| | - Marie E Steiner
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Sangeeta Hingorani
- Department of Pediatrics, Division of Nephrology, University of Washington School of Medicine, and the Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Joseph R Angelo
- Renal Section, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Hisham Abdel-Azim
- Department of Pediatrics, Transplantation and Cell Therapy Program, Keck School of Medicine, University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Sajad J Khazal
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapy, Houston, TX, USA; The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Basirat Shoberu
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapy, Houston, TX, USA; The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer McArthur
- Division of Critical Care Medicine, Department of Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Rajinder Bajwa
- Department of Pediatrics, Division of Blood and Marrow Transplantation, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Saad Ghafoor
- Division of Critical Care Medicine, Department of Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Samir H Shah
- Division of Pediatric Critical Care Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hitesh Sandhu
- Division of Pediatric Critical Care Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Karen Moody
- CARTOX Program, and Department of Pediatrics, Supportive Care, Houston, TX, USA
| | - Brandon D Brown
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapy, Houston, TX, USA; The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Diana Steppan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Taylor Olson
- Division of Critical Care Medicine, Children's National Hospital, Washington, DC, USA
| | - Lakshmi Raman
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Brian Bridges
- Division of Pediatric Critical Care, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Christine N Duncan
- Pediatric Hematology-Oncology, Dana-Farber Cancer Institute, Harvard University, Boston, MA, USA
| | - Sung Won Choi
- University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA; Department of Pediatrics, Ann Arbor, MI, USA
| | - Rita Swinford
- Department of Pediatrics, Division of Pediatric Nephrology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA
| | - Matt Paden
- Pediatric Critical Care, Children's Healthcare of Atlanta, and Emory University School of Medicine, Atlanta, GA, USA
| | - James D Fortenberry
- Pediatric Critical Care, Children's Healthcare of Atlanta, and Emory University School of Medicine, Atlanta, GA, USA
| | - Giles Peek
- Congenital Heart Center, University of Florida, Gainesville, FL, USA
| | - Pierre Tissieres
- Division of Pediatric Intensive Care and Neonatal Medicine, Paris South University Hospital, Le Kremlin-Bicetre, France; Institute of Integrative Biology of the Cell, CNRS, CEA, Univ. Paris Sud, Paris Saclay University, Paris, France
| | - Daniele De Luca
- Division of Pediatrics, Transportation and Neonatal Critical Care Medicine, APHP, Paris Saclay University Hospital, "A.Beclere" Medical Center and Physiopathology and Therapeutic Innovation Unit-INSERM-U999, Paris Saclay University, Paris, France
| | - Franco Locatelli
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Selim Corbacioglu
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University of Regensburg, Regensburg, Germany
| | - Martin Kneyber
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Beatrix Children's Hospital Groningen, Groningen, Netherlands; Critical Care, Anesthesiology, Peri-Operative and Emergency Medicine (CAPE), University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Alessio Franceschini
- Department of Cardiosurgery, Cardiology, Heart and Lung Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Simon Nadel
- Pediatric Intensive Care Unit, Imperial College Healthcare NHS Trust, London, UK
| | - Matthias Kumpf
- Interdisciplinary Pediatric Intensive Care Unit, Universitäetsklinikum Tuebingen, Tuebingen, Germany
| | - Alessandra Loreti
- Medical Library, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Roelie Wösten-Van Asperen
- Department of Pediatric Intensive Care, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, Netherlands
| | - Orsola Gawronski
- Professional Development, Continuing Education and Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Joe Brierley
- Department of Pediatric Intensive Care, Great Ormond Street Hospital for Children, London, UK
| | - Graeme MacLaren
- Director of Cardiothoracic ICU, National University Health System, Singapore, Singapore; Pediatric Intensive Care Unit, The Royal Children's Hospital, Melbourne, Australia
| | - Kris M Mahadeo
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapy, Houston, TX, USA; The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
22
|
Stable to improved cardiac and pulmonary function in children with high-risk sickle cell disease following haploidentical stem cell transplantation. Bone Marrow Transplant 2021; 56:2221-2230. [PMID: 33958740 PMCID: PMC8416746 DOI: 10.1038/s41409-021-01298-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023]
Abstract
Children with sickle cell disease (SCD) are at high-risk of progressive, chronic pulmonary and cardiac dysfunction. In this prospective multicenter Phase II trial of myeloimmunoablative conditioning followed by haploidentical stem cell transplantation in children with high-risk SCD, 19 patients, 2.0-21.0 years of age, were enrolled with one or more of the following: history of (1) overt stroke; (2) silent stroke; (3) elevated transcranial Doppler velocity; (4) multiple vaso-occlusive crises; and/or (5) two or more acute chest syndromes and received haploidentical transplants from 18 parental donors. Cardiac and pulmonary centralized cores were established. Pulmonary function results were expressed as percent of the median of healthy reference cohorts, matched for age, sex, height and race. At 2 years, pulmonary functions including forced expiratory volume (FEV), FEV1/ forced vital capacity (FVC), total lung capacity (TLC), diffusing capacity of lung for carbon monoxide (DLCO) were stable to improved compared to baseline values. Importantly, specific airway conductance was significantly improved at 2 years (p < 0.004). Left ventricular systolic function (fractional shortening) and tricuspid regurgitant velocity were stable at 2 years. These results demonstrate that haploidentical stem cell transplantation can stabilize or improve cardiopulmonary function in patients with SCD.
Collapse
|
23
|
Increased risk of cardio-cerebrovascular disease after hematopoietic cell transplantation in patients with previous history. Chin Med J (Engl) 2021; 134:1431-1440. [PMID: 34091525 PMCID: PMC8213243 DOI: 10.1097/cm9.0000000000001569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background: The impacts of previous cardio-cerebrovascular disease (pre-CCVD) on the outcomes of hematopoietic cell transplantation (HCT) are not well described. Patients with pre-CCVD may often be poor candidates for HCT. This study aimed to investigate the impact of pre-CCVD on transplant outcomes. Methods: A retrospective study was conducted between patients with and without pre-CCVD who consecutively received allogeneic or autologous HCT between November 2013 and January 2020 with a matching of age and disease status. The cardiovascular complications and HCT outcomes of the two groups were evaluated and compared. The primary endpoints were post-transplant cardio-cerebrovascular disease (post-CCVD) and non-relapse mortality (NRM). We used a multivariable Cox proportional hazard model and the Fine-Gray competing risk regressions for analyses to estimate the hazard ratios (HRs). Results: The outcomes of 23 HCT recipients with pre-CCVD were compared with those of 107 patients in the control group. No significant differences were noted in terms of engraftment, overall survival (OS) (67.00% vs. 67.90%, P = 0.983), or relapse (29.78% vs. 28.26%, P = 0.561) between the pre-CCVD group and the control group. The cumulative incidences of 2-year NRM were similar between patients with pre-CCVD and the controls (14.68% vs. 17.08%, P = 0.670). However, pre-CCVD was associated with an increased incidence of post-CCVD (HR: 12.50, 95% confidence interval [CI]: 3.88–40.30, P < 0.001), which was an independent risk factor for increased NRM (HR: 10.29, 95% CI: 3.84–27.62, P < 0.001) and inferior OS (HR: 10.29, 95% CI: 3.84–27.62, P < 0.001). Conclusions: These findings suggest that the existence of pre-CCVD before transplantation might not result in increased mortality directly but superpose the toxicity of the transplantation procedure, leading to a risk of post-CCVD. Post-CCVD was a powerful predictor for high NRM and inferior OS. Further risk stratification of pre-CCVD is needed to reduce NRM in various transplantation settings.
Collapse
|
24
|
Cardiovascular Issues in Hematopoietic Stem Cell Transplantation (HSCT). Curr Treat Options Oncol 2021; 22:51. [PMID: 33939030 DOI: 10.1007/s11864-021-00850-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 12/28/2022]
Abstract
OPINION STATEMENT Hematopoietic stem cell transplantation (HSCT) is considered, since 1957, a potentially curative therapeutic option for many hemopathies. Although it is an aggressive procedure, improvements in transplantation techniques and supportive strategies have markedly decreased treatment-related mortality, and the prevalence of HSCT survivors is expected to exceed half a million by 2030. At the same time, there is a growing awareness of the potentially negative effects of HSCT-related therapies on the cardiovascular (CV) system, and HSCT survivors constitute a population at high cardiovascular (CV) risk. Cardio-oncology has been proposed as a new approach to prevent cardiovascular toxicity during and after HSCT. The present article attempts to provide a multidisciplinary and practical approach to the prevention, monitoring, and management of the most common cardiovascular complications in patients undergoing hematopoietic stem cell transplantation.
Collapse
|