1
|
Nguyen TM, Wu PY, Chang CH, Huang LF. High-yield BMP2 expression in rice cells via CRISPR and endogenous αAmy3 promoter. Appl Microbiol Biotechnol 2024; 108:206. [PMID: 38353738 PMCID: PMC10867061 DOI: 10.1007/s00253-024-13054-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 02/16/2024]
Abstract
Plant cells serve as versatile platforms for the production of high-value recombinant proteins. This study explored the efficacy of utilizing an endogenous αAmy3 promoter for the expression of a bioactive pharmaceutical protein, specifically the mature region of human bone morphogenetic protein 2 (hBMP2m). Utilizing a refined CRISPR/Cas9-mediated intron-targeting insertion technique, which incorporates an artificial 3' splicing site upstream of the target gene, we achieved a transformation efficiency of 13.5% in rice calli that carried the rice-codon optimized mature region of hBMP2 cDNA (rhBMP2m) in the αAmy3 intron 1. Both homozygous and heterozygous rhBMP2m knock-in rice suspension cell lines were generated. These lines demonstrated the endogenous αAmy3 promoter regulated rhBMP2m mRNA and rhBMP2m recombinant protein expression, with strongly upregulation in respond to sugar depletion. The homozygous rhBMP2m knock-in cell line yielded an impressive 21.5 μg/mL of rhBMP2m recombinant protein, accounting for 1.03% of the total soluble protein. The high-yield expression was stably maintained across two generations, indicating the genetic stability of rhBMP2m gene knock-in at the αAmy3 intron 1 locus. Additionally, the rice cell-derived rhBMP2m proteins were found to be glycosylated, capable of dimer formation, and bioactive. Our results indicate that the endogenous rice αAmy3 promoter-signal peptide-based expression system is an effective strategy for producing bioactive pharmaceutical proteins. KEY POINTS: • The endogenous αAmy3 promoter-based expression system enhanced the yield of BMP2 • The increased yield of BMP2 accounted for 1.03% of the total rice-soluble proteins • The rice-produced BMP2 showed glycosylation modifications, dimer formation, and bioactivity.
Collapse
Affiliation(s)
- Thi Mai Nguyen
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan City, 320, Taiwan, Republic of China
- Department of Life Sciences, National Central University, Taoyuan City, 320, Taiwan, Republic of China
| | - Pei-Yi Wu
- Department of Life Sciences, National Central University, Taoyuan City, 320, Taiwan, Republic of China
| | - Chih-Hung Chang
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan City, 320, Taiwan, Republic of China
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan, Republic of China
| | - Li-Fen Huang
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan City, 320, Taiwan, Republic of China.
| |
Collapse
|
2
|
Hou HW, Bishop CA, Huckauf J, Broer I, Klaus S, Nausch H, Buyel JF. Seed- and leaf-based expression of FGF21-transferrin fusion proteins for oral delivery and treatment of non-alcoholic steatohepatitis. FRONTIERS IN PLANT SCIENCE 2022; 13:998596. [PMID: 36247628 PMCID: PMC9557105 DOI: 10.3389/fpls.2022.998596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is a global disease with no effective medication. The fibroblast growth factor 21 (FGF21) can reverse this liver dysfunction, but requires targeted delivery to the liver, which can be achieved via oral administration. Therefore, we fused FGF21 to transferrin (Tf) via a furin cleavage site (F), to promote uptake from the intestine into the portal vein, yielding FGF21-F-Tf, and established its production in both seeds and leaves of commercial Nicotiana tabacum cultivars, compared their expression profile and tested the bioavailability and bioactivity in feeding studies. Since biopharmaceuticals need to be produced in a contained environment, e.g., greenhouses in case of plants, the seed production was increased in this setting from 239 to 380 g m-2 a-1 seed mass with costs of 1.64 € g-1 by side branch induction, whereas leaves yielded 8,193 g m-2 a-1 leave mass at 0.19 € g-1. FGF21-F-Tf expression in transgenic seeds and leaves yielded 6.7 and 5.6 mg kg-1 intact fusion protein, but also 4.5 and 2.3 mg kg-1 additional Tf degradation products. Removing the furin site and introducing the liver-targeting peptide PLUS doubled accumulation of intact FGF21-transferrin fusion protein when transiently expressed in Nicotiana benthamiana from 0.8 to 1.6 mg kg-1, whereas truncation of transferrin (nTf338) and reversing the order of FGF21 and nTf338 increased the accumulation to 2.1 mg kg-1 and decreased the degradation products to 7% for nTf338-FGF21-PLUS. Application of partially purified nTf338-FGF21-PLUS to FGF21-/- mice by oral gavage proved its transfer from the intestine into the blood circulation and acutely affected hepatic mRNA expression. Hence, the medication of NASH via oral delivery of nTf338-FGF21-PLUS containing plants seems possible.
Collapse
Affiliation(s)
- Hsuan-Wu Hou
- Department Bioprocess Engineering, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Chair for Agrobiotechnology, University of Rostock, Rostock, Germany
| | - Christopher A. Bishop
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Jana Huckauf
- Chair for Agrobiotechnology, University of Rostock, Rostock, Germany
| | - Inge Broer
- Chair for Agrobiotechnology, University of Rostock, Rostock, Germany
| | - Susanne Klaus
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Henrik Nausch
- Department Bioprocess Engineering, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Johannes F. Buyel
- Department Bioprocess Engineering, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute of Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
- Department of Biotechnology (DBT), Institute of Bioprocess Science and Engineering (IBSE), University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
3
|
Chloroplast Engineering: Fundamental Insights and Its Application in Amelioration of Environmental Stress. Appl Biochem Biotechnol 2022; 195:2463-2482. [PMID: 35484466 DOI: 10.1007/s12010-022-03930-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 12/21/2022]
Abstract
Chloroplasts are specialized organelle that are responsible for converting light energy to chemical energy, thereby driving the carbon dioxide fixation. Apart from photosynthesis, chloroplast is the site for essential cellular processes that determine the plant adaptation to changing environment. Owing to the presence of their own expression system, it provides an optimum platform for engineering valued traits as well as site for synthesis of bio-compounds. Advancements in technology have further enhanced the scope of using chloroplast as a multifaceted tool for the biotechnologist to develop stress-tolerant plants and ameliorate environmental stress. Focusing on chloroplast biotechnology, this review discusses the advances in chloroplast engineering and its application in enhancing plant adaptation and resistance to environmental stress and the development of new bioproducts and processes. This is accomplished through analysis of its biogenesis and physiological processes, highlighting the chloroplast engineering and recent developments in chloroplast biotechnology. In the first part of the review, the evolution and principles of structural organization and physiology of chloroplast are discussed. In the second part, the chief methods and mechanisms involved in chloroplast transformation are analyzed. The last part represents an updated analysis of the application of chloroplast engineering in crop improvement and bioproduction of industrial and health compounds.
Collapse
|
4
|
Xu H, Guo Y, Qiu L, Ran Y. Progress in Soybean Genetic Transformation Over the Last Decade. FRONTIERS IN PLANT SCIENCE 2022; 13:900318. [PMID: 35755694 PMCID: PMC9231586 DOI: 10.3389/fpls.2022.900318] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/11/2022] [Indexed: 05/13/2023]
Abstract
Soybean is one of the important food, feed, and biofuel crops in the world. Soybean genome modification by genetic transformation has been carried out for trait improvement for more than 4 decades. However, compared to other major crops such as rice, soybean is still recalcitrant to genetic transformation, and transgenic soybean production has been hampered by limitations such as low transformation efficiency and genotype specificity, and prolonged and tedious protocols. The primary goal in soybean transformation over the last decade is to achieve high efficiency and genotype flexibility. Soybean transformation has been improved by modifying tissue culture conditions such as selection of explant types, adjustment of culture medium components and choice of selection reagents, as well as better understanding the transformation mechanisms of specific approaches such as Agrobacterium infection. Transgenesis-based breeding of soybean varieties with new traits is now possible by development of improved protocols. In this review, we summarize the developments in soybean genetic transformation to date, especially focusing on the progress made using Agrobacterium-mediated methods and biolistic methods over the past decade. We also discuss current challenges and future directions.
Collapse
Affiliation(s)
- Hu Xu
- Tianjin Genovo Biotechnology Co., Ltd., Tianjin, China
| | - Yong Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lijuan Qiu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Lijuan Qiu,
| | - Yidong Ran
- Tianjin Genovo Biotechnology Co., Ltd., Tianjin, China
- Yidong Ran,
| |
Collapse
|
5
|
Cabanos C, Matsuoka Y, Maruyama N. Soybean proteins/peptides: A review on their importance, biosynthesis, vacuolar sorting, and accumulation in seeds. Peptides 2021; 143:170598. [PMID: 34153351 DOI: 10.1016/j.peptides.2021.170598] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/25/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022]
Abstract
Soybean is one of the most important sources of plant protein and is known for its wide range of agricultural, food, and industrial applications as well as health benefits. Interest in soybean proteins has been steadily growing as progressively more applications and benefits are discovered. This review article is focused on the major seed storage proteins of soybean, their three-dimensional structures, their nutritional importance and bioactive peptides, cellular synthesis, and accumulation in seeds. This will also summarize past efforts in the recombinant production of foreign proteins or bioactive peptides in soybean seed.
Collapse
Affiliation(s)
- Cerrone Cabanos
- Laboratory of Food Quality Design and Development, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Yuki Matsuoka
- Laboratory of Food Quality Design and Development, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Nobuyuki Maruyama
- Laboratory of Food Quality Design and Development, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
6
|
Rascón-Cruz Q, González-Barriga CD, Iglesias-Figueroa BF, Trejo-Muñoz JC, Siqueiros-Cendón T, Sinagawa-García SR, Arévalo-Gallegos S, Espinoza-Sánchez EA. Plastid transformation: Advances and challenges for its implementation in agricultural crops. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
7
|
Darqui FS, Radonic LM, Beracochea VC, Hopp HE, López Bilbao M. Peculiarities of the Transformation of Asteraceae Family Species: The Cases of Sunflower and Lettuce. FRONTIERS IN PLANT SCIENCE 2021; 12:767459. [PMID: 34899788 PMCID: PMC8662702 DOI: 10.3389/fpls.2021.767459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/02/2021] [Indexed: 05/17/2023]
Abstract
The Asteraceae family is the largest and most diversified family of the Angiosperms, characterized by the presence of numerous clustered inflorescences, which have the appearance of a single compound flower. It is estimated that this family represents around 10% of all flowered species, with a great biodiversity, covering all environments on the planet, except Antarctica. Also, it includes economically important crops, such as lettuce, sunflower, and chrysanthemum; wild flowers; herbs, and several species that produce molecules with pharmacological properties. Nevertheless, the biotechnological improvement of this family is limited to a few species and their genetic transformation was achieved later than in other plant families. Lettuce (Lactuca sativa L.) is a model species in molecular biology and plant biotechnology that has easily adapted to tissue culture, with efficient shoot regeneration from different tissues, organs, cells, and protoplasts. Due to this plasticity, it was possible to obtain transgenic plants tolerant to biotic or abiotic stresses as well as for the production of commercially interesting molecules (molecular farming). These advances, together with the complete sequencing of lettuce genome allowed the rapid adoption of gene editing using the CRISPR system. On the other hand, sunflower (Helianthus annuus L.) is a species that for years was considered recalcitrant to in vitro culture. Although this difficulty was overcome and some publications were made on sunflower genetic transformation, until now there is no transgenic variety commercialized or authorized for cultivation. In this article, we review similarities (such as avoiding the utilization of the CaMV35S promoter in transformation vectors) and differences (such as transformation efficiency) in the state of the art of genetic transformation techniques performed in these two species.
Collapse
Affiliation(s)
- Flavia Soledad Darqui
- IABIMO (Instituto de Agrobiotecnología y Biología Molecular), UEDD INTA-CONICET, CNIA, Buenos Aires, Argentina
| | - Laura Mabel Radonic
- IABIMO (Instituto de Agrobiotecnología y Biología Molecular), UEDD INTA-CONICET, CNIA, Buenos Aires, Argentina
| | - Valeria Cecilia Beracochea
- IABIMO (Instituto de Agrobiotecnología y Biología Molecular), UEDD INTA-CONICET, CNIA, Buenos Aires, Argentina
| | - H. Esteban Hopp
- IABIMO (Instituto de Agrobiotecnología y Biología Molecular), UEDD INTA-CONICET, CNIA, Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Marisa López Bilbao
- IABIMO (Instituto de Agrobiotecnología y Biología Molecular), UEDD INTA-CONICET, CNIA, Buenos Aires, Argentina
- *Correspondence: Marisa López Bilbao,
| |
Collapse
|
8
|
Arévalo-Gallegos S, Varela-Rodríguez H, Lugo-Aguilar H, Siqueiros-Cendón TS, Iglesias-Figueroa BF, Espinoza-Sánchez EA, Aguado-Santacruz GA, Rascón-Cruz Q. Transient expression of a green fluorescent protein in tobacco and maize chloroplast. ELECTRON J BIOTECHN 2020. [DOI: 10.1016/j.ejbt.2020.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
9
|
Park J, Yan G, Kwon KC, Liu M, Gonnella PA, Yang S, Daniell H. Oral delivery of novel human IGF-1 bioencapsulated in lettuce cells promotes musculoskeletal cell proliferation, differentiation and diabetic fracture healing. Biomaterials 2020; 233:119591. [PMID: 31870566 PMCID: PMC6990632 DOI: 10.1016/j.biomaterials.2019.119591] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/16/2019] [Accepted: 10/30/2019] [Indexed: 12/16/2022]
Abstract
Human insulin-like growth factor-1 (IGF-1) plays important roles in development and regeneration of skeletal muscles and bones but requires daily injections or surgical implantation. Current clinical IGF-1 lacks e-peptide and is glycosylated, reducing functional efficacy. In this study, codon-optimized Pro-IGF-1 with e-peptide (fused to GM1 receptor binding protein CTB or cell penetrating peptide PTD) was expressed in lettuce chloroplasts to facilitate oral delivery. Pro-IGF-1 was expressed at high levels in the absence of the antibiotic resistance gene in lettuce chloroplasts and was maintained in subsequent generations. In lyophilized plant cells, Pro-IGF-1 maintained folding, assembly, stability and functionality up to 31 months, when stored at ambient temperature. CTB-Pro-IGF-1 stimulated proliferation of human oral keratinocytes, gingiva-derived mesenchymal stromal cells and mouse osteoblasts in a dose-dependent manner and promoted osteoblast differentiation through upregulation of ALP, OSX and RUNX2 genes. Mice orally gavaged with the lyophilized plant cells significantly increased IGF-1 levels in sera, skeletal muscles and was stable for several hours. When bioencapsulated CTB-Pro-IGF-1 was gavaged to femoral fractured diabetic mice, bone regeneration was significantly promoted with increase in bone volume, density and area. This novel delivery system should increase affordability and patient compliance, especially for treatment of musculoskeletal diseases.
Collapse
Affiliation(s)
- J Park
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - G Yan
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - K-C Kwon
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Liu
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - P A Gonnella
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - S Yang
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Penn Center for Musculoskeletal Disorders, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - H Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|