1
|
Ali S, Tyagi A, Park S, Bae H. Understanding the mechanobiology of phytoacoustics through molecular Lens: Mechanisms and future perspectives. J Adv Res 2024; 65:47-72. [PMID: 38101748 PMCID: PMC11518948 DOI: 10.1016/j.jare.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND How plants emit, perceive, and respond to sound vibrations (SVs) is a long-standing question in the field of plant sensory biology. In recent years, there have been numerous studies on how SVs affect plant morphological, physiological, and biochemical traits related to growth and adaptive responses. For instance, under drought SVs navigate plant roots towards water, activate their defence responses against stressors, and increase nectar sugar in response to pollinator SVs. Also, plants emit SVs during stresses which are informative in terms of ecological and adaptive perspective. However, the molecular mechanisms underlying the SV perception and emission in plants remain largely unknown. Therefore, deciphering the complexity of plant-SV interactions and identifying bonafide receptors and signaling players will be game changers overcoming the roadblocks in phytoacoustics. AIM OF REVIEW The aim of this review is to provide an overview of recent developments in phytoacoustics. We primarily focuss on SV signal perception and transduction with current challenges and future perspectives. KEY SCIENTIFIC CONCEPTS OF REVIEW Timeline breakthroughs in phytoacoustics have constantly shaped our understanding and belief that plants may emit and respond to SVs like other species. However, unlike other plant mechanostimuli, little is known about SV perception and signal transduction. Here, we provide an update on phytoacoustics and its ecological importance. Next, we discuss the role of cell wall receptor-like kinases, mechanosensitive channels, intracellular organelle signaling, and other key players involved in plant-SV receptive pathways that connect them. We also highlight the role of calcium (Ca2+), reactive oxygen species (ROS), hormones, and other emerging signaling molecules in SV signal transduction. Further, we discuss the importance of molecular, biophysical, computational, and live cell imaging tools for decoding the molecular complexity of acoustic signaling in plants. Finally, we summarised the role of SV priming in plants and discuss how SVs could modulate plant defense and growth trade-offs during other stresses.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea
| | - Suvin Park
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
2
|
Gaur A, Jindal Y, Singh V, Tiwari R, Juliana P, Kaushik D, Kumar KJY, Ahlawat OP, Singh G, Sheoran S. GWAS elucidated grain yield genetics in Indian spring wheat under diverse water conditions. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:177. [PMID: 38972024 DOI: 10.1007/s00122-024-04680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/11/2024] [Indexed: 07/08/2024]
Abstract
KEY MESSAGE Underpinned natural variations and key genes associated with yield under different water regimes, and identified genomic signatures of genetic gain in the Indian wheat breeding program. A novel KASP marker for TKW under water stress was developed and validated. A comprehensive genome-wide association study was conducted on 300 spring wheat genotypes to elucidate the natural variations associated with grain yield and its eleven contributing traits under fully irrigated, restricted water, and simulated no water conditions. Utilizing the 35K Wheat Breeders' Array, we identified 1155 quantitative trait nucleotides (QTNs), with 207 QTNs exhibiting stability across diverse conditions. These QTNs were further delimited into 539 genomic regions using a genome-wide LD value of 3.0 Mbp, revealing pleiotropic control across traits and conditions. Sub-genome A was significantly associated with traits under irrigated conditions, while sub-genome B showed more QTNs under water stressed conditions. Favourable alleles with significantly associated QTNs were delineated, with a notable pyramiding effect for enhancing trait performance. Additionally, allele of only 921 QTNs significantly affected the population mean. Allele profiling highlighted C-306 as a most potential source of drought tolerance. Moreover, 762 genes overlapping significant QTNs were identified, narrowing down to 27 putative candidate genes overlapping 29 novel and functional SNPs expressing (≥ 0.5 tpm) relevance across various growth conditions. A new KASP assay was developed, targeting a gene TraesCS2A03G1123700 regulating thousand kernel weight under severe drought condition. Genomic selection models (GBLUP, BayesB, MxE, and R-Norm) demonstrated an average prediction accuracy of 0.06-0.58 across environments, indicating potential for trait selection. Retrospective analysis of the Indian wheat breeding program supported a genetic gain in GY at the rate of ca. 0.56% per breeding cycle, since 1960, supporting the identification of genomic signatures driving trait selection and genetic gain. These findings offer insight into improving the rate of genetic gain in wheat breeding programs globally.
Collapse
Affiliation(s)
- Arpit Gaur
- Department of Genetics and Plant Breeding, CCS Haryana Agricultural University, Hisar, India
- Crop Improvement, ICAR- Indian Institute of Wheat and Barley Research, Karnal, India
| | - Yogesh Jindal
- Department of Genetics and Plant Breeding, CCS Haryana Agricultural University, Hisar, India
| | - Vikram Singh
- Department of Genetics and Plant Breeding, CCS Haryana Agricultural University, Hisar, India
| | - Ratan Tiwari
- Crop Improvement, ICAR- Indian Institute of Wheat and Barley Research, Karnal, India
| | | | - Deepak Kaushik
- Department of Genetics and Plant Breeding, CCS Haryana Agricultural University, Hisar, India
| | | | - Om Parkash Ahlawat
- Crop Improvement, ICAR- Indian Institute of Wheat and Barley Research, Karnal, India
| | - Gyanendra Singh
- Crop Improvement, ICAR- Indian Institute of Wheat and Barley Research, Karnal, India
| | - Sonia Sheoran
- Crop Improvement, ICAR- Indian Institute of Wheat and Barley Research, Karnal, India.
| |
Collapse
|
3
|
Jojoa-Cruz S, Burendei B, Lee WH, Ward AB. Structure of mechanically activated ion channel OSCA2.3 reveals mobile elements in the transmembrane domain. Structure 2024; 32:157-167.e5. [PMID: 38103547 PMCID: PMC10872982 DOI: 10.1016/j.str.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/29/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023]
Abstract
Members of the OSCA/TMEM63 family are mechanically activated ion channels and structures of some OSCA members have revealed the architecture of these channels and structural features that are potentially involved in mechanosensation. However, these structures are all in a similar state and information about the motion of different elements of the structure is limited, preventing a deeper understanding of how these channels work. Here, we used cryoelectron microscopy to determine high-resolution structures of Arabidopsis thaliana OSCA1.2 and OSCA2.3 in peptidiscs. The structure of OSCA1.2 matches previous structures of the same protein in different environments. Yet, in OSCA2.3, the TM6a-TM7 linker adopts a different conformation that constricts the pore on its cytoplasmic side. Furthermore, coevolutionary sequence analysis uncovered a conserved interaction between the TM6a-TM7 linker and the beam-like domain (BLD). Our results reveal conformational heterogeneity and differences in conserved interactions between the TMD and BLD among members of the OSCA family.
Collapse
Affiliation(s)
- Sebastian Jojoa-Cruz
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Batuujin Burendei
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
4
|
Alvi AF, Khan S, Khan NA. Hydrogen sulfide and ethylene regulate sulfur-mediated stomatal and photosynthetic responses and heat stress acclimation in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108437. [PMID: 38368727 DOI: 10.1016/j.plaphy.2024.108437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
The gaseous signaling molecules, ethylene (ET) and hydrogen sulfide (H2S) are well known for their ability to mitigate abiotic stress, but how they interact with mineral nutrients under heat stress is unclear. We have studied the involvement of ET and H2S in adaptation of heat stress on the availability of sulfur (S) levels in rice (Oryza sativa L.). Heat stress (40 °C) negatively impacted growth and photosynthetic-sulfur use efficiency (p-SUE), with accumulation of reactive oxygen species (ROS) in six rice cultivars, namely PS 2511, Birupa, Nidhi, PB 1509, PB 1728, and Panvel. Supplementation of S at 2.0 mM SO42- in the form of MgSO4, improved growth and photosynthetic attributes more than 1.0 mM SO42- under control (28 °C), and mitigated heat stress effects more prominently in PS 2511 (heat-tolerant) than in PB 1509 (heat-sensitive) cultivar. The higher heat stress mitigation potential of 2.0 mM SO42- in heat-tolerant cultivar was correlated with higher S-assimilation, activity of antioxidant enzymes, stomatal (stomatal conductance) and non-stomatal limitations, activity of carbonic anhydrase and Rubisco, and mesophyll conductance. The use of norbornadiene (NBD) and hypotaurine (HT), ET and H2S inhibitors, respectively, resulted in the lowest values for photosynthetic efficiency, stomatal and non-stomatal factors, implying the mediation of ET and H2S in heat stress acclimation. The connectivity of ET and H2S with S-assimilation through a common metabolite cysteine (Cys) improved heat stress adaptation in which H2S acted downstream to ET-mediated responses. Thus, the better adaptability of rice plants to heat stress may be obtained through modulation of ET and H2S via S.
Collapse
Affiliation(s)
- Ameena Fatima Alvi
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Sheen Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Nafees A Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
5
|
Ndecky S, Nguyen TH, Eiche E, Cognat V, Pflieger D, Pawar N, Betting F, Saha S, Champion A, Riemann M, Heitz T. Jasmonate signaling controls negative and positive effectors of salt stress tolerance in rice. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3220-3239. [PMID: 36879437 DOI: 10.1093/jxb/erad086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/01/2023] [Indexed: 05/21/2023]
Abstract
Plant responses to salt exposure involve large reconfigurations of hormonal pathways that orchestrate physiological changes towards tolerance. Jasmonate (JA) hormones are essential to withstand biotic and abiotic assaults, but their roles in salt tolerance remain unclear. Here we describe the dynamics of JA metabolism and signaling in root and leaf tissue of rice, a plant species that is highly exposed and sensitive to salt. Roots activate the JA pathway in an early pulse, while the second leaf displays a biphasic JA response with peaks at 1 h and 3 d post-exposure. Based on higher salt tolerance of a rice JA-deficient mutant (aoc), we examined, through kinetic transcriptome and physiological analysis, the salt-triggered processes that are under JA control. Profound genotype-differential features emerged that could underlie the observed phenotypes. Abscisic acid (ABA) content and ABA-dependent water deprivation responses were impaired in aoc shoots. Moreover, aoc accumulated more Na+ in roots, and less in leaves, with reduced ion translocation correlating with root derepression of the HAK4 Na+ transporter gene. Distinct reactive oxygen species scavengers were also stronger in aoc leaves, along with reduced senescence and chlorophyll catabolism markers. Collectively, our results identify contrasted contributions of JA signaling to different sectors of the salt stress response in rice.
Collapse
Affiliation(s)
- Simon Ndecky
- Institut de Biologie Moléculaire des Plantes (IBMP) du CNRS, Université de Strasbourg, Strasbourg, France
| | - Trang Hieu Nguyen
- DIADE, Institut de Recherche et de Développement (IRD), Université de Montpellier, Montpellier, France
| | - Elisabeth Eiche
- Institute for Applied Geosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Valérie Cognat
- Institut de Biologie Moléculaire des Plantes (IBMP) du CNRS, Université de Strasbourg, Strasbourg, France
| | - David Pflieger
- Institut de Biologie Moléculaire des Plantes (IBMP) du CNRS, Université de Strasbourg, Strasbourg, France
| | - Nitin Pawar
- Botanical Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Ferdinand Betting
- Institute for Technology Assessment and Systems Analysis (ITAS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Somidh Saha
- Institute for Technology Assessment and Systems Analysis (ITAS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Antony Champion
- DIADE, Institut de Recherche et de Développement (IRD), Université de Montpellier, Montpellier, France
| | - Michael Riemann
- Botanical Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Thierry Heitz
- Institut de Biologie Moléculaire des Plantes (IBMP) du CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
6
|
Oelmüller R, Tseng YH, Gandhi A. Signals and Their Perception for Remodelling, Adjustment and Repair of the Plant Cell Wall. Int J Mol Sci 2023; 24:ijms24087417. [PMID: 37108585 PMCID: PMC10139151 DOI: 10.3390/ijms24087417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
The integrity of the cell wall is important for plant cells. Mechanical or chemical distortions, tension, pH changes in the apoplast, disturbance of the ion homeostasis, leakage of cell compounds into the apoplastic space or breakdown of cell wall polysaccharides activate cellular responses which often occur via plasma membrane-localized receptors. Breakdown products of the cell wall polysaccharides function as damage-associated molecular patterns and derive from cellulose (cello-oligomers), hemicelluloses (mainly xyloglucans and mixed-linkage glucans as well as glucuronoarabinoglucans in Poaceae) and pectins (oligogalacturonides). In addition, several types of channels participate in mechanosensing and convert physical into chemical signals. To establish a proper response, the cell has to integrate information about apoplastic alterations and disturbance of its wall with cell-internal programs which require modifications in the wall architecture due to growth, differentiation or cell division. We summarize recent progress in pattern recognition receptors for plant-derived oligosaccharides, with a focus on malectin domain-containing receptor kinases and their crosstalk with other perception systems and intracellular signaling events.
Collapse
Affiliation(s)
- Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Yu-Heng Tseng
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Akanksha Gandhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| |
Collapse
|
7
|
Raj SRG, Nadarajah K. QTL and Candidate Genes: Techniques and Advancement in Abiotic Stress Resistance Breeding of Major Cereals. Int J Mol Sci 2022; 24:6. [PMID: 36613450 PMCID: PMC9820233 DOI: 10.3390/ijms24010006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
At least 75% of the world's grain production comes from the three most important cereal crops: rice (Oryza sativa), wheat (Triticum aestivum), and maize (Zea mays). However, abiotic stressors such as heavy metal toxicity, salinity, low temperatures, and drought are all significant hazards to the growth and development of these grains. Quantitative trait locus (QTL) discovery and mapping have enhanced agricultural production and output by enabling plant breeders to better comprehend abiotic stress tolerance processes in cereals. Molecular markers and stable QTL are important for molecular breeding and candidate gene discovery, which may be utilized in transgenic or molecular introgression. Researchers can now study synteny between rice, maize, and wheat to gain a better understanding of the relationships between the QTL or genes that are important for a particular stress adaptation and phenotypic improvement in these cereals from analyzing reports on QTL and candidate genes. An overview of constitutive QTL, adaptive QTL, and significant stable multi-environment and multi-trait QTL is provided in this article as a solid framework for use and knowledge in genetic enhancement. Several QTL, such as DRO1 and Saltol, and other significant success cases are discussed in this review. We have highlighted techniques and advancements for abiotic stress tolerance breeding programs in cereals, the challenges encountered in introgressing beneficial QTL using traditional breeding techniques such as mutation breeding and marker-assisted selection (MAS), and the in roads made by new breeding methods such as genome-wide association studies (GWASs), the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system, and meta-QTL (MQTL) analysis. A combination of these conventional and modern breeding approaches can be used to apply the QTL and candidate gene information in genetic improvement of cereals against abiotic stresses.
Collapse
Affiliation(s)
| | - Kalaivani Nadarajah
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
8
|
Kaur A, Sharma A, Dixit S, Singh K, Upadhyay SK. OSCA Genes in Bread Wheat: Molecular Characterization, Expression Profiling, and Interaction Analyses Indicated Their Diverse Roles during Development and Stress Response. Int J Mol Sci 2022; 23:ijms232314867. [PMID: 36499199 PMCID: PMC9737358 DOI: 10.3390/ijms232314867] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
The hyperosmolality-gated calcium-permeable channels (OSCA) are pore-forming transmembrane proteins that function as osmosensors during various plant developmental processes and stress responses. In our analysis, through in silico approaches, a total of 42 OSCA genes are identified in the Triticum aestivum genome. A phylogenetic analysis reveals the close clustering of the OSCA proteins of Arabidopsis thaliana, Oryza sativa, and T. aestivum in all the clades, suggesting their origin before the divergence of dicots and monocots. Furthermore, evolutionary analyses suggest the role of segmental and tandem duplication events (Des) and purifying selection pressure in the expansion of the OSCA gene family in T. aestivum. Expression profiling in various tissue developmental stages and under abiotic and biotic stress treatments reveals the probable functioning of OSCA genes in plant development and the stress response in T. aestivum. In addition, protein-protein and protein-chemical interactions reveal that OSCA proteins might play a putative role in Ca2+-mediated developmental processes and adaptive responses. The miRNA interaction analysis strengthens the evidence for their functioning in various biological processes and stress-induced signaling cascades. The current study could provide a foundation for the functional characterization of TaOSCA genes in future studies.
Collapse
Affiliation(s)
- Amandeep Kaur
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Alok Sharma
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Sameer Dixit
- Department of Biology, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Santosh Kumar Upadhyay
- Department of Botany, Panjab University, Chandigarh 160014, India
- Correspondence: or ; Tel.: +91-172-2534001; Fax: +91-172-2779510
| |
Collapse
|
9
|
She K, Pan W, Yan Y, Shi T, Chu Y, Cheng Y, Ma B, Song W. Genome-Wide Identification, Evolution and Expressional Analysis of OSCA Gene Family in Barley ( Hordeum vulgare L.). Int J Mol Sci 2022; 23:13027. [PMID: 36361820 PMCID: PMC9653715 DOI: 10.3390/ijms232113027] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 09/06/2023] Open
Abstract
The hyperosmolality-gated calcium-permeable channel gene family (OSCA) is one kind of conserved osmosensors, playing a crucial role in maintaining ion and water homeostasis and protecting cellular stability from the damage of hypertonic stress. Although it has been systematically characterized in diverse plants, it is necessary to explore the role of the OSCA family in barley, especially its importance in regulating abiotic stress response. In this study, a total of 13 OSCA genes (HvOSCAs) were identified in barley through an in silico genome search method, which were clustered into 4 clades based on phylogenetic relationships with members in the same clade showing similar protein structures and conserved motif compositions. These HvOSCAs had many cis-regulatory elements related to various abiotic stress, such as MBS and ARE, indicating their potential roles in abiotic stress regulation. Furthermore, their expression patterns were systematically detected under diverse stresses using RNA-seq data and qRT-PCR methods. All of these 13 HvOSCAs were significantly induced by drought, cold, salt and ABA treatment, demonstrating their functions in osmotic regulation. Finally, the genetic variations of the HvOSCAs were investigated using the re-sequencing data, and their nucleotide diversity in wild barley and landrace populations were 0.4966 × 10-3 and 0.391 × 10-3, respectively, indicating that a genetic bottleneck has occurred in the OSCA family during the barley evolution process. This study evaluated the genomic organization, evolutionary relationship and genetic expression of the OSCA family in barley, which not only provides potential candidates for further functional genomic study, but also contributes to genetically improving stress tolerance in barley and other crops.
Collapse
Affiliation(s)
- Kuijun She
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
- Crop Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Wenqiu Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Ying Yan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Tingrui Shi
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yingqi Chu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yue Cheng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Bo Ma
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Weining Song
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
10
|
Liu C, Wang H, Zhang Y, Cheng H, Hu Z, Pei ZM, Li Q. Systematic Characterization of the OSCA Family Members in Soybean and Validation of Their Functions in Osmotic Stress. Int J Mol Sci 2022; 23:ijms231810570. [PMID: 36142482 PMCID: PMC9500692 DOI: 10.3390/ijms231810570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 12/31/2022] Open
Abstract
Since we discovered OSCA1, a hyperosmolarity-gated calcium-permeable channel that acted as an osmosensor in Arabidopsis, the OSCA family has been identified genome-wide in several crops, but only a few OSCA members' functions have been experimentally demonstrated. Osmotic stress seriously restricts the yield and quality of soybean. Therefore, it is essential to decipher the molecular mechanism of how soybean responds to osmotic stress. Here, we first systematically studied and experimentally demonstrated the role of OSCA family members in the osmotic sensing of soybean. Phylogenetic relationships, gene structures, protein domains and structures analysis revealed that 20 GmOSCA members were divided into four clades, of which members in the same cluster may have more similar functions. In addition, GmOSCA members in clusters III and IV may be functionally redundant and diverged from those in clusters I and II. Based on the spatiotemporal expression patterns, GmOSCA1.6, GmOSCA2.1, GmOSCA2.6, and GmOSCA4.1 were extremely low expressed or possible pseudogenes. The remaining 16 GmOSCA genes were heterologously overexpressed in an Arabidopsis osca1 mutant, to explore their functions. Subcellular localization showed that most GmOSCA members could localize to the plasma membrane (PM). Among 16 GmOSCA genes, only overexpressing GmOSCA1.1, GmOSCA1.2, GmOSCA1.3, GmOSCA1.4, and GmOSCA1.5 in cluster I could fully complement the reduced hyperosmolality-induced [Ca2+]i increase (OICI) in osca1. The expression profiles of GmOSCA genes against osmotic stress demonstrated that most GmOSCA genes, especially GmOSCA1.1, GmOSCA1.2, GmOSCA1.3, GmOSCA1.4, GmOSCA1.5, GmOSCA3.1, and GmOSCA3.2, strongly responded to osmotic stress. Moreover, overexpression of GmOSCA1.1, GmOSCA1.2, GmOSCA1.3, GmOSCA1.4, GmOSCA1.5, GmOSCA3.1, and GmOSCA3.2 rescued the drought-hypersensitive phenotype of osca1. Our findings provide important clues for further studies of GmOSCA-mediated calcium signaling in the osmotic sensing of soybean and contribute to improving soybean drought tolerance through genetic engineering and molecular breeding.
Collapse
Affiliation(s)
- Congge Liu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Hong Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311401, China
| | - Yu Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Haijing Cheng
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Zhangli Hu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Zhen-Ming Pei
- Department of Biology, Duke University, Durham, NC 27708, USA
- Correspondence: (Z.-M.P.); or (Q.L.)
| | - Qing Li
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311401, China
- Correspondence: (Z.-M.P.); or (Q.L.)
| |
Collapse
|
11
|
Yang S, Zhu C, Chen J, Zhao J, Hu Z, Liu S, Zhou Y. Identification and Expression Profile Analysis of the OSCA Gene Family Related to Abiotic and Biotic Stress Response in Cucumber. BIOLOGY 2022; 11:biology11081134. [PMID: 36009761 PMCID: PMC9404750 DOI: 10.3390/biology11081134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Hyperosmolality-gated calcium-permeable channels (OSCAs) are calcium nonselective cation channel proteins involved in multiple biological processes. In this work, the members of the OSCA family in cucumber were systematically analyzed, including their sequence characteristics, phylogenetic relationships, conserved motifs, gene structures, promoter regions, and tissue expression patterns. In addition, the effects of different osmotic-related abiotic stresses [salt (NaCl), drought (PEG), and abscisic acid (ABA)] and three biotic stresses [powdery mildew (PM), downy mildew (DM), and root-knot nematode (RKN)] on OSCA family genes were also determined. The results indicated that cucumber OSCA genes play important roles in response to osmotic-related abiotic stresses and pathogen invasion. Overall, this study lays a foundation for research on the biological function and evolutionary process of OSCA family genes in cucumber. Abstract Calcium ions are important second messengers, playing an important role in the signal transduction pathways. Hyperosmolality gated calcium-permeable channels (OSCA) gene family members play critical modulating roles in response to osmotic-related abiotic stress as well as other abiotic and biotic stresses, which has been reported in many plant species such as Arabidopsis, rice, maize, and wheat. However, there has been no report about the identification and expression profile of the OSCA genes in cucumber. In this study, a total of nine OSCA genes were identified, which are unevenly distributed on the six chromosomes of cucumber. Phylogenetic analysis revealed that the OSCAs of cucumber, Arabidopsis, rice and maize were clustered into four clades. The motif arrangement of CsOSCAs was strongly conserved, and the CsOSCA genes in each group had similar genetic structure. A total of 11 and 10 types of cis-elements related to hormone and stress, respectively, were identified in the promoter regions of CsOSCA genes. Gene expression analysis indicated that the CsOSCA genes have different expression patterns in various tissues, and some of them were regulated by three osmotic-related abiotic stresses (salt, drought and ABA) and three biotic stresses (powdery mildew, downy mildew, and root-knot nematode). As the first genome-wide identification and characterization of the OSCA gene family in cucumber, this study lays a foundation for research on the biological function and evolutionary process of this gene family, which is of great significance for exploiting stress resistant cucumber varieties.
Collapse
Affiliation(s)
- Shuting Yang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (S.Y.); (C.Z.); (J.C.); (J.Z.); (Z.H.)
| | - Chuxia Zhu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (S.Y.); (C.Z.); (J.C.); (J.Z.); (Z.H.)
| | - Jingju Chen
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (S.Y.); (C.Z.); (J.C.); (J.Z.); (Z.H.)
| | - Jindong Zhao
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (S.Y.); (C.Z.); (J.C.); (J.Z.); (Z.H.)
| | - Zhaoyang Hu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (S.Y.); (C.Z.); (J.C.); (J.Z.); (Z.H.)
| | - Shiqiang Liu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (S.Y.); (C.Z.); (J.C.); (J.Z.); (Z.H.)
- Correspondence: (S.L.); (Y.Z.)
| | - Yong Zhou
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (S.Y.); (C.Z.); (J.C.); (J.Z.); (Z.H.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- Correspondence: (S.L.); (Y.Z.)
| |
Collapse
|
12
|
Han Y, Wang Y, Zhai Y, Wen Z, Liu J, Xi C, Zhao H, Wang Y, Han S. OsOSCA1.1 Mediates Hyperosmolality and Salt Stress Sensing in Oryza sativa. BIOLOGY 2022; 11:biology11050678. [PMID: 35625406 PMCID: PMC9138581 DOI: 10.3390/biology11050678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022]
Abstract
OSCA (reduced hyperosmolality-induced [Ca2+]i increase) is a family of mechanosensitive calcium-permeable channels that play a role in osmosensing and stomatal immunity in plants. Oryza sativa has 11 OsOSCA genes; some of these were shown to complement hyperosmolality-induced [Ca2+]cyt increases (OICIcyt), salt stress-induced [Ca2+]cyt increases (SICIcyt), and the associated growth phenotype in the Arabidopsis thaliana mutant osca1. However, their biological functions in rice remain unclear. In this paper, we found that OsOSCA1.1 mediates OICIcyt and SICIcyt in rice roots, which are critical for stomatal closure, plant survival, and gene expression in shoots, in response to hyperosmolality and the salt stress treatment of roots. Compared with wild-type (Zhonghua11, ZH11) plants, OICIcyt and SICIcyt were abolished in the roots of 10-day-old ososca1.1 seedlings, in response to treatment with 250 mM of sorbitol and 100 mM of NaCl, respectively. Moreover, hyperosmolality- and salt stress-induced stomatal closure were also disrupted in a 30-day-old ososca1.1 mutant, resulting in lower stomatal resistance and survival rates than that in ZH11. However, overexpression of OsOSCA1.1 in ososca1.1 complemented stomatal movement and survival, in response to hyperosmolality and salt stress. The transcriptomic analysis further revealed the following three types of OsOSCA1.1-regulated genes in the shoots: 2416 sorbitol-responsive, 2349 NaCl-responsive and 1844 common osmotic stress-responsive genes after treated with 250 mM of sorbitol and 125 mM NaCl of in 30-day-old rice roots for 24 h. The Gene Ontology enrichment analysis showed that these OsOSCA1.1-regulated genes were relatively enriched in transcription regulation, hormone response, and phosphorylation terms of the biological processes category, which is consistent with the Cis-regulatory elements ABRE, ARE, MYB and MYC binding motifs that were overrepresented in 2000-bp promoter regions of these OsOSCA1.1-regulated genes. These results indicate that OsOSCA-mediated calcium signaling specifically regulates gene expression, in response to drought and salt stress in rice.
Collapse
Affiliation(s)
- Yang Han
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.H.); (Y.W.); (Y.Z.); (Z.W.); (J.L.); (C.X.); (H.Z.); (Y.W.)
| | - Yinxing Wang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.H.); (Y.W.); (Y.Z.); (Z.W.); (J.L.); (C.X.); (H.Z.); (Y.W.)
| | - Yuanjun Zhai
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.H.); (Y.W.); (Y.Z.); (Z.W.); (J.L.); (C.X.); (H.Z.); (Y.W.)
| | - Zhaohong Wen
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.H.); (Y.W.); (Y.Z.); (Z.W.); (J.L.); (C.X.); (H.Z.); (Y.W.)
| | - Jin Liu
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.H.); (Y.W.); (Y.Z.); (Z.W.); (J.L.); (C.X.); (H.Z.); (Y.W.)
| | - Chao Xi
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.H.); (Y.W.); (Y.Z.); (Z.W.); (J.L.); (C.X.); (H.Z.); (Y.W.)
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.H.); (Y.W.); (Y.Z.); (Z.W.); (J.L.); (C.X.); (H.Z.); (Y.W.)
| | - Yingdian Wang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.H.); (Y.W.); (Y.Z.); (Z.W.); (J.L.); (C.X.); (H.Z.); (Y.W.)
- Academy of Plateau Science and Sustainability of the People’s Government of Qinghai Province & Beijing Normal University, Qinghai Normal University, Xining 810008, China
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.H.); (Y.W.); (Y.Z.); (Z.W.); (J.L.); (C.X.); (H.Z.); (Y.W.)
- Academy of Plateau Science and Sustainability of the People’s Government of Qinghai Province & Beijing Normal University, Qinghai Normal University, Xining 810008, China
- Correspondence:
| |
Collapse
|