1
|
Briski O, Cabeza JP, Salamone DF, Fernández-Martin R, Gambini A. Efficiency of the zinc chelator 1,10-phenanthroline for assisted oocyte activation following ICSI in pigs. Reprod Fertil Dev 2024; 36:RD24129. [PMID: 39270059 DOI: 10.1071/rd24129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Context In vitro embryo production in pigs is an important tool for advancing biomedical research. Intracytoplasmic sperm injection (ICSI) circumvents the polyspermy problems associated with conventional IVF in porcine. However, the suboptimal efficiency for ICSI in pigs requires new strategies to increase blastocyst formation rates. Aim To investigate novel methods for assisted activation using the zinc chelator 1,10-phenanthroline (PHEN), and to improve embryo developmental competence and quality of ICSI porcine blastocyst. Methods ICSI embryos were treated with PHEN after or before sperm injection, recording pronuclear formation, blastocyst rate and the expression of SMARCA4, OCT4, SOX2 and CDX2. Key results Neither electrical nor PHEN significantly improves pronuclear formation rates before or after ICSI. Following in vitro culture to the blastocyst stage, no significant differences were observed in developmental rates among the groups. Moreover, the use of PHEN did not alter the total cell number or the expression of OCT4, SOX2 and CDX2 in pig ICSI blastocysts. Conclusions Assisted oocyte activation with PHEN does not affect the preimplantation development of ICSI-derived pig embryos. Implications These results hold significance in refining and advancing the application of assisted oocyte activation techniques. They offer insights into addressing fertility issues and propelling advancements in human and animal reproductive medicine.
Collapse
Affiliation(s)
- Olinda Briski
- Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina; and CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina
| | - Juan P Cabeza
- Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina
| | - Daniel F Salamone
- Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina; and CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina
| | - Rafael Fernández-Martin
- Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina; and CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina
| | - Andrés Gambini
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, Qld 4343, Australia; and School of Veterinary Sciences, The University of Queensland, Gatton, Qld 4343, Australia
| |
Collapse
|
2
|
Briski O, La Motta GE, Ratner LD, Allegroni FA, Pillado S, Álvarez G, Gutierrez B, Tarragona L, Zaccagnini A, Acerbo M, Ciampi C, Fernández-Martin R, Salamone DF. Comparison of ICSI, IVF, and in vivo derived embryos to produce CRISPR-Cas9 gene-edited pigs for xenotransplantation. Theriogenology 2024; 220:43-55. [PMID: 38471390 DOI: 10.1016/j.theriogenology.2024.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
Genome editing in pigs for xenotransplantation has seen significant advances in recent years. This study compared three methodologies to generate gene-edited embryos, including co-injection of sperm together with the CRISPR-Cas9 system into oocytes, named ICSI-MGE (mediated gene editing); microinjection of CRISPR-Cas9 components into oocytes followed by in vitro fertilization (IVF), and microinjection of in vivo fertilized zygotes with the CRISPR-Cas9 system. Our goal was to knock-out (KO) porcine genes involved in the biosynthesis of xenoantigens responsible for the hyperacute rejection of interspecific xenografts, namely GGTA1, CMAH, and β4GalNT2. Additionally, we attempted to KO the growth hormone receptor (GHR) gene with the aim of limiting the growth of porcine organs to a size that is physiologically suitable for human transplantation. Embryo development, pregnancy, and gene editing rates were evaluated. We found an efficient mutation of the GGTA1 gene following ICSI-MGE, comparable to the results obtained through the microinjection of oocytes followed by IVF. ICSI-MGE also showed higher rates of biallelic mutations compared to the other techniques. Five healthy piglets were born from in vivo-derived embryos, all of them exhibiting biallelic mutations in the GGTA1 gene, with three displaying mutations in the GHR gene. No mutations were observed in the CMAH and β4GalNT2 genes. In conclusion, in vitro methodologies showed high rates of gene-edited embryos. Specifically, ICSI-MGE proved to be an efficient technique for obtaining homozygous biallelic mutated embryos. Lastly, only live births were obtained from in vivo-derived embryos showing efficient multiple gene editing for GGTA1 and GHR.
Collapse
Affiliation(s)
- Olinda Briski
- CONICET-Universidad de Buenos Aires - Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina; Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Gastón Emilio La Motta
- CONICET-Universidad de Buenos Aires - Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| | - Laura Daniela Ratner
- CONICET-Universidad de Buenos Aires - Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina; Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Federico Andrés Allegroni
- Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Santiago Pillado
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Guadalupe Álvarez
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Betiana Gutierrez
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Lisa Tarragona
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Andrea Zaccagnini
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Marcelo Acerbo
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Carla Ciampi
- CONICET-Universidad de Buenos Aires - Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina; Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Rafael Fernández-Martin
- CONICET-Universidad de Buenos Aires - Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina; Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina.
| | - Daniel Felipe Salamone
- CONICET-Universidad de Buenos Aires - Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina; Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina.
| |
Collapse
|
3
|
Bishara K, Kwon JH, Hill MA, Helke KL, Norris RA, Whitworth K, Prather RS, Rajab TK. Characterization of Green Fluorescent Protein in Heart Valves of a Transgenic Swine Model for Partial Heart Transplant Research. J Cardiovasc Dev Dis 2023; 10:254. [PMID: 37367419 PMCID: PMC10299052 DOI: 10.3390/jcdd10060254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
A transgenic strain of pigs was created to express green fluorescent protein (GFP) ubiquitously using a pCAGG promoter. Here, we characterize GFP expression in the semilunar valves and great arteries of GFP-transgenic (GFP-Tg) pigs. Immunofluorescence was performed to visualize and quantify GFP expression and colocalization with nuclear staining. GFP expression was confirmed in both the semilunar valves and great arteries of GFP-Tg pigs compared to wild-type tissues (aorta, p = 0.0002; pulmonary artery, p = 0.0005; aortic valve; and pulmonic valve, p < 0.0001). The quantification of GFP expression in cardiac tissue allows this strain of GFP-Tg pigs to be used for future research in partial heart transplantation.
Collapse
Affiliation(s)
- Katherine Bishara
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29501, USA
| | - Jennie H. Kwon
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29501, USA
| | - Morgan A. Hill
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29501, USA
| | - Kristi L. Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, SC 29501, USA
| | - Russell A. Norris
- Department of Regenerative Medicine, Medical University of South Carolina, Charleston, SC 29501, USA
| | - Kristin Whitworth
- National Swine Resource and Research Center, University of Missouri, Columbia, MO 65211, USA; (K.W.)
| | - Randall S. Prather
- National Swine Resource and Research Center, University of Missouri, Columbia, MO 65211, USA; (K.W.)
| | - Taufiek Konrad Rajab
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29501, USA
| |
Collapse
|
4
|
Briski O, Salamone DF. Past, present and future of ICSI in livestock species. Anim Reprod Sci 2022; 246:106925. [PMID: 35148927 DOI: 10.1016/j.anireprosci.2022.106925] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 01/03/2022] [Accepted: 01/16/2022] [Indexed: 12/14/2022]
Abstract
During the past 2 decades, intracytoplasmic sperm injection (ICSI) has become a routine technique for clinical applications in humans. The widespread use among domestic species, however, has been limited to horses. In horses, ICSI is used to reproduce elite individuals and, as well as in humans, to mitigate or even circumvent reproductive barriers. Failures in superovulation and conventional in vitro fertilization (IVF) have been the main reason for the use of this technology in horses. In pigs, ICSI has been successfully used to produce transgenic animals. A series of factors have resulted in implementation of ICSI in pigs: need to use zygotes for numerous technologies, complexity of collecting zygotes surgically, and problems of polyspermy when there is utilization of IVF procedures. Nevertheless, there have been very few additional reports confirming positive results with the use of ICSI in pigs. The ICSI procedure could be important for use in cattle of high genetic value by maximizing semen utilization, as well as for utilization of spermatozoa from prepubertal bulls, by providing the opportunity to shorten the generation interval. When attempting to utilize ICSI in ruminants, there are some biological limitations that need to be overcome if this procedure is going to be efficacious for making genetic improvements in livestock in the future. In this review article, there is an overview and projection of the methodologies and applications that are envisioned for ICSI utilization in these species in the future.
Collapse
Affiliation(s)
- O Briski
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Producción Animal, Buenos Aires, Laboratorio Biotecnología Animal (LabBA), Av. San Martin 4453, Ciudad Autónoma de, Buenos Aires 1417, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Buenos Aires, Argentina
| | - D F Salamone
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Producción Animal, Buenos Aires, Laboratorio Biotecnología Animal (LabBA), Av. San Martin 4453, Ciudad Autónoma de, Buenos Aires 1417, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Buenos Aires, Argentina.
| |
Collapse
|
5
|
Springer C, Wolf E, Simmet K. A New Toolbox in Experimental Embryology-Alternative Model Organisms for Studying Preimplantation Development. J Dev Biol 2021; 9:15. [PMID: 33918361 PMCID: PMC8167745 DOI: 10.3390/jdb9020015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Preimplantation development is well conserved across mammalian species, but major differences in developmental kinetics, regulation of early lineage differentiation and implantation require studies in different model organisms, especially to better understand human development. Large domestic species, such as cattle and pig, resemble human development in many different aspects, i.e., the timing of zygotic genome activation, mechanisms of early lineage differentiations and the period until blastocyst formation. In this article, we give an overview of different assisted reproductive technologies, which are well established in cattle and pig and make them easily accessible to study early embryonic development. We outline the available technologies to create genetically modified models and to modulate lineage differentiation as well as recent methodological developments in genome sequencing and imaging, which form an immense toolbox for research. Finally, we compare the most recent findings in regulation of the first lineage differentiations across species and show how alternative models enhance our understanding of preimplantation development.
Collapse
Affiliation(s)
- Claudia Springer
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (E.W.)
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (E.W.)
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany
| | - Kilian Simmet
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (E.W.)
| |
Collapse
|
6
|
Unnikrishnan V, Kastelic J, Thundathil J. Intracytoplasmic Sperm Injection in Cattle. Genes (Basel) 2021; 12:198. [PMID: 33572865 PMCID: PMC7911995 DOI: 10.3390/genes12020198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 10/30/2022] Open
Abstract
Intracytoplasmic sperm injection (ICSI) involves the microinjection of sperm into a matured oocyte. Although this reproductive technology is successfully used in humans and many animal species, the efficiency of this procedure is low in the bovine species mainly due to failed oocyte activation following sperm microinjection. This review discusses various reasons for the low efficiency of ICSI in cattle, potential solutions, and future directions for research in this area, emphasizing the contributions of testis-specific isoforms of Na/K-ATPase (ATP1A4) and phospholipase C zeta (PLC ζ). Improving the efficiency of bovine ICSI would benefit the cattle breeding industries by effectively utilizing semen from elite sires at their earliest possible age.
Collapse
Affiliation(s)
| | | | - Jacob Thundathil
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N4N1, Canada; (V.U.); (J.K.)
| |
Collapse
|
7
|
Pinzon-Arteaga C, Snyder MD, Lazzarotto CR, Moreno NF, Juras R, Raudsepp T, Golding MC, Varner DD, Long CR. Efficient correction of a deleterious point mutation in primary horse fibroblasts with CRISPR-Cas9. Sci Rep 2020; 10:7411. [PMID: 32366884 PMCID: PMC7198616 DOI: 10.1038/s41598-020-62723-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 03/04/2020] [Indexed: 12/26/2022] Open
Abstract
Phenotypic selection during animal domestication has resulted in unwanted incorporation of deleterious mutations. In horses, the autosomal recessive condition known as Glycogen Branching Enzyme Deficiency (GBED) is the result of one of these deleterious mutations (102C > A), in the first exon of the GBE1 gene (GBE1102C>A). With recent advances in genome editing, this type of genetic mutation can be precisely repaired. In this study, we used the RNA-guided nuclease CRISPR-Cas9 (clustered regularly-interspaced short palindromic repeats/CRISPR-associated protein 9) to correct the GBE1102C>A mutation in a primary fibroblast cell line derived from a high genetic merit heterozygous stallion. To correct this mutation by homologous recombination (HR), we designed a series of single guide RNAs (sgRNAs) flanking the mutation and provided different single-stranded donor DNA templates. The distance between the Cas9-mediated double-stranded break (DSB) to the mutation site, rather than DSB efficiency, was the primary determinant for successful HR. This framework can be used for targeting other harmful diseases in animal populations.
Collapse
Affiliation(s)
- Carlos Pinzon-Arteaga
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, USA
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Matthew D Snyder
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, USA
| | | | - Nicolas F Moreno
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, USA
| | - Rytis Juras
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Michael C Golding
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, USA
| | - Dickson D Varner
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Charles R Long
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
8
|
Clauss S, Bleyer C, Schüttler D, Tomsits P, Renner S, Klymiuk N, Wakili R, Massberg S, Wolf E, Kääb S. Animal models of arrhythmia: classic electrophysiology to genetically modified large animals. Nat Rev Cardiol 2020; 16:457-475. [PMID: 30894679 DOI: 10.1038/s41569-019-0179-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Arrhythmias are common and contribute substantially to cardiovascular morbidity and mortality. The underlying pathophysiology of arrhythmias is complex and remains incompletely understood, which explains why mostly only symptomatic therapy is available. The evaluation of the complex interplay between various cell types in the heart, including cardiomyocytes from the conduction system and the working myocardium, fibroblasts and cardiac immune cells, remains a major challenge in arrhythmia research because it can be investigated only in vivo. Various animal species have been used, and several disease models have been developed to study arrhythmias. Although every species is useful and might be ideal to study a specific hypothesis, we suggest a practical trio of animal models for future use: mice for genetic investigations, mechanistic evaluations or early studies to identify potential drug targets; rabbits for studies on ion channel function, repolarization or re-entrant arrhythmias; and pigs for preclinical translational studies to validate previous findings. In this Review, we provide a comprehensive overview of different models and currently used species for arrhythmia research, discuss their advantages and disadvantages and provide guidance for researchers who are considering performing in vivo studies.
Collapse
Affiliation(s)
- Sebastian Clauss
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany. .,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany.
| | - Christina Bleyer
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Dominik Schüttler
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Philipp Tomsits
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Simone Renner
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZD (German Centre for Diabetes Research), Neuherberg, Germany
| | - Nikolai Klymiuk
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians University Munich (LMU), Munich, Germany
| | - Reza Wakili
- Universitätsklinikum Essen, Westdeutsches Herz- und Gefäßzentrum Essen, Essen, Germany
| | - Steffen Massberg
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Eckhard Wolf
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany.,Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZD (German Centre for Diabetes Research), Neuherberg, Germany
| | - Stefan Kääb
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| |
Collapse
|
9
|
Lee JG, Sung YH, Baek IJ. Generation of genetically-engineered animals using engineered endonucleases. Arch Pharm Res 2018; 41:885-897. [PMID: 29777358 PMCID: PMC6153862 DOI: 10.1007/s12272-018-1037-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 05/01/2018] [Indexed: 02/06/2023]
Abstract
The key to successful drug discovery and development is to find the most suitable animal model of human diseases for the preclinical studies. The recent emergence of engineered endonucleases is allowing for efficient and precise genome editing, which can be used to develop potentially useful animal models for human diseases. In particular, zinc finger nucleases, transcription activator-like effector nucleases, and the clustered regularly interspaced short palindromic repeat systems are revolutionizing the generation of diverse genetically-engineered experimental animals including mice, rats, rabbits, dogs, pigs, and even non-human primates that are commonly used for preclinical studies of the drug discovery. Here, we describe recent advances in engineered endonucleases and their application in various laboratory animals. We also discuss the importance of genome editing in animal models for more closely mimicking human diseases.
Collapse
Affiliation(s)
- Jong Geol Lee
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Young Hoon Sung
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.
- Department of Convergence Medicine, ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - In-Jeoung Baek
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.
- Department of Convergence Medicine, ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Salamone DF, Canel NG, Rodríguez MB. Intracytoplasmic sperm injection in domestic and wild mammals. Reproduction 2017; 154:F111-F124. [PMID: 29196493 DOI: 10.1530/rep-17-0357] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/21/2017] [Accepted: 12/01/2017] [Indexed: 11/08/2022]
Abstract
Intracytoplasmic sperm injection (ICSI) has become a useful technique for clinical applications in the horse-breeding industry. However, both ICSI blastocyst and offspring production continues to be limited for most farm and wild species. This article reviews technical differences of ICSI performance among species, possible biological and methodological reasons for the variable efficiency and potential strategies to improve the outcomes. One of the major applications of ICSI in animal production is the reproduction of high-value specimens. Unfortunately, some domestic species like the bovine show low rates of pronuclei formation after sperm injection, which led to the development of various artificial activation protocols and sperm pre-treatments that are discussed in this article. The impact of ICSI technique on equine breeding programs is considered in detail, since in contrast to other species, its use for elite horse reproduction has increased in recent years. ICSI has also been used to produce genetically modified animals; however, despite numerous attempts in several domestic species, only transgenic pigs have been consistently produced. Finally, the ICSI is a promising tool for genetic rescue of endangered and wild species. In conclusion, while ICSI has become a consistent ART for some species, it needs further development for others. The low results obtained for some domestic species, the high training needed and the equipment required have limited this technique to the production of elite specimens or for research purposes.
Collapse
Affiliation(s)
- Daniel F Salamone
- Laboratorio de Biotecnologia Animal, Facultad de Agronomia, Universidad de Buenos Aires-CONICETBuenos Aires, Argentina
| | - Natalia G Canel
- Laboratorio de Biotecnologia Animal, Facultad de Agronomia, Universidad de Buenos Aires-CONICETBuenos Aires, Argentina
| | - María Belén Rodríguez
- Laboratorio de Biotecnologia Animal, Facultad de Agronomia, Universidad de Buenos Aires-CONICETBuenos Aires, Argentina
| |
Collapse
|
11
|
Zeng F, Li Z, Cai G, Gao W, Jiang G, Liu D, Urschitz J, Moisyadi S, Wu Z. Characterization of Growth and Reproduction Performance, Transgene Integration, Expression, and Transmission Patterns in Transgenic Pigs Produced by piggyBac Transposition-Mediated Gene Transfer. Anim Biotechnol 2017; 27:245-55. [PMID: 27565868 DOI: 10.1080/10495398.2016.1178140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Previously we successfully produced a group of EGFP-expressing founder transgenic pigs by a newly developed efficient and simple pig transgenesis method based on cytoplasmic injection of piggyBac plasmids. In this study, we investigated the growth and reproduction performance and characterized the transgene insertion, transmission, and expression patterns in transgenic pigs generated by piggyBac transposition. Results showed that transgene has no injurious effect on the growth and reproduction of transgenic pigs. Multiple copies of monogenic EGFP transgene were inserted at noncoding sequences of host genome, and passed from founder transgenic pigs to their transgenic offspring in segregation or linkage manner. The EGFP transgene was ubiquitously expressed in transgenic pigs, and its expression intensity was associated with transgene copy number but not related to its promoter DNA methylation level. To the best of our knowledge, this is first study that fully described the growth and reproduction performance, transgene insertion, expression, and transmission profiles in transgenic pigs produced by piggyBac system. It not only demonstrates that piggyBac transposition-mediated gene transfer is an effective and favorable approach for pig transgenesis, but also provides scientific information for understanding the transgene insertion, expression and transmission patterns in transgenic animals produced by piggyBac transposition.
Collapse
Affiliation(s)
- Fang Zeng
- a National Engineering Research Center for Breeding Swine Industry, College of Animal Science , South China Agricultural University , Guangzhou , China.,b Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science , South China Agricultural University , Guangzhou , China
| | - Zicong Li
- a National Engineering Research Center for Breeding Swine Industry, College of Animal Science , South China Agricultural University , Guangzhou , China.,b Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science , South China Agricultural University , Guangzhou , China
| | - Gengyuan Cai
- c Institute of Animal Science , Guangdong Academy of Agricultural Sciences , Guangzhou , China
| | - Wenchao Gao
- a National Engineering Research Center for Breeding Swine Industry, College of Animal Science , South China Agricultural University , Guangzhou , China.,b Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science , South China Agricultural University , Guangzhou , China
| | - Gelong Jiang
- a National Engineering Research Center for Breeding Swine Industry, College of Animal Science , South China Agricultural University , Guangzhou , China.,b Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science , South China Agricultural University , Guangzhou , China
| | - Dewu Liu
- a National Engineering Research Center for Breeding Swine Industry, College of Animal Science , South China Agricultural University , Guangzhou , China.,b Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science , South China Agricultural University , Guangzhou , China
| | - Johann Urschitz
- d Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine , University of Hawaii at Manoa , Honolulu , Hawaii , USA
| | - Stefan Moisyadi
- d Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine , University of Hawaii at Manoa , Honolulu , Hawaii , USA.,e Manoa BioSciences , Honolulu , Hawaii , USA
| | - Zhenfang Wu
- a National Engineering Research Center for Breeding Swine Industry, College of Animal Science , South China Agricultural University , Guangzhou , China.,b Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science , South China Agricultural University , Guangzhou , China
| |
Collapse
|
12
|
Abstract
Pigs are important livestock for food and have been used in various biomedical studies, particularly translational research, as experimental animals because of their anatomical and physiological similarity to humans. The recent development of genome editing techniques, such as ZFN, TALEN, and CRISPR/Cas9, has rapidly expanded the use of genome editing tools in a variety of animals, resulting in the relatively easy and efficient generation of gene knock-out pigs. In the past few years, there has been a sustained increase in reports describing the development of genetically modified pigs. This chapter introduces our workflow for establishing the genetically modified cells (nuclear donor cells) necessary to create gene knock-out pigs using somatic cell nuclear transfer and focuses on the actual generation of gene knock-out pigs using a cytoplasmic injection method.
Collapse
Affiliation(s)
- Masahito Watanabe
- Meiji University International Institute for Bio-Resource Research, Kawasaki, 214-8571, Japan.,Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, Kawasaki, 214-8571, Japan. .,Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan.
| |
Collapse
|
13
|
Yao J, Huang J, Zhao J. Genome editing revolutionize the creation of genetically modified pigs for modeling human diseases. Hum Genet 2016; 135:1093-105. [DOI: 10.1007/s00439-016-1710-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/06/2016] [Indexed: 01/03/2023]
|
14
|
Nagashima H, Matsunari H. Growing human organs in pigs-A dream or reality? Theriogenology 2016; 86:422-6. [PMID: 27156683 DOI: 10.1016/j.theriogenology.2016.04.056] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/14/2015] [Accepted: 03/14/2016] [Indexed: 11/27/2022]
Abstract
Organ transplantation has been the last line of therapy for saving patients experiencing end-stage organ failure. However, the success of organ transplantation is critically dependent on the availability of donor organs. There are high expectations for research on organ regeneration as a solution to the donor shortage issue faced by transplantation medicine. Thus, generation of human organs from pluripotent stem cells is now one of the ultimate goals of regenerative medicine. In recent years, several approaches to using pluripotent stem cells to generate organs of complex structure and function have been developed. Reproductive biology plays an indispensable role in the development of innovative organ regeneration researches. In this review, we discuss the potential of the animal biotechnology aiming at making human organs using pigs as a platform.
Collapse
Affiliation(s)
- Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Japan.
| | - Hitomi Matsunari
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Japan
| |
Collapse
|
15
|
Watanabe M, Kobayashi M, Nagaya M, Matsunari H, Nakano K, Maehara M, Hayashida G, Takayanagi S, Sakai R, Umeyama K, Watanabe N, Onodera M, Nagashima H. Production of transgenic cloned pigs expressing the far-red fluorescent protein monomeric Plum. J Reprod Dev 2015; 61:169-77. [PMID: 25739316 PMCID: PMC4498373 DOI: 10.1262/jrd.2014-153] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 12/31/2014] [Indexed: 12/22/2022] Open
Abstract
Monomeric Plum (Plum), a far-red fluorescent protein with photostability and photopermeability, is potentially suitable for in vivo imaging and detection of fluorescence in body tissues. The aim of this study was to generate transgenic cloned pigs exhibiting systemic expression of Plum using somatic cell nuclear transfer (SCNT) technology. Nuclear donor cells for SCNT were obtained by introducing a Plum-expression vector driven by a combination of the cytomegalovirus early enhancer and chicken beta-actin promoter into porcine fetal fibroblasts (PFFs). The cleavage and blastocyst formation rates of reconstructed SCNT embryos were 81.0% (34/42) and 78.6% (33/42), respectively. At 36-37 days of gestation, three fetuses systemically expressing Plum were obtained from one recipient to which 103 SCNT embryos were transferred (3/103, 2.9%). For generation of offspring expressing Plum, rejuvenated PFFs were established from one cloned fetus and used as nuclear donor cells. Four cloned offspring and one stillborn cloned offspring were produced from one recipient to which 117 SCNT embryos were transferred (5/117, 4.3%). All offspring exhibited high levels of Plum fluorescence in blood cells, such as lymphocytes, monocytes and granulocytes. In addition, the skin, heart, kidney, pancreas, liver and spleen also exhibited Plum expression. These observations demonstrated that transfer of the Plum gene did not interfere with the development of porcine SCNT embryos and resulted in the successful generation of transgenic cloned pigs that systemically expressed Plum. This is the first report of the generation and characterization of transgenic cloned pigs expressing the far-red fluorescent protein Plum.
Collapse
Affiliation(s)
- Masahito Watanabe
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa 214-8571, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Dmochewitz M, Wolf E. Genetic engineering of pigs for the creation of translational models of human pathologies. Anim Front 2015. [DOI: 10.2527/af.2015-0008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Michaela Dmochewitz
- Gene Center and Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Eckhard Wolf
- Gene Center and Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
17
|
Dual fluorescent reporter pig for Cre recombination: transgene placement at the ROSA26 locus. PLoS One 2014; 9:e102455. [PMID: 25025770 PMCID: PMC4099177 DOI: 10.1371/journal.pone.0102455] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/18/2014] [Indexed: 01/27/2023] Open
Abstract
We are extending the Cre/loxP site-specific recombination system to pigs, focussing on conditional and tissue-specific expression of oncogenic mutations to model human cancers. Identifying the location, pattern and extent of Cre recombination in vivo is an important aspect of this technology. Here we report pigs with a dual fluorochrome cassette under the control of the strong CAG promoter that switches expression after Cre-recombination, from membrane-targeted tandem dimer Tomato to membrane-targeted green fluorescent protein. The reporter cassette was placed at the porcine ROSA26 locus by conventional gene targeting using primary mesenchymal stem cells, and animals generated by nuclear transfer. Gene targeting efficiency was high, and analysis of foetal organs and primary cells indicated that the reporter is highly expressed and functional. Cre reporter pigs will provide a multipurpose indicator of Cre recombinase activity, an important new tool for the rapidly expanding field of porcine genetic modification.
Collapse
|
18
|
Li Z, Zeng F, Meng F, Xu Z, Zhang X, Huang X, Tang F, Gao W, Shi J, He X, Liu D, Wang C, Urschitz J, Moisyadi S, Wu Z. Generation of transgenic pigs by cytoplasmic injection of piggyBac transposase-based pmGENIE-3 plasmids. Biol Reprod 2014; 90:93. [PMID: 24671876 DOI: 10.1095/biolreprod.113.116905] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The process of transgenesis involves the introduction of a foreign gene, the transgene, into the genome of an animal. Gene transfer by pronuclear microinjection (PNI) is the predominant method used to produce transgenic animals. However, this technique does not always result in germline transgenic offspring and has a low success rate for livestock. Alternate approaches, such as somatic cell nuclear transfer using transgenic fibroblasts, do not show an increase in efficiency compared to PNI, while viral-based transgenesis is hampered by issues regarding transgene size and biosafety considerations. We have recently described highly successful transgenesis experiments with mice using a piggyBac transposase-based vector, pmhyGENIE-3. This construct, a single and self-inactivating plasmid, contains all the transpositional elements necessary for successful gene transfer. In this series of experiments, our laboratories have implemented cytoplasmic injection (CTI) of pmGENIE-3 for transgene delivery into in vivo-fertilized pig zygotes. More than 8.00% of the injected embryos developed into transgenic animals containing monogenic and often single transgenes in their genome. However, the CTI technique was unsuccessful during the injection of in vitro-fertilized pig zygotes. In summary, here we have described a method that is not only easy to implement, but also demonstrated the highest efficiency rate for nonviral livestock transgenesis.
Collapse
Affiliation(s)
- Zicong Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Klymiuk N, Fezert P, Wünsch A, Kurome M, Kessler B, Wolf E. Homologous recombination contributes to the repair of zinc-finger-nuclease induced double strand breaks in pig primary cells and facilitates recombination with exogenous DNA. J Biotechnol 2014; 177:74-81. [DOI: 10.1016/j.jbiotec.2014.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/13/2014] [Accepted: 01/14/2014] [Indexed: 10/25/2022]
|
20
|
Matsunari H, Kobayashi T, Watanabe M, Umeyama K, Nakano K, Kanai T, Matsuda T, Nagaya M, Hara M, Nakauchi H, Nagashima H. Transgenic pigs with pancreas-specific expression of green fluorescent protein. J Reprod Dev 2014; 60:230-7. [PMID: 24748398 PMCID: PMC4085388 DOI: 10.1262/jrd.2014-006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development and regeneration of the pancreas is of considerable interest because of the role of these processes in pancreatic diseases, such as diabetes. Here, we sought to develop a large animal model in which the pancreatic cell lineage could be tracked. The pancreatic and duodenal homeobox-1 (Pdx1) gene promoter was conjugated to Venus, a green fluorescent protein, and introduced into 370 in vitro-matured porcine oocytes by intracytoplasmic sperm injection-mediated gene transfer. These oocytes were transferred into four recipient gilts, all of which became pregnant. Three gilts were sacrificed at 47-65 days of gestation, and the fourth was allowed to farrow. Seven of 16 fetuses obtained were transgenic (Tg) and exhibited pancreas-specific green fluorescence. The fourth recipient gilt produced a litter of six piglets, two of which were Tg. The founder Tg offspring matured normally and produced healthy first-generation (G1) progeny. A postweaning autopsy of four 27-day-old G1 Tg piglets confirmed the pancreas-specific Venus expression. Immunostaining of the pancreatic tissue indicated the transgene was expressed in β-cells. Pancreatic islets from Tg pigs were transplanted under the renal capsules of NOD/SCID mice and expressed fluorescence up to one month after transplantation. Tg G1 pigs developed normally and had blood glucose levels within the normal range. Insulin levels before and after sexual maturity were within normal ranges, as were other blood biochemistry parameters, indicating that pancreatic function was normal. We conclude that Pdx1-Venus Tg pigs represent a large animal model suitable for research on pancreatic development/regeneration and diabetes.
Collapse
Affiliation(s)
- Hitomi Matsunari
- Meiji University International Institute for Bio-Resource Research, Kawasaki 214-8571, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Moreira PN, Montoliu L. Intracytoplasmic sperm injection (ICSI)-mediated transgenesis in mice. Methods Mol Biol 2014; 1194:141-156. [PMID: 25064101 DOI: 10.1007/978-1-4939-1215-5_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Over the years many well-described techniques for the introduction of transgene DNA into host organisms have been used, including pronuclear injection, in vitro fertilization-mediated transgenesis, transfection of ES and spermatogenic cells, nuclear transfer of somatic cell nuclei, and lentiviral vectors. The application of these techniques has been limited however either by the time and effort to be executed or by their narrow efficiency with large transgenes. The greatest advantage of intracytoplasmic sperm injection (ICSI)-mediated transgenesis is precisely its ability to stably introduce large DNA molecules into the genome of host organisms with relatively high efficiency, as compared to alternative procedures. In mice, this procedure has been shown to be a reproducible method to generate transgenic offspring with a high efficiency. Recently, it proved also to be a viable method to generate transgenic rats and pigs, and as such, it is foreseen with great interest for the production of transgenic farm animals, where it would constitute an important tool for the production of recombinant proteins and livestock improvement.
Collapse
Affiliation(s)
- Pedro N Moreira
- Mouse Biology Unit, EMBL Monterotondo, Adriano Buzzati-Traverso Campus, Via Ramarini 32, 00015, Monterotondo, Italy,
| | | |
Collapse
|
22
|
Takaku Y, Murai K, Ukai T, Ito S, Kokubo M, Satoh M, Kobayashi E, Yamato M, Okano T, Takeuchi M, Mochida J, Sato M. In vivo cell tracking by bioluminescence imaging after transplantation of bioengineered cell sheets to the knee joint. Biomaterials 2013; 35:2199-206. [PMID: 24360579 DOI: 10.1016/j.biomaterials.2013.11.071] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 11/22/2013] [Indexed: 10/25/2022]
Abstract
In our previous studies, we have demonstrated effective regeneration of cartilage through the creation and application of layered cell sheets that combine both chondrocytes and synovial cells. In this study, we were able to demonstrate that cells derived from cell sheets can survive for long periods after transplantation into rat knee joints having osteochondral defects. We established a method for generating cell sheets from firefly luciferase-expressing chondrocytes obtained from transgenic Lewis rats, and carried out allogenic transplantation of these cell sheets into wild-type Lewis rats. We then administered luciferin and monitored the survival of the transplanted cells by using bioluminescence imaging (BLI). Our data showed that the transplanted cells survived and could be detected for more than 21 months, which was longer than expected. Furthermore, the BLI data showed that the transplanted cells remained in the knee joint and did not migrate to other parts of the body, thus confirming the safety of the cell sheets. In this study, we monitored the duration of survival of cell sheets composed of only chondrocytes, only synovial cells, or both chondrocytes and synovial cells, and found that all three types of cell sheets survived for an extended period of time.
Collapse
Affiliation(s)
- Yuko Takaku
- Department of Anesthesiology and Critical Care Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Kunihiko Murai
- Department of Anesthesiology and Critical Care Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Taku Ukai
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Satoshi Ito
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Mami Kokubo
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Masaaki Satoh
- Department of Anesthesiology and Critical Care Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Eiji Kobayashi
- Division of Development of Advanced Treatment, Center for Development of Advanced Medical Technology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Mamoru Takeuchi
- Department of Anesthesiology and Critical Care Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Joji Mochida
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Masato Sato
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| |
Collapse
|
23
|
Lu Y, Kang JD, Li S, Wang W, Jin JX, Hong Y, Cui CD, Yan CG, Yin XJ. Generation of transgenic Wuzhishan miniature pigs expressing monomeric red fluorescent protein by somatic cell nuclear transfer. Genesis 2013; 51:575-86. [PMID: 23620141 DOI: 10.1002/dvg.22399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 04/09/2013] [Accepted: 04/17/2013] [Indexed: 12/16/2023]
Abstract
Red fluorescent protein and its variants enable researchers to study gene expression, localization, and protein-protein interactions in vitro in real-time. Fluorophores with higher wavelengths are usually preferred since they efficiently penetrate tissues and produce less toxic emissions. A recently developed fluorescent protein marker, monomeric red fluorescent protein (mRFP1), is particularly useful because of its rapid maturation and minimal interference with green fluorescent protein (GFP) and GFP-derived markers. We generated a pCX-mRFP1-pgk-neoR construct and evaluated the ability of mRFP1 to function as a fluorescent marker in transgenic Wuzhishan miniature pigs. Transgenic embryos were generated by somatic cell nuclear transfer (SCNT) of nuclei isolated from ear fibroblasts expressing mRFP1. Embryos generated by SCNT developed into blastocysts in vitro (11.65%; 31/266). Thereafter, a total of 685 transgenic embryos were transferred into the oviducts of three recipients, two of which became pregnant. Of these, one recipient had six aborted fetuses, whereas the other recipient gave birth to four offspring. All offspring expressed the pCX-mRFP1-pgk-neoR gene as shown by PCR and fluorescence in situ hybridization analysis. The transgenic pigs expressed mRFP1 in all organs and tissues at high levels. These results demonstrate that Wuzhishan miniature pigs can express mRFP1. To conclude, this transgenic animal represents an excellent model with widespread applications in medicine and agriculture.
Collapse
Affiliation(s)
- Yue Lu
- Department of Animal Science, Agricultural College of Yanbian University, Yanji 133002, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Klymiuk N, Blutke A, Graf A, Krause S, Burkhardt K, Wuensch A, Krebs S, Kessler B, Zakhartchenko V, Kurome M, Kemter E, Nagashima H, Schoser B, Herbach N, Blum H, Wanke R, Aartsma-Rus A, Thirion C, Lochmüller H, Walter MC, Wolf E. Dystrophin-deficient pigs provide new insights into the hierarchy of physiological derangements of dystrophic muscle. Hum Mol Genet 2013; 22:4368-82. [PMID: 23784375 DOI: 10.1093/hmg/ddt287] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the X-linked dystrophin (DMD) gene. The absence of dystrophin protein leads to progressive muscle weakness and wasting, disability and death. To establish a tailored large animal model of DMD, we deleted DMD exon 52 in male pig cells by gene targeting and generated offspring by nuclear transfer. DMD pigs exhibit absence of dystrophin in skeletal muscles, increased serum creatine kinase levels, progressive dystrophic changes of skeletal muscles, impaired mobility, muscle weakness and a maximum life span of 3 months due to respiratory impairment. Unlike human DMD patients, some DMD pigs die shortly after birth. To address the accelerated development of muscular dystrophy in DMD pigs when compared with human patients, we performed a genome-wide transcriptome study of biceps femoris muscle specimens from 2-day-old and 3-month-old DMD and age-matched wild-type pigs. The transcriptome changes in 3-month-old DMD pigs were in good concordance with gene expression profiles in human DMD, reflecting the processes of degeneration, regeneration, inflammation, fibrosis and impaired metabolic activity. In contrast, the transcriptome profile of 2-day-old DMD pigs showed similarities with transcriptome changes induced by acute exercise muscle injury. Our studies provide new insights into early changes associated with dystrophin deficiency in a clinically severe animal model of DMD.
Collapse
|
25
|
Kurome M, Geistlinger L, Kessler B, Zakhartchenko V, Klymiuk N, Wuensch A, Richter A, Baehr A, Kraehe K, Burkhardt K, Flisikowski K, Flisikowska T, Merkl C, Landmann M, Durkovic M, Tschukes A, Kraner S, Schindelhauer D, Petri T, Kind A, Nagashima H, Schnieke A, Zimmer R, Wolf E. Factors influencing the efficiency of generating genetically engineered pigs by nuclear transfer: multi-factorial analysis of a large data set. BMC Biotechnol 2013; 13:43. [PMID: 23688045 PMCID: PMC3691671 DOI: 10.1186/1472-6750-13-43] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 04/09/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Somatic cell nuclear transfer (SCNT) using genetically engineered donor cells is currently the most widely used strategy to generate tailored pig models for biomedical research. Although this approach facilitates a similar spectrum of genetic modifications as in rodent models, the outcome in terms of live cloned piglets is quite variable. In this study, we aimed at a comprehensive analysis of environmental and experimental factors that are substantially influencing the efficiency of generating genetically engineered pigs. Based on a considerably large data set from 274 SCNT experiments (in total 18,649 reconstructed embryos transferred into 193 recipients), performed over a period of three years, we assessed the relative contribution of season, type of genetic modification, donor cell source, number of cloning rounds, and pre-selection of cloned embryos for early development to the cloning efficiency. RESULTS 109 (56%) recipients became pregnant and 85 (78%) of them gave birth to offspring. Out of 318 cloned piglets, 243 (76%) were alive, but only 97 (40%) were clinically healthy and showed normal development. The proportion of stillborn piglets was 24% (75/318), and another 31% (100/318) of the cloned piglets died soon after birth. The overall cloning efficiency, defined as the number of offspring born per SCNT embryos transferred, including only recipients that delivered, was 3.95%. SCNT experiments performed during winter using fetal fibroblasts or kidney cells after additive gene transfer resulted in the highest number of live and healthy offspring, while two or more rounds of cloning and nuclear transfer experiments performed during summer decreased the number of healthy offspring. CONCLUSION Although the effects of individual factors may be different between various laboratories, our results and analysis strategy will help to identify and optimize the factors, which are most critical to cloning success in programs aiming at the generation of genetically engineered pig models.
Collapse
Affiliation(s)
- Mayuko Kurome
- Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Ludwig Geistlinger
- Practical Informatics and Bioinformatics, Institute for Informatics, LMU Munich, Munich, Germany
| | - Barbara Kessler
- Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Valeri Zakhartchenko
- Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Nikolai Klymiuk
- Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Annegret Wuensch
- Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Anne Richter
- Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Andrea Baehr
- Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Katrin Kraehe
- Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Katinka Burkhardt
- Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Krzysztof Flisikowski
- Livestock Biotechnology, Center of Life and Food Sciences Weihenstephan, TU Munich, Freising, Germany
| | - Tatiana Flisikowska
- Livestock Biotechnology, Center of Life and Food Sciences Weihenstephan, TU Munich, Freising, Germany
| | - Claudia Merkl
- Livestock Biotechnology, Center of Life and Food Sciences Weihenstephan, TU Munich, Freising, Germany
| | - Martina Landmann
- Livestock Biotechnology, Center of Life and Food Sciences Weihenstephan, TU Munich, Freising, Germany
| | - Marina Durkovic
- Livestock Biotechnology, Center of Life and Food Sciences Weihenstephan, TU Munich, Freising, Germany
| | - Alexander Tschukes
- Livestock Biotechnology, Center of Life and Food Sciences Weihenstephan, TU Munich, Freising, Germany
| | - Simone Kraner
- Livestock Biotechnology, Center of Life and Food Sciences Weihenstephan, TU Munich, Freising, Germany
| | - Dirk Schindelhauer
- Livestock Biotechnology, Center of Life and Food Sciences Weihenstephan, TU Munich, Freising, Germany
| | - Tobias Petri
- Practical Informatics and Bioinformatics, Institute for Informatics, LMU Munich, Munich, Germany
| | - Alexander Kind
- Livestock Biotechnology, Center of Life and Food Sciences Weihenstephan, TU Munich, Freising, Germany
| | - Hiroshi Nagashima
- International Institute for Bio-Resource Research, Meiji University, Kawasaki, Japan
| | - Angelika Schnieke
- Livestock Biotechnology, Center of Life and Food Sciences Weihenstephan, TU Munich, Freising, Germany
| | - Ralf Zimmer
- Practical Informatics and Bioinformatics, Institute for Informatics, LMU Munich, Munich, Germany
| | - Eckhard Wolf
- Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| |
Collapse
|
26
|
Blastocyst complementation generates exogenic pancreas in vivo in apancreatic cloned pigs. Proc Natl Acad Sci U S A 2013; 110:4557-62. [PMID: 23431169 DOI: 10.1073/pnas.1222902110] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In the field of regenerative medicine, one of the ultimate goals is to generate functioning organs from pluripotent cells, such as ES cells or induced pluripotent stem cells (PSCs). We have recently generated functional pancreas and kidney from PSCs in pancreatogenesis- or nephrogenesis-disabled mice, providing proof of principle for organogenesis from PSCs in an embryo unable to form a specific organ. Key when applying the principles of in vivo generation to human organs is compensation for an empty developmental niche in large nonrodent mammals. Here, we show that the blastocyst complementation system can be applied in the pig using somatic cell cloning technology. Transgenic approaches permitted generation of porcine somatic cell cloned embryos with an apancreatic phenotype. Complementation of these embryos with allogenic blastomeres then created functioning pancreata in the vacant niches. These results clearly indicate that a missing organ can be generated from exogenous cells when functionally normal pluripotent cells chimerize a cloned dysorganogenetic embryo. The feasibility of blastocyst complementation using cloned porcine embryos allows experimentation toward the in vivo generation of functional organs from xenogenic PSCs in large animals.
Collapse
|
27
|
Richter A, Kurome M, Kessler B, Zakhartchenko V, Klymiuk N, Nagashima H, Wolf E, Wuensch A. Potential of primary kidney cells for somatic cell nuclear transfer mediated transgenesis in pig. BMC Biotechnol 2012; 12:84. [PMID: 23140586 PMCID: PMC3537537 DOI: 10.1186/1472-6750-12-84] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 11/04/2012] [Indexed: 12/26/2022] Open
Abstract
Background Somatic cell nuclear transfer (SCNT) is currently the most efficient and precise method to generate genetically tailored pig models for biomedical research. However, the efficiency of this approach is crucially dependent on the source of nuclear donor cells. In this study, we evaluate the potential of primary porcine kidney cells (PKCs) as cell source for SCNT, including their proliferation capacity, transfection efficiency, and capacity to support full term development of SCNT embryos after additive gene transfer or homologous recombination. Results PKCs could be maintained in culture with stable karyotype for up to 71 passages, whereas porcine fetal fibroblasts (PFFs) and porcine ear fibroblasts (PEFs) could be hardly passaged more than 20 times. Compared with PFFs and PEFs, PKCs exhibited a higher proliferation rate and resulted in a 2-fold higher blastocyst rate after SCNT and in vitro cultivation. Among the four transfection methods tested with a GFP expression plasmid, best results were obtained with the NucleofectorTM technology, resulting in transfection efficiencies of 70% to 89% with high fluorescence intensity, low cytotoxicity, good cell proliferation, and almost no morphological signs of cell stress. Usage of genetically modified PKCs in SCNT resulted in approximately 150 piglets carrying at least one of 18 different transgenes. Several of those pigs originated from PKCs that underwent homologous recombination and antibiotic selection before SCNT. Conclusion The high proliferation capacity of PKCs facilitates the introduction of precise and complex genetic modifications in vitro. PKCs are thus a valuable cell source for the generation of porcine biomedical models by SCNT.
Collapse
Affiliation(s)
- Anne Richter
- Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, Munich, 81377, Germany
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhang P, Zhang Y, Dou H, Yin J, Chen Y, Pang X, Vajta G, Bolund L, Du Y, Ma RZ. Handmade cloned transgenic piglets expressing the nematode fat-1 gene. Cell Reprogram 2012; 14:258-66. [PMID: 22686479 DOI: 10.1089/cell.2011.0073] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Production of transgenic animals via somatic cell nuclear transfer (SCNT) has been adapted worldwide, but this application is somewhat limited by its relatively low efficiency. In this study, we used handmade cloning (HMC) established previously to produce transgenic pigs that express the functional nematode fat-1 gene. Codon-optimized mfat-1 was inserted into eukaryotic expression vectors, which were transferred into primary swine donor cells. Reverse transcriptase PCR (RT-PCR), gas chromatography, and chromosome analyses were performed to select donor clones capable of converting n-6 into n-3 fatty acids. Blastocysts derived from the clones that lowered the n-6/n-3 ratio to approximately 1:1 were transferred surgically into the uteri of recipients for transgenic piglets. By HMC, 37% (n=558) of reconstructed embryos developed to the blastocyst stage after 7 days of culture in vitro, with an average cell number of 81±36 (n=14). Three recipients became pregnant after 408 day-6 blastocysts were transferred into four naturally cycling females, and a total of 14 live offspring were produced. The nematode mfat-1 effectively lowered the n-6/n-3 ratio in muscle and major organs of the transgenic pig. Our results will help to establish a reliable procedure and an efficient option in the production of transgenic animals.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Galli C, Lagutina I, Perota A, Colleoni S, Duchi R, Lucchini F, Lazzari G. Somatic cell nuclear transfer and transgenesis in large animals: current and future insights. Reprod Domest Anim 2012; 47 Suppl 3:2-11. [PMID: 22681293 DOI: 10.1111/j.1439-0531.2012.02045.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Somatic cell nuclear transfer (SCNT) was first developed in livestock for the purpose of accelerating the widespread use of superior genotypes. Although many problems still exist now after fifteen years of research owing to the limited understanding of genome reprogramming, SCNT has provided a powerful tool to make copies of selected individuals in different species, to study genome pluripotency and differentiation, opening new avenues of research in regenerative medicine and representing the main route for making transgenic livestock. Besides well-established methods to deliver transgenes, recent development in enzymatic engineering to edit the genome provides more precise and reproducible tools to target-specific genomic loci especially for producing knockout animals. The interest in generating transgenic livestock lies in the agricultural and biomedical areas and it is, in most cases, at the stage of research and development, with few exceptions that are making the way into practical applications.
Collapse
Affiliation(s)
- C Galli
- Avantea, Laboratorio di Tecnologie della Riproduzione, Cremona, Italy.
| | | | | | | | | | | | | |
Collapse
|
30
|
Garrels W, Ivics Z, Kues WA. Precision genetic engineering in large mammals. Trends Biotechnol 2012; 30:386-93. [DOI: 10.1016/j.tibtech.2012.03.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 03/19/2012] [Accepted: 03/22/2012] [Indexed: 12/19/2022]
|
31
|
Kemter E, Lieke T, Kessler B, Kurome M, Wuensch A, Summerfield A, Ayares D, Nagashima H, Baars W, Schwinzer R, Wolf E. Human TNF-related apoptosis-inducing ligand-expressing dendritic cells from transgenic pigs attenuate human xenogeneic T cell responses. Xenotransplantation 2012; 19:40-51. [PMID: 22360752 DOI: 10.1111/j.1399-3089.2011.00688.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Efficient and precise techniques for the genetic modification of pigs facilitate the generation of tailored donor animals for xenotransplantation. Numerous transgenic pig lines exist with the focus on inhibition of the complement system and of humoral immune responses. In addition, immune cell-based responses need to be controlled to prevent pig-to-primate xenograft rejection. Expression of human (hu) TNF-related apoptosis-inducing ligand (TRAIL) on porcine cells has the potential to ameliorate human T cell responses. METHODS We generated transgenic pigs expressing human tumor necrosis factor (TNF)-related apoptosis-inducing ligand (huTRAIL) under the control of either the mouse H2K(b) promoter or a CMV enhancer/chicken β-actin (CAG) promoter, the latter one (CAG-huTRAIL) on a GGTA1 knockout/huCD46 transgenic background. The biological activity of huTRAIL was demonstrated by its apoptosis-inducing effect on Jurkat lymphoma cells. To clarify whether huTRAIL affects also primary immune cells and whether its effects depend on the presence of co-stimulatory molecules, we exposed human peripheral blood mononuclear cells (PBMC) or isolated T cells to huTRAIL-expressing porcine fibroblasts or dendritic cells in vitro. RESULTS H2Kb-huTRAIL transgenic pigs express huTRAIL mainly in the spleen and secondary lymphoid tissues. The CAG-huTRAIL construct facilitated huTRAIL expression in multiple organs, the level being at least one order of magnitude higher than in H2Kb-huTRAIL transgenic pigs. Incubation with huTRAIL-expressing H2Kb-huTRAIL transgenic porcine dendritic cells decreased human T cell proliferation significantly without any signs of apoptosis. In spite of the high transgene expression level, CAG-huTRAIL transgenic fibroblasts did not affect proliferation of human PBMC, independent of their activation state. CONCLUSIONS These results suggest huTRAIL expression on porcine dendritic cells as a possible strategy to attenuate T cell responses against pig-to-primate xenografts.
Collapse
Affiliation(s)
- Elisabeth Kemter
- Molecular Animal Breeding and Biotechnology, Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Maehara M, Matsunari H, Honda K, Nakano K, Takeuchi Y, Kanai T, Matsuda T, Matsumura Y, Hagiwara Y, Sasayama N, Shirasu A, Takahashi M, Watanabe M, Umeyama K, Hanazono Y, Nagashima H. Hollow fiber vitrification provides a novel method for cryopreserving in vitro maturation/fertilization-derived porcine embryos. Biol Reprod 2012; 87:133. [PMID: 23053438 DOI: 10.1095/biolreprod.112.100339] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In vitro matured (IVM) oocytes have been used to create genetically modified pigs for various biomedical purposes. However, porcine embryos derived from IVM oocytes are very cryosensitive. Developing improved cryopreservation methods would facilitate the production of genetically modified pigs and also accelerate the conservation of genetic resources. We recently developed a novel hollow fiber vitrification (HFV) method; the present study was initiated to determine whether this new method permits the cryopreservation of IVM oocyte-derived porcine embryos. Embryos were created from the in vitro fertilization of IVM oocytes with frozen-thawed sperm derived from a transgenic pig carrying a humanized Kusabira-Orange (huKO) gene. Morula-stage embryos were assigned to vitrification and nonvitrification groups to compare their in vitro and in vivo developmental abilities. Vitrified morulae developed to the blastocyst stage at a rate similar to that of nonvitrified embryos (66/85, 77.6% vs. 67/84, 79.8%). Eighty-eight blastocysts that developed from vitrified morulae were transferred into the uteri of three recipient gilts. All three became pregnant and produced a total of 17 piglets (19.3%). This piglet production was slightly lower, albeit not significantly, than that of the nonvitrification group (27/88, 30.7%). Approximately half of the piglets in the vitrification (10/17, 58.8%) and nonvitrification (15/27, 55.6%) groups were transgenic. There was no significant difference in the growth rates among the piglets in the two groups. These results indicate that the HFV method is an extremely effective method for preserving cryosensitive embryos such as porcine in vitro maturation/fertilization-derived morulae.
Collapse
Affiliation(s)
- Miki Maehara
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Klymiuk N, van Buerck L, Bähr A, Offers M, Kessler B, Wuensch A, Kurome M, Thormann M, Lochner K, Nagashima H, Herbach N, Wanke R, Seissler J, Wolf E. Xenografted islet cell clusters from INSLEA29Y transgenic pigs rescue diabetes and prevent immune rejection in humanized mice. Diabetes 2012; 61:1527-32. [PMID: 22522620 PMCID: PMC3357306 DOI: 10.2337/db11-1325] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Islet transplantation is a potential treatment for type 1 diabetes, but the shortage of donor organs limits its routine application. As potential donor animals, we generated transgenic pigs expressing LEA29Y, a high-affinity variant of the T-cell costimulation inhibitor CTLA-4Ig, under the control of the porcine insulin gene promoter. Neonatal islet cell clusters (ICCs) from INSLEA29Y transgenic (LEA-tg) pigs and wild-type controls were transplanted into streptozotocin-induced hyperglycemic NOD-scid IL2Rγ(null) mice. Cloned LEA-tg pigs are healthy and exhibit a strong β-cell-specific transgene expression. LEA-tg ICCs displayed the same potential to normalize glucose homeostasis as wild-type ICCs after transplantation. After adoptive transfer of human peripheral blood mononuclear cells, transplanted LEA-tg ICCs were completely protected from rejection, whereas reoccurrence of hyperglycemia was observed in 80% of mice transplanted with wild-type ICCs. In the current study, we provide the first proof-of-principle report on transgenic pigs with β-cell-specific expression of LEA29Y and their successful application as donors in a xenotransplantation model. This approach may represent a major step toward the development of a novel strategy for pig-to-human islet transplantation without side effects of systemic immunosuppression.
Collapse
Affiliation(s)
- Nikolai Klymiuk
- Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität, Munich, Germany
| | - Lelia van Buerck
- Diabetes Zentrum, Medizinische Klinik Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, Munich, Germany
| | - Andrea Bähr
- Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität, Munich, Germany
| | - Monika Offers
- Diabetes Zentrum, Medizinische Klinik Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, Munich, Germany
| | - Barbara Kessler
- Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität, Munich, Germany
| | - Annegret Wuensch
- Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität, Munich, Germany
| | - Mayuko Kurome
- Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität, Munich, Germany
| | - Michael Thormann
- Department of Cardiac Surgery, Ludwig-Maximilians-Universität, Munich, Germany
| | - Katharina Lochner
- Diabetes Zentrum, Medizinische Klinik Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, Munich, Germany
| | - Hiroshi Nagashima
- Laboratory of Developmental Engineering, Meiji University, Kawasaki, Japan
| | - Nadja Herbach
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität Munich, Germany
| | - Rüdiger Wanke
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität Munich, Germany
| | - Jochen Seissler
- Diabetes Zentrum, Medizinische Klinik Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, Munich, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität, Munich, Germany
- Corresponding authors: Eckhard Wolf, , and Jochen Seissler,
| |
Collapse
|
34
|
Himaki T, Mizobe Y, Tsuda K, Suetomo M, Yamakuchi H, Miyoshi K, Takao S, Yoshida M. Effect of postactivation treatment with latrunculin A on in vitro and in vivo development of cloned embryos derived from kidney fibroblasts of an aged Clawn miniature boar. J Reprod Dev 2012; 58:398-403. [PMID: 22498812 DOI: 10.1262/jrd.11-083a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The objective of this study was to examine the effect of postactivation treatment with latrunculin A (LatA), an actin polymerization inhibitor, on in vitro and in vivo development of somatic cell nuclear transfer (SCNT) embryos derived from kidney fibroblasts of an aged Clawn miniature boar (12 years old). After electric activation, SCNT embryos were treated with 0, 0.5 or 1 μM LatA and cultured in vitro. The rate of blastocyst formation was significantly higher (P<0.05) in SCNT embryos treated with 0.5 μM LatA (38%) than those in control (14%). When cloned embryos treated with 0.5 μM LatA were transferred into the oviducts of two recipient miniature gilts to assess their development in vivo, both recipients became pregnant; one maintained pregnancy to term, and a live piglet (weighing 220 g) was delivered by Caesarean section. The results of this study indicated that the postactivation treatment with LatA was effective in improving in vitro developmental capacity of SCNT miniature pig embryos derived from kidney fibroblasts of an aged animal and that miniature pig cloned embryos treated with LatA had the ability to develop to term.
Collapse
Affiliation(s)
- Takehiro Himaki
- Laboratory of Animal Reproduction, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Umeyama K, Saito H, Kurome M, Matsunari H, Watanabe M, Nakauchi H, Nagashima H. Characterization of the ICSI-mediated gene transfer method in the production of transgenic pigs. Mol Reprod Dev 2011; 79:218-28. [PMID: 22213433 DOI: 10.1002/mrd.22015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 12/07/2011] [Indexed: 01/01/2023]
Abstract
Understanding the behavior of transgenes introduced into oocytes or embryos is essential for evaluating the methodologies for transgenic animal production. We investigated the expression pattern of a transgene transferred to porcine eggs by intracytoplasmic sperm injection-mediated gene transfer (ICSI-MGT) or pronuclear microinjection (PN injection). The introduction of the EGFP gene by ICSI-MGT yielded significantly more embryos with non-mosaic transgene expression (P < 0.01). In the ICSI-MGT group, 61.5% (24/39) of the embryos were EGFP-positive in all their component blastomeres at the morula stage, while fewer than 10% of such embryos were EGFP-positive in the PN-injection group. Using three types of transgenes, ranging from 3.0 to 7.5 kb in size, we confirmed that approximately one in four fetuses obtained by ICSI-MGT was transgenic, suggesting that ICSI-MGT is a practical method for transgenic pig production. Southern blot analysis of 12 transgenic fetuses produced by ICSI-MGT revealed that the number of integrated transgene copies varied from 1 to 300, with no correlation between transgene size and the number of integrated copies. Fluorescence in situ hybridization analysis revealed that the transgenes were randomly integrated into a single site on the host chromosomes. Together, these data indicate that multiple-copy, single-site integration of a transgene is the primary outcome of ICSI-MGT in the pig and that ICSI-MGT is less likely than PN injection to cause transgene integration in a mosaic manner.
Collapse
Affiliation(s)
- Kazuhiro Umeyama
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Tama, Kawasaki, Kanagawa, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Welfare assessment in transgenic pigs expressing green fluorescent protein (GFP). Transgenic Res 2011; 21:773-84. [PMID: 22173943 DOI: 10.1007/s11248-011-9571-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 10/12/2011] [Indexed: 10/14/2022]
Abstract
Since large animal transgenesis has been successfully attempted for the first time about 25 years ago, the technology has been applied in various lines of transgenic pigs. Nevertheless one of the concerns with the technology--animal welfare--has not been approached through systematic assessment and statements regarding the welfare of transgenic pigs have been based on anecdotal observations during early stages of transgenic programs. The main aim of the present study was therefore to perform an extensive welfare assessment comparing heterozygous transgenic animals expressing GFP with wildtype animals along various stages of post natal development. The protocol used covered reproductory performance and behaviour in GFP and wildtype sows and general health and development, social behaviour, exploratory behaviour and emotionality in GFP and wildtype littermates from birth until an age of roughly 4 months. The absence of significant differences between GFP and wildtype animals in the parameters observed suggests that the transgenic animals in question are unlikely to suffer from deleterious effects of transgene expression on their welfare and thus support existing anecdotal observations of pigs expressing GFP as healthy. Although the results are not surprising in the light of previous experience, they give a more solid fundament to the evaluation of GFP expression as being relatively non-invasive in pigs. The present study may furthermore serve as starting point for researchers aiming at a systematic characterization of welfare relevant effects in the line of transgenic pigs they are working with.
Collapse
|
37
|
Sequential targeting of CFTR by BAC vectors generates a novel pig model of cystic fibrosis. J Mol Med (Berl) 2011; 90:597-608. [PMID: 22170306 DOI: 10.1007/s00109-011-0839-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 11/24/2011] [Accepted: 11/25/2011] [Indexed: 01/16/2023]
Abstract
Cystic fibrosis (CF) is the most common lethal inherited disease in Caucasians and is caused by mutations in the CFTR gene. The disease is incurable and medical treatment is limited to the amelioration of symptoms or secondary complications. A comprehensive understanding of the disease mechanisms and the development of novel treatment options require appropriate animal models. Existing CF mouse models fail to reflect important aspects of human CF. We thus generated a CF pig model by inactivating the CFTR gene in primary porcine cells by sequential targeting using modified bacterial artificial chromosome vectors. These cells were then used to generate homozygous CFTR mutant piglets by somatic cell nuclear transfer. The homozygous CFTR mutants lack CFTR protein expression and display severe malformations in the intestine, respiratory tract, pancreas, liver, gallbladder, and male reproductive tract. These phenotypic abnormalities closely resemble both the human CF pathology as well as alterations observed in a recently published CF pig model which was generated by a different gene targeting strategy. Our new CF pig model underlines the value of the CFTR-deficient pig for gaining new insight into the disease mechanisms of CF and for the development and evaluation of new therapeutic strategies. This model will furthermore increase the availability of CF pigs to the scientific community.
Collapse
|
38
|
Klymiuk N, Böcker W, Schönitzer V, Bähr A, Radic T, Fröhlich T, Wünsch A, Keßler B, Kurome M, Schilling E, Herbach N, Wanke R, Nagashima H, Mutschler W, Arnold GJ, Schwinzer R, Schieker M, Wolf E. First inducible transgene expression in porcine large animal models. FASEB J 2011; 26:1086-99. [PMID: 22138035 DOI: 10.1096/fj.11-185041] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The purpose of this study was to establish inducible transgene expression in pigs, a model organism with great promise for experimental physiology and translational medicine, using the binary tet-on system. This expression system is activated by doxycycline (dox) via the tet-controlled transactivator (TA). Binding of TA to the transactivator response element (TRE) results in transcription of downstream genes. First, we cloned transgenic founder pigs expressing TA under the control of the CMV enhancer/chicken β-actin promoter (CAG). Then, cells from CAG-TA transgenic founders were nucleofected with TRE-controlled expression vectors for either porcine cytotoxic T-lymphocyte associated antigen 4-Fc domain of immunoglobulin G1 (CTLA-4Ig) or soluble receptor activator of NF-κB ligand (RANKL), and double-transgenic offspring were cloned. Dox administration resulted in a dose-dependent increase in expression of CTLA-4Ig or RANKL, in nucleofected cells and in transgenic pigs, while in the absence of dox, the levels of both proteins were below the detection limit. Inducible transgene expression was reproduced in double-transgenic offspring generated by cloning or breeding. Our strategy revealed the first two examples of inducible transgene expression in pigs. The CAG-TA transgenic pigs generated in this study constitute an interesting basis for future pig models with inducible transgene expression.
Collapse
|
39
|
Watanabe M, Kurome M, Matsunari H, Nakano K, Umeyema K, Shiota A, Nakauchi H, Nagashima H. The creation of transgenic pigs expressing human proteins using BAC-derived, full-length genes and intracytoplasmic sperm injection-mediated gene transfer. Transgenic Res 2011; 21:605-18. [PMID: 22038447 DOI: 10.1007/s11248-011-9561-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 09/16/2011] [Indexed: 11/29/2022]
Abstract
In most transgenic (Tg) animals created to date, a transgene consisting of the minimum promoter region linked to a cDNA has been used. However, transgenes on small plasmids are susceptible to the position effect, increasing the difficulty of controlling transgene expression. In this study, we attempted to create Tg pigs by intracytoplasmic sperm injection-mediated gene transfer (ICSI-MGT) using two large genomic transgenes derived from a bacterial artificial chromosome (BAC) containing the full genomic region encoding two human proteins, type I collagen and albumin. The production efficiencies (Tg piglets/live offspring) of type I collagen and albumin Tg pigs were 11.8% (6/51) and 18.2% (2/11), respectively. In all of the Tg pigs examined by real-time PCR analysis, tissue-specific expression of the transgene was confirmed (type I collagen: skin, tendon, vessels, genitalia; albumin: liver). The production of human proteins derived from BAC transgenes was also confirmed. Fluorescence in situ hybridization analysis indicated that the BAC transgenes transferred into porcine oocytes by ICSI-MGT were integrated into single or multiple sites on the host chromosomes. These data demonstrate that Tg pigs expressing human proteins in a tissue-specific manner can be created using a BAC transgenic construct and the ICSI-MGT method.
Collapse
Affiliation(s)
- Masahito Watanabe
- Nakauchi Stem Cell and Organ Regeneration Project, Japan Science and Technology Agency (JST), ERATO, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Schmidt M, Winter KD, Dantzer V, Li J, Kragh PM, Du Y, Lin L, Liu Y, Vajta G, Sangild PT, Callesen H, Agerholm JS. Maternal endometrial oedema may increase perinatal mortality of cloned and transgenic piglets. Reprod Fertil Dev 2011; 23:645-53. [PMID: 21635813 DOI: 10.1071/rd10220] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 02/02/2011] [Indexed: 01/13/2023] Open
Abstract
The perinatal mortality of cloned animals is a well-known problem. In the present retrospective study, we report on mortality of cloned transgenic or non-transgenic piglets produced as part of several investigations. Large White (LW) sows (n = 105) received hand-made cloned LW or minipig blastocysts and delivered either spontaneously or after prostaglandin induction followed by either Caesarean section or vaginal birth. The overall pregnancy rate was 62%, with 26% of pregnancies terminating before term. This resulted in 48 deliveries. The terminated pregnancies consisted of 12 abortions that occurred at 35 ± 2 days gestation and five sows that went to term without returning to heat and then by surgery showed the uterus without fetal content. The gestation length was for sows with LW piglets that delivered by Caesarean section or vaginally was 115.7 ± 0.3 and 117.6 ± 0.4 days, respectively. In sows with minipiglets, the gestation length for those delivered by Caesarean section or vaginally 114.4 ± 0.2 and 115.5 ± 0.3 days, respectively. Of the 34 sows that delivered vaginally, 28 gave birth after induction, whereas 6 farrowed spontaneously. Of the 14 sows that delivered after Caesarean section and in the five empty sows, the endometrium and placenta showed severe oedema. Piglet mortality following vaginal delivery was higher than after Caesarean section (31% v. 10%, respectively; P < 0.001). When vaginal delivery occurred spontaneously, the stillborn rate was greater than after induced delivery (56% v. 24%, respectively; P < 0.0001). Internal organ weights were recorded for seven cloned LW piglets and six normal piglets. The relative weight of the heart, liver, kidneys and small intestine was found to be reduced in the cloned piglets (P < 0.05). The present study demonstrates extensive endometrial oedema in sows pregnant with cloned and transgenic piglets, as well as in empty recipients, at term. The growth of certain organs in some of the cloned piglets was reduced and the rate of stillborn piglets was greater in cloned and transgenic piglets delivered vaginally, possibly because of oedema of the fetal-maternal interface.
Collapse
Affiliation(s)
- M Schmidt
- Department of Large Animal Sciences, Section for Veterinary Reproduction and Obstetrics, Faculty of Life Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
NAKANO K, MATSUNARI H, NAKAYAMA N, OGAWA B, KUROME M, TAKAHASHI M, MATSUMOTO M, MURAKAMI H, KAJI Y, NAGASHIMA H. Cloned Porcine Embryos can Maintain Developmental Ability after Cryopreservation at the Morula Stage. J Reprod Dev 2011; 57:312-6. [DOI: 10.1262/jrd.10-142a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Kazuaki NAKANO
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University
| | - Hitomi MATSUNARI
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University
| | - Naoki NAKAYAMA
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University
| | - Buko OGAWA
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University
| | - Mayuko KUROME
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-University Munich
| | | | | | | | - Yuji KAJI
- National Agricultural Research Center for Kyushu Okinawa Region
| | - Hiroshi NAGASHIMA
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University
- Meiji University International Cluster for Bio-Resource Research
| |
Collapse
|
42
|
Galli C, Perota A, Brunetti D, Lagutina I, Lazzari G, Lucchini F. Genetic engineering including superseding microinjection: new ways to make GM pigs. Xenotransplantation 2010; 17:397-410. [DOI: 10.1111/j.1399-3089.2010.00590.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
43
|
Mizushima S, Takagi S, Ono T, Atsumi Y, Tsukada A, Saito N, Sasanami T, Okabe M, Shimada K. Novel Method of Gene Transfer in Birds: Intracytoplasmic Sperm Injection for Green Fluorescent Protein Expression in Quail Blastoderms1. Biol Reprod 2010; 83:965-9. [DOI: 10.1095/biolreprod.110.085860] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
44
|
High rates of bovine blastocyst development after ICSI-mediated gene transfer assisted by chemical activation. Theriogenology 2010; 74:922-31. [DOI: 10.1016/j.theriogenology.2010.04.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Revised: 04/03/2010] [Accepted: 04/14/2010] [Indexed: 11/21/2022]
|
45
|
Schmidt M, Kragh PM, Li J, Du Y, Lin L, Liu Y, Bøgh IB, Winther KD, Vajta G, Callesen H. Pregnancies and piglets from large white sow recipients after two transfer methods of cloned and transgenic embryos of different pig breeds. Theriogenology 2010; 74:1233-40. [PMID: 20688371 DOI: 10.1016/j.theriogenology.2010.05.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 05/21/2010] [Accepted: 05/21/2010] [Indexed: 11/16/2022]
Abstract
The aim of this study was to report from a larger study with pregnancy and delivery results after transfer of cloned transgenic/non-transgenic Large White or minipig embryos to Large White sow recipients. The effect of both total numbers of transferred embryos as well as site of their deposition (uni- vs. bi-lateral) was studied. Four to five days after natural heat, 85 Large White (LW) sows received Day 5 or 6 handmade cloned embryos. Large White embryos were non-transgenic and were transferred to 36 recipients, while 49 recipients each received Minipig embryos, either non-transgenic or with 1 of 4 types of transgenes. Furthermore, the number of embryos transferred was in two categories, as 46 recipients received 40-60 embryos while 39 received 60-120 embryos. Finally, in 59 of the recipients embryos were transferred to one of the uterine horns (unicornual) while 26 other recipients had embryos transferred to both uterine horns (bicornual). The overall pregnancy rate was 55% with an abortion rate of 26% resulting in 41% deliveries with no difference between LW and Minipig embryos and no difference between transgenic and non-transgenic Minipig embryos. Transfer of 60-120 embryos resulted in more pregnancies and deliveries (62%) than <60 embryos (24%). The mean litter size was 5.1 ± 0.5 and after transfer of 60-120 embryos significantly higher (6.0 ± 0.5) than after transfer of <60 embryos (3.5 ± 0.8). Also, the bicornual transfer resulted in significantly higher delivery rate (74% vs. 44%) and mean litter size (6.1 ± 0.7 vs. 4.2 ± 0.6) than the unicornual. The mean rate of piglets/transferred embryos was 7.3 ± 0.6% while the mean rate of piglets/reconstructed embryos was 179/18,000 = 1% with no difference between breeds or number of embryos transferred. The overall perinatal mortality rate was 49%, and it was significantly lower in LW piglets (20/59 = 34%) than in Minipiglets (67/120 = 56%) (vs. 10-15% in normal piglets at the farm) and the total rate of piglets with one or more malformation was 22%, and lower in LW (12%) than in Minipiglets (28%). This study demonstrate that although the perinatal mortality was rather high, an acceptable birth rate can be achieved after transfer to LW recipients of cloned LW embryos as well as cloned, transgenic/non-transgenic Minipig embryos. Furthermore, the pregnancy rate and litter size were correlated to the number of embryos transferred and to bicornual transfer.
Collapse
Affiliation(s)
- M Schmidt
- Reproduction and Obstetrics, Faculty of Life Sciences, University of Copenhagen, DK1870 Frederiksberg, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
HIMAKI T, YOKOMINE TA, SATO M, TAKAO S, MIYOSHI K, YOSHIDA M. Effects of trichostatin A on in vitro development and transgene function in somatic cell nuclear transfer embryos derived from transgenic Clawn miniature pig cells. Anim Sci J 2010; 81:558-63. [DOI: 10.1111/j.1740-0929.2010.00772.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
47
|
García-Vázquez FA, Ruiz S, Matás C, Izquierdo-Rico MJ, Grullón LA, De Ondiz A, Vieira L, Avilés-López K, Gutiérrez-Adán A, Gadea J. Production of transgenic piglets using ICSI-sperm-mediated gene transfer in combination with recombinase RecA. Reproduction 2010; 140:259-72. [PMID: 20501790 DOI: 10.1530/rep-10-0129] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Sperm-mediated gene transfer (SMGT) is a method for the production of transgenic animals based on the intrinsic ability of sperm cells to bind and internalize exogenous DNA molecules and to transfer them into the oocyte at fertilization. Recombinase-A (RecA) protein-coated exogenous DNA has been used previously in pronuclear injection systems increasing integration into goat and pig genomes. However, there are no data regarding transgene expression after ICSI. Here, we set out to investigate whether the expression of transgenic DNA in porcine embryos is improved by recombinase-mediated DNA transfer and if it is possible to generate transgenic animals using this methodology. Different factors which could affect the performance of this transgenic methodology were analyzed by studying 1) the effect of the presence of exogenous DNA and RecA protein on boar sperm functionality; 2) the effect of recombinase RecA on in vitro enhanced green fluorescent protein (EGFP)-expressing embryos produced by ICSI or IVF; and 3) the efficiency of generation of transgenic piglets by RecA-mediated ICSI. Our results suggested that 1) the presence of exogenous DNA and RecA-DNA complexes at 5 microg/ml did not affect sperm functionality in terms of motility, viability, membrane lipid disorder, or reactive oxygen species generation; 2) EGFP-expressing embryos were obtained with a high efficiency using the SMGT-ICSI technique in combination with recombinase; however, the use of IVF system did not result in any fluorescent embryos; and 3) transgenic piglets were produced by this methodology. To our knowledge, this is the first time that transgenic pigs have been produced by ICSI-SGMT and a recombinase.
Collapse
Affiliation(s)
- Francisco A García-Vázquez
- Departamento de Fisiología, Facultad de Veterinaria Departmento de Biología Celular e Histología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Transgenic pigs as models for translational biomedical research. J Mol Med (Berl) 2010; 88:653-64. [PMID: 20339830 DOI: 10.1007/s00109-010-0610-9] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 02/26/2010] [Accepted: 03/02/2010] [Indexed: 12/23/2022]
Abstract
The translation of novel discoveries from basic research to clinical application is a long, often inefficient, and thus costly process. Accordingly, the process of drug development requires optimization both for economic and for ethical reasons, in order to provide patients with appropriate treatments in a reasonable time frame. Consequently, "Translational Medicine" became a top priority in national and international roadmaps of human health research. Appropriate animal models for the evaluation of efficacy and safety of new drugs or therapeutic concepts are critical for the success of translational research. In this context rodent models are most widely used. At present, transgenic pigs are increasingly being established as large animal models for selected human diseases. The first pig whole genome sequence and many other genomic resources will be available in the near future. Importantly, efficient and precise techniques for the genetic modification of pigs have been established, facilitating the generation of tailored disease models. This article provides an overview of the current techniques for genetic modification of pigs and the transgenic pig models established for neurodegenerative diseases, cardiovascular diseases, cystic fibrosis, and diabetes mellitus.
Collapse
|
49
|
Klymiuk N, Aigner B, Brem G, Wolf E. Genetic modification of pigs as organ donors for xenotransplantation. Mol Reprod Dev 2009; 77:209-21. [DOI: 10.1002/mrd.21127] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Yamamoto A, Nakatsu S, Kondo A, Asato T, Okabe M, Fukuzawa M, Miyagawa S. A newly cloned pig dolichyl-phosphate mannosyl-transferase for preventing the transmission of porcine endogenous retrovirus to human cells. Transpl Int 2009; 23:424-31. [PMID: 19912589 DOI: 10.1111/j.1432-2277.2009.00999.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Porcine endogenous retrovirus (PERV) is a major problem associated with successful clinical xenotransplantation. In our previous study, reducing the high mannose type of N-glycan content proved to be very effective in downregulating PERV infectivity. In this study, dolichyl-phosphate mannosyltransferase (D-P-M), an enzyme related to the early stages of N-linked sugar synthesis was studied. The pig cDNA of the encoding D-P-M was newly isolated. The RNA interference (siRNA) for the D-P-M was applied and transfected to PEC(Z)/PB cells, a pig endothelial cell line with the Lac Z gene and PERV-B, to reduce the levels of high mannose type N-glycans. Compared with the mock line, the temporary PEC(Z)/PB lines showed a decreased mRNA expression for pig D-P-M, and each line then showed a clear destruction of PERV infectivity to human cells in the Lac Z pseudotype assay. The PEC(Z)/PB was next transfected with pSXGH-siRNA, H1-RNA gene promoter. The established PEC(Z)/PB clones with pSXGH-siRNA clearly led to the downregulation of PERV infectivity, as evidenced by the decreased levels of the mRNA for pig D-P-M. Reducing D-P-M enzyme activity represents a potentially useful approach to address the problem of PERV infections in clinical xenotransplantations.
Collapse
Affiliation(s)
- Aki Yamamoto
- Division of Organ Transplantation, Department of Surgery, and Osaka University Graduate School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|