1
|
Paparoni F, Alizon G, Zitolo A, Rezvani SJ, Di Cicco A, Magnan H, Fonda E. A novel electrochemical flow-cell for operando XAS investigations in X-ray opaque supports. Phys Chem Chem Phys 2024; 26:3897-3906. [PMID: 38230576 DOI: 10.1039/d3cp04701f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Improvement of electrochemical technologies is one of the most popular topics in the field of renewable energy. However, this process requires a deep understanding of the electrode-electrolyte interface behavior under operando conditions. X-ray absorption spectroscopy (XAS) is widely employed to characterize electrode materials, providing element-selective oxidation state and local structure. Several existing cells allow studies as close as possible to realistic operating conditions, but most of them rely on the deposition of the electrodes on conductive and X-ray transparent materials, from where the radiation impinges the sample. In this work, we present a new electrochemical flow-cell for operando XAS that can be used with X-ray opaque substrates, since the signal is effectively detected from the electrode surface, as the radiation passes through a thin layer of electrolyte (∼17 μm). The electrolyte can flow over the electrode, reducing bubble formation and avoiding strong reactant concentration gradients. We show that high-quality data can be obtained under operando conditions, thanks to the high efficiency of the cell from the hard X-ray regime down to ∼4 keV. We report as a case study the operando XAS investigation at the Fe and Ni K-edges on Ni-doped γ-Fe2O3 films, epitaxially grown on Pt substrates. The effect of the Ni content on the catalytic performances for the oxygen evolution reaction is discussed.
Collapse
Affiliation(s)
- Francesco Paparoni
- Synchrotron SOLEIL, Départementale 128, 91190 Saint-Aubin, France.
- Sez. Fisica, Scuola di Scienze e Tecnologie, Universitá di Camerino, via Madonna delle Carceri, I-62032 Camerino, Italy
| | - Guillaume Alizon
- Synchrotron SOLEIL, Départementale 128, 91190 Saint-Aubin, France.
| | - Andrea Zitolo
- Synchrotron SOLEIL, Départementale 128, 91190 Saint-Aubin, France.
| | - Seyed Javad Rezvani
- Sez. Fisica, Scuola di Scienze e Tecnologie, Universitá di Camerino, via Madonna delle Carceri, I-62032 Camerino, Italy
- CNR-IOM, SS14 - km 163.5 in Area Science Park, 34149, Trieste, Italy
| | - Andrea Di Cicco
- Sez. Fisica, Scuola di Scienze e Tecnologie, Universitá di Camerino, via Madonna delle Carceri, I-62032 Camerino, Italy
| | - Hélène Magnan
- Université Paris-Saclay, CEA, CNRS, Service de Physique de l'Etat Condensé, F-91191 Gif-sur-Yvette, France
| | - Emiliano Fonda
- Synchrotron SOLEIL, Départementale 128, 91190 Saint-Aubin, France.
| |
Collapse
|
2
|
Dey S, Folkestad SD, Paul AC, Koch H, Krylov AI. Core-ionization spectrum of liquid water. Phys Chem Chem Phys 2024; 26:1845-1859. [PMID: 38174659 DOI: 10.1039/d3cp02499g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
We present state-of-the-art calculations of the core-ionization spectrum of water. Despite significant progress in procedures developed to mitigate various experimental complications and uncertainties, the experimental determination of ionization energies of solvated species involves several non-trivial steps such as assessing the effect of the surface potential, electrolytes, and finite escape depths of photoelectrons. This provides a motivation to obtain robust theoretical values of the intrinsic bulk ionization energy and the corresponding solvent-induced shift. Here we develop theoretical protocols based on coupled-cluster theory and electrostatic embedding. Our value of the intrinsic solvent-induced shift of the 1sO ionization energy of water is -1.79 eV. The computed absolute position and the width of the 1sO peak in photoelectron spectrum of water are 538.47 eV and 1.44 eV, respectively, agreeing well with the best experimental values.
Collapse
Affiliation(s)
- Sourav Dey
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
| | - Sarai Dery Folkestad
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
| | - Alexander C Paul
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Henrik Koch
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
3
|
Wibowo RE, Garcia-Diez R, Bystron T, Prokop M, van der Merwe M, Arce MD, Jiménez CE, Hsieh TE, Frisch J, Steigert A, Favaro M, Starr DE, Wilks RG, Bouzek K, Bär M. Oxidation of Aqueous Phosphorous Acid Electrolyte in Contact with Pt Studied by X-ray Photoemission Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:51989-51999. [PMID: 37890003 PMCID: PMC10636727 DOI: 10.1021/acsami.3c12557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
The oxidation of the aqueous H3PO3 in contact with Pt was investigated for a fundamental understanding of the Pt/aqueous H3PO3 interaction with the goal of providing a comprehensive basis for the further optimization of high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). Ion-exchange chromatography (IEC) experiments suggested that in ambient conditions, Pt catalyzes H3PO3 oxidation to H3PO4 with H2O. X-ray photoelectron spectroscopy (XPS) on different substrates, including Au and Pt, previously treated in H3PO3 solutions was conducted to determine the catalytic abilities of selected metals toward H3PO3 oxidation. In situ ambient pressure hard X-ray photoelectron spectroscopy (AP-HAXPES) combined with the "dip-and-pull" method was performed to investigate the state of H3PO3 at the Pt|H3PO3 interface and in the bulk solution. It was shown that whereas H3PO3 remains stable in the bulk solution, the catalyzed oxidation of H3PO3 by H2O to H3PO4 accompanied by H2 generation occurs in contact with the Pt surface. This catalytic process likely involves H3PO3 adsorption at the Pt surface in a highly reactive pyramidal tautomeric configuration.
Collapse
Affiliation(s)
- Romualdus Enggar Wibowo
- Dept.
Interface Design, Helmholtz-Zentrum Berlin
(HZB) für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Raul Garcia-Diez
- Dept.
Interface Design, Helmholtz-Zentrum Berlin
(HZB) für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Tomas Bystron
- Department
of Inorganic Technology, University of Chemistry
and Technology Prague, Technicka 5, Prague 6 166 28, Czech Republic
| | - Martin Prokop
- Department
of Inorganic Technology, University of Chemistry
and Technology Prague, Technicka 5, Prague 6 166 28, Czech Republic
| | - Marianne van der Merwe
- Dept.
Interface Design, Helmholtz-Zentrum Berlin
(HZB) für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Mauricio D. Arce
- Dept.
Interface Design, Helmholtz-Zentrum Berlin
(HZB) für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany
- Departamento
Caracterización de Materiales, INN-CNEA-CONICET,
Centro Atómico Bariloche, Av. Bustillo 9500, S. C. de Bariloche, Rio
Negro 8400, Argentina
| | - Catalina E. Jiménez
- Dept.
Interface Design, Helmholtz-Zentrum Berlin
(HZB) für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Tzung-En Hsieh
- Dept.
Interface Design, Helmholtz-Zentrum Berlin
(HZB) für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Johannes Frisch
- Dept.
Interface Design, Helmholtz-Zentrum Berlin
(HZB) für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany
- Energy
Materials In-situ Laboratory Berlin (EMIL), HZB, Albert-Einstein-Str.
15, 12489 Berlin, Germany
| | - Alexander Steigert
- Institute
for Nanospectroscopy, Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH (HZB), Albert-Einstein-Str. 15, 12489Berlin,Germany
| | - Marco Favaro
- Institute
for Solar Fuels, Helmholtz-Zentrum Berlin
für Materialien und Energie GmbH (HZB), Hahn-Meitner-Platz 1, 14109Berlin, Germany
| | - David E. Starr
- Institute
for Solar Fuels, Helmholtz-Zentrum Berlin
für Materialien und Energie GmbH (HZB), Hahn-Meitner-Platz 1, 14109Berlin, Germany
| | - Regan G. Wilks
- Dept.
Interface Design, Helmholtz-Zentrum Berlin
(HZB) für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany
- Energy
Materials In-situ Laboratory Berlin (EMIL), HZB, Albert-Einstein-Str.
15, 12489 Berlin, Germany
| | - Karel Bouzek
- Department
of Inorganic Technology, University of Chemistry
and Technology Prague, Technicka 5, Prague 6 166 28, Czech Republic
| | - Marcus Bär
- Dept.
Interface Design, Helmholtz-Zentrum Berlin
(HZB) für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany
- Energy
Materials In-situ Laboratory Berlin (EMIL), HZB, Albert-Einstein-Str.
15, 12489 Berlin, Germany
- Department
of Chemistry and Pharmacy, Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Egerlandstr. 3, 91058 Erlangen, Germany
- Department
of X-ray Spectroscopy at Interfaces of Thin Films, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy
(HI ERN), Albert-Einstein-Str.
15, 12489 Berlin, Germany
| |
Collapse
|
4
|
Liu J, Han Y, Liu C, Yang B, Liu Z. Origin of the Liquid/Gaseous Water Binding Energy Splitting Measured via X-ray Photoelectron Spectroscopy. J Phys Chem Lett 2023; 14:863-869. [PMID: 36657017 DOI: 10.1021/acs.jpclett.2c03099] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ambient-pressure X-ray photoelectron spectroscopy (APXPS) provides an effective way of tackling the challenge of detecting chemical states within complex systems. Here a fundamental understanding of the core-level shift (CLS) of water in the liquid/gas phase observed via APXPS is obtained with computational modeling at the molecular and electronic levels. The CLS value of ∼2 eV derived from experiments is reproduced by modeling in terms of the total shift and photon energy dependence. The contributions of collective electrical effects, including electrostatic potential, orbital deformation, and electronic polarization, to the CLS were further analyzed and discussed. Our results show that the CLS is dominated by the final state effect due to electronic polarization of the surrounding molecules following photoionization, while the peak broadening is mainly determined by the electrostatic potential, which belongs to an initial state effect. The physical insights and computational approaches could be further applied to study more complex molecules or materials.
Collapse
Affiliation(s)
- Jian Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Yong Han
- School of Physical Science and Technology, ShanghaiTech University, Shanghai201210, China
- Center for Transformative Science, ShanghaiTech University, Shanghai201210, China
| | - Chiyan Liu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Bo Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Zhi Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai201210, China
- Center for Transformative Science, ShanghaiTech University, Shanghai201210, China
| |
Collapse
|
5
|
Recent Advances in In Situ/Operando Surface/Interface Characterization Techniques for the Study of Artificial Photosynthesis. INORGANICS 2022. [DOI: 10.3390/inorganics11010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
(Photo-)electrocatalytic artificial photosynthesis driven by electrical and/or solar energy that converts water (H2O) and carbon dioxide (CO2) into hydrogen (H2), carbohydrates and oxygen (O2), has proven to be a promising and effective route for producing clean alternatives to fossil fuels, as well as for storing intermittent renewable energy, and thus to solve the energy crisis and climate change issues that we are facing today. Basic (photo-)electrocatalysis consists of three main processes: (1) light absorption, (2) the separation and transport of photogenerated charge carriers, and (3) the transfer of photogenerated charge carriers at the interfaces. With further research, scientists have found that these three steps are significantly affected by surface and interface properties (e.g., defect, dangling bonds, adsorption/desorption, surface recombination, electric double layer (EDL), surface dipole). Therefore, the catalytic performance, which to a great extent is determined by the physicochemical properties of surfaces and interfaces between catalyst and reactant, can be changed dramatically under working conditions. Common approaches for investigating these phenomena include X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), scanning probe microscopy (SPM), wide angle X-ray diffraction (WAXRD), auger electron spectroscopy (AES), transmission electron microscope (TEM), etc. Generally, these techniques can only be applied under ex situ conditions and cannot fully recover the changes of catalysts in real chemical reactions. How to identify and track alterations of the catalysts, and thus provide further insight into the complex mechanisms behind them, has become a major research topic in this field. The application of in situ/operando characterization techniques enables real-time monitoring and analysis of dynamic changes. Therefore, researchers can obtain physical and/or chemical information during the reaction (e.g., morphology, chemical bonding, valence state, photocurrent distribution, surface potential variation, surface reconstruction), or even by the combination of these techniques as a suite (e.g., atomic force microscopy-based infrared spectroscopy (AFM-IR), or near-ambient-pressure STM/XPS combined system (NAP STM-XPS)) to correlate the various properties simultaneously, so as to further reveal the reaction mechanisms. In this review, we briefly describe the working principles of in situ/operando surface/interface characterization technologies (i.e., SPM and X-ray spectroscopy) and discuss the recent progress in monitoring relevant surface/interface changes during water splitting and CO2 reduction reactions (CO2RR). We hope that this review will provide our readers with some ideas and guidance about how these in situ/operando characterization techniques can help us investigate the changes in catalyst surfaces/interfaces, and further promote the development of (photo-)electrocatalytic surface and interface engineering.
Collapse
|
6
|
Liu C, Dong Q, Han Y, Zang Y, Zhang H, Xie X, Yu Y, Liu Z. Understanding fundamentals of electrochemical reactions with tender X-rays: A new lab-based operando X-ray photoelectron spectroscopy method for probing liquid/solid and gas/solid interfaces across a variety of electrochemical systems. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64092-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
7
|
Chatenet M, Pollet BG, Dekel DR, Dionigi F, Deseure J, Millet P, Braatz RD, Bazant MZ, Eikerling M, Staffell I, Balcombe P, Shao-Horn Y, Schäfer H. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem Soc Rev 2022; 51:4583-4762. [PMID: 35575644 PMCID: PMC9332215 DOI: 10.1039/d0cs01079k] [Citation(s) in RCA: 213] [Impact Index Per Article: 106.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/23/2022]
Abstract
Replacing fossil fuels with energy sources and carriers that are sustainable, environmentally benign, and affordable is amongst the most pressing challenges for future socio-economic development. To that goal, hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting, if driven by green electricity, would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research, also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first-principles calculations and machine learning. In addition, a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the 'junctions' between the field's physical chemists, materials scientists and engineers, as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.
Collapse
Affiliation(s)
- Marian Chatenet
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Bruno G Pollet
- Hydrogen Energy and Sonochemistry Research group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU) NO-7491, Trondheim, Norway
- Green Hydrogen Lab, Institute for Hydrogen Research (IHR), Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G9A 5H7, Canada
| | - Dario R Dekel
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Fabio Dionigi
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Jonathan Deseure
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Pierre Millet
- Paris-Saclay University, ICMMO (UMR 8182), 91400 Orsay, France
- Elogen, 8 avenue du Parana, 91940 Les Ulis, France
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Michael Eikerling
- Chair of Theory and Computation of Energy Materials, Division of Materials Science and Engineering, RWTH Aachen University, Intzestraße 5, 52072 Aachen, Germany
- Institute of Energy and Climate Research, IEK-13: Modelling and Simulation of Materials in Energy Technology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Iain Staffell
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Paul Balcombe
- Division of Chemical Engineering and Renewable Energy, School of Engineering and Material Science, Queen Mary University of London, London, UK
| | - Yang Shao-Horn
- Research Laboratory of Electronics and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Helmut Schäfer
- Institute of Chemistry of New Materials, The Electrochemical Energy and Catalysis Group, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany.
| |
Collapse
|
8
|
Wang M, Feng Z. Interfacial processes in electrochemical energy systems. Chem Commun (Camb) 2021; 57:10453-10468. [PMID: 34494049 DOI: 10.1039/d1cc01703a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Electrochemical energy systems such as batteries, water electrolyzers, and fuel cells are considered as promising and sustainable energy storage and conversion devices due to their high energy densities and zero or negative carbon dioxide emission. However, their widespread applications are hindered by many technical challenges, such as the low efficiency and poor long-term cyclability, which are mostly affected by the changes at the reactant/electrode/electrolyte interfaces. These interfacial processes involve ion/electron transfer, molecular/ion adsorption/desorption, and complex interface restructuring, which lead to irreversible modifications to the electrodes and the electrolyte. The understanding of these interfacial processes is thus crucial to provide strategies for solving those problems. In this review, we will discuss different interfacial processes at three representative interfaces, namely, solid-gas, solid-liquid, and solid-solid, in various electrochemical energy systems, and how they could influence the performance of electrochemical systems.
Collapse
Affiliation(s)
- Maoyu Wang
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA.
| | - Zhenxing Feng
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA.
| |
Collapse
|
9
|
Källquist I, Lindgren F, Lee MT, Shavorskiy A, Edström K, Rensmo H, Nyholm L, Maibach J, Hahlin M. Probing Electrochemical Potential Differences over the Solid/Liquid Interface in Li-Ion Battery Model Systems. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32989-32996. [PMID: 34251812 PMCID: PMC8397238 DOI: 10.1021/acsami.1c07424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
The electrochemical potential difference (Δμ̅) is the driving force for the transfer of a charged species from one phase to another in a redox reaction. In Li-ion batteries (LIBs), Δμ̅ values for both electrons and Li-ions play an important role in the charge-transfer kinetics at the electrode/electrolyte interfaces. Because of the lack of suitable measurement techniques, little is known about how Δμ̅ affects the redox reactions occurring at the solid/liquid interfaces during LIB operation. Herein, we outline the relations between different potentials and show how ambient pressure photoelectron spectroscopy (APPES) can be used to follow changes in Δμ̅e over the solid/liquid interfaces operando by measuring the kinetic energy (KE) shifts of the electrolyte core levels. The KE shift versus applied voltage shows a linear dependence of ∼1 eV/V during charging of the electrical double layer and during solid electrolyte interphase formation. This agrees with the expected results for an ideally polarizable interface. During lithiation, the slope changes drastically. We propose a model to explain this based on charge transfer over the solid/liquid interface.
Collapse
Affiliation(s)
- Ida Källquist
- Department
of Physics and Astronomy, Uppsala University, 751 20 Uppsala, Sweden
| | - Fredrik Lindgren
- Department
of Physics and Astronomy, Uppsala University, 751 20 Uppsala, Sweden
| | - Ming-Tao Lee
- Department
of Chemistry - Ångström, Uppsala
University, 751 20 Uppsala, Sweden
| | | | - Kristina Edström
- Department
of Chemistry - Ångström, Uppsala
University, 751 20 Uppsala, Sweden
| | - Håkan Rensmo
- Department
of Physics and Astronomy, Uppsala University, 751 20 Uppsala, Sweden
| | - Leif Nyholm
- Department
of Chemistry - Ångström, Uppsala
University, 751 20 Uppsala, Sweden
| | - Julia Maibach
- Institute
for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Maria Hahlin
- Department
of Physics and Astronomy, Uppsala University, 751 20 Uppsala, Sweden
- Department
of Chemistry - Ångström, Uppsala
University, 751 20 Uppsala, Sweden
| |
Collapse
|
10
|
Han Y, Zhang H, Yu Y, Liu Z. In Situ Characterization of Catalysis and Electrocatalysis Using APXPS. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04251] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yong Han
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Hui Zhang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yi Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Zhi Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
11
|
Stochastic Analysis of Electron Transfer and Mass Transport in Confined Solid/Liquid Interfaces. SURFACES 2020. [DOI: 10.3390/surfaces3030029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Molecular-level understanding of electrified solid/liquid interfaces has recently been enabled thanks to the development of novel in situ/operando spectroscopic tools. Among those, ambient pressure photoelectron spectroscopy performed in the tender/hard X-ray region and coupled with the “dip and pull” method makes it possible to simultaneously interrogate the chemical composition of the interface and built-in electrical potentials. On the other hand, only thin liquid films (on the order of tens of nanometers at most) can be investigated, since the photo-emitted electrons must travel through the electrolyte layer to reach the photoelectron analyzer. Due to the challenging control and stability of nm-thick liquid films, a detailed experimental electrochemical investigation of such thin electrolyte layers is still lacking. This work therefore aims at characterizing the electrochemical behavior of solid/liquid interfaces when confined in nanometer-sized regions using a stochastic simulation approach. The investigation was performed by modeling (i) the electron transfer between a solid surface and a one-electron redox couple and (ii) its diffusion in solution. Our findings show that the well-known thin-layer voltammetry theory elaborated by Hubbard can be successfully applied to describe the voltammetric behavior of such nanometer-sized interfaces. We also provide an estimation of the current densities developed in these confined interfaces, resulting in values on the order of few hundreds of nA·cm−2. We believe that our results can contribute to the comprehension of the physical/chemical properties of nano-interfaces, thereby aiding to a better understanding of the capabilities and limitations of the “dip and pull” method.
Collapse
|
12
|
de Alwis C, Leftwich TR, Perrine KA. New Approach to Simultaneous In Situ Measurements of the Air/Liquid/Solid Interface Using PM-IRRAS. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3404-3414. [PMID: 32175739 DOI: 10.1021/acs.langmuir.9b03958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Vibrational spectroscopy techniques have evolved to measure gases, liquids, and solids at surfaces and interfaces. In the field of surface-sensitive vibrational spectroscopy, infrared spectroscopy measures the adsorption on surfaces and changes from reactions. Previous polarized modulated-infrared reflection-absorption spectroscopy (PM-IRRAS) measurements at the gas/solid interface were developed to observe catalytic reactions near reaction conditions. Other PM-IRRAS measurements use liquid cells where the sample is submerged and compressed against a prism that has traditionally been used for electrochemical reactions. This article presents a new method that is used to observe in situ adsorption of molecules using PM-IRRAS at the gas/liquid/solid interface. We demonstrate the meniscus method by measuring the adsorption of octadecanethiol on gold surfaces. Characterization of self-assembled monolayers (SAMs), the "gold standard" for PM-IRRAS calibration measurements, was measured in ethanol solutions. The condensed-phase (air/liquid) interface in addition to the liquid/solid interface was measured simultaneously in solution. These are compared with liquid attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy measurements to confirm the presence of the SAM and liquid ethanol. A model of the three-phase system is used to approximate the thickness of the liquid ethanol layer and correlate these values to signal attenuation using PM-IRRAS. This proof-of-concept study enables the measurement of reactions at the gas/liquid/solid interface that could be adapted for other reactions at the electrode and electrolyte interfaces with applications in environmental science and heterogeneous catalysis.
Collapse
|
13
|
|
14
|
Abstract
The development of novel in situ/operando spectroscopic tools has provided the opportunity for a molecular level understanding of solid/liquid interfaces. Ambient pressure photoelectron spectroscopy using hard X-rays is an excellent interface characterization tool, due to its ability to interrogate simultaneously the chemical composition and built-in electrical potentials, in situ. In this work, we briefly describe the “dip and pull” method, which is currently used as a way to investigate in situ solid/liquid interfaces. By simulating photoelectron intensities from a functionalized TiO2 surface buried by a nanometric-thin layer of water, we obtain the optimal photon energy range that provides the greatest sensitivity to the interface. We also study the evolution of the functionalized TiO2 surface chemical composition and correlated band-bending with a change in the electrolyte pH from 7 to 14. Our results provide general information about the optimal experimental conditions for characterizing the solid/liquid interface using the “dip and pull” method, and the unique possibilities offered by this technique.
Collapse
|