1
|
Chen X, Li C, Fang T, Yao J, Gu X. Impact of prenatal heat tolerance in holstein dry cows on their calves' thermoregulation and immunity. J Therm Biol 2024; 127:104015. [PMID: 39681066 DOI: 10.1016/j.jtherbio.2024.104015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 12/18/2024]
Abstract
This study examines the impact of Holstein dry cows' prenatal heat tolerance (n = 180) on their calves' thermoregulation and immunity. Holstein cows (body condition score 3.29 ± 0.39, parity 2.64 ± 0.79) were monitored for body temperature (BT), respiratory rate (RR), and microenvironmental temperature and humidity twice daily for seven days during heat stress. Mixed-effects model and cluster method identified heat-tolerant (n = 68) and heat-sensitive (n = 114) dry cows. Once cows gave birth, the RR and BT of 2-day-old calves were recorded every 2 h for two days, totaling five measurements per day, to assess thermoregulatory responses using generalized linear mixed models. Calves in the heat-tolerant group had a better thermoregulatory response than the heat-sensitive group, RR of heat-tolerant calves was significantly higher than the heat-sensitive calves (P = 0.02). Plasma indicators were analyzed to assess calf immunity. Heat-tolerant calves had significantly lower plasma cortisol, tumor necrosis factor-alpha, interleukin 2, interleukin 4, interleukin 6, and interleukin 10 concentrations compared to heat-sensitive calves (P < 0.05). In both cows and calves, plasma cortisol concentrations in the heat-tolerant groups were lower than those in heat-sensitive groups. In comparison, plasma heat shock protein 70 and heat shock protein 90 concentrations were higher (P < 0.05). In conclusion, calves born to heat-tolerant cows had higher thermoregulation and immunity than calves born to heat-sensitive cows when exposed to heat stress.
Collapse
Affiliation(s)
- Xiaoyang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Animal Science and Technology, Northwest A&F University, Shanxi 712100, China
| | - Chenyang Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tingting Fang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Shanxi 712100, China
| | - Xianhong Gu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
2
|
Singh NP, Kamboj ML. Does calf-mother contact during heat stress period affect physiology and performance in buffaloes? Anim Biosci 2024; 37:1121-1129. [PMID: 38419546 PMCID: PMC11065949 DOI: 10.5713/ab.23.0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/03/2023] [Accepted: 12/10/2023] [Indexed: 03/02/2024] Open
Abstract
OBJECTIVE Objective of the study was to reduce heat stress in Murrah buffaloes and maintain their milk production and other vital functions during heat stress. METHODS A total of 21 dyads of calf-mother Murrah buffalo were selected for the study and equally divided in 3 treatment groups. First treatment group was restricted calf contact (RCC), second treatment group was fence line calf contact (FCC) and third treatment groups fence line calf contact and heat stress protection (FCC-HSP [time-controlled fan-fogger system] in the shed). Present study was conducted from April to mid-September 2021. RESULTS Maximum temperature and temperature humidity index in FCC-HSP shed were significantly (p<0.05) lower than that in FCC and RCC shed. Higher (p<0.05) mean daily milk yield in both the treatment groups FCC (10.36±0.30) and FCC-HSP (10.97±0.31) than RCC (8.29±0.41) was recorded. Though no significant difference between FCC and FCC-HSP in daily milk yield but FCC-HSP yielded 600 gm more milk than FCC. Pulse rate (PR) and respiration rate (RR) were lowest in FCC-HSP followed by FCC and RCC, respectively. Cortisol and prolactin levels were lower (p<0.05) in FCC-HSP followed by FCC and RCC, respectively. CONCLUSION Hence, FCC along with heat stress ameliorative measures helped the buffaloes to be free of stress and maintain milk yield during heat stress period of the year in tropical conditions.
Collapse
Affiliation(s)
- Nripendra Pratap Singh
- Livestock Production Management Division, ICAR-National Dairy Research Institute (NDRI), Karnal-132001,
India
| | - Madan Lal Kamboj
- Livestock Production Management Division, ICAR-National Dairy Research Institute (NDRI), Karnal-132001,
India
| |
Collapse
|
3
|
Dayal S, Kumar B, Kumari R, Kumar J, Ray PK, Chandran PC, Dey A. Molecular Characterization and Seasonal Variation in Expression of HSP70.1 Gene in Gangatiri Cattle and Its Comparison with Buffalo. Biochem Genet 2024:10.1007/s10528-024-10739-z. [PMID: 38499964 DOI: 10.1007/s10528-024-10739-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 02/12/2024] [Indexed: 03/20/2024]
Abstract
Under tropical climate heat stress is a major challenge for livestock production. HSP70.1 is a ubiquitously expressed protein maintaining cellular machinery through proper folding of denatured proteins and prevents cellular apoptosis and protect cell from heat stress. Therefore, present investigation was undertaken to explore genetic variability in HSP70.1 gene in Gangatiri cattle, its comparison with buffalo sequences and differential expression in different season. The allelic variant was identified by sequencing amplified PCR product of HSP70.1 gene by primer walking. Season-wise total RNA samples was prepared for differential expression study. Brilliant SYBR Green QPCR technique was used to study the expression kinetics of this gene. DNA sequencing by primer walking identified four allelic variants in Gangatiri cattle. Sequence alignment study revealed four, six and one substitutions in the 5' untranslated region (5'UTR), coding and 3' untranslated region ((3'UTR) of HSP70.1 gene, respectively. Comparative analysis of HSP70.1 gene revealed that Cattle has shorter 5'UTR and 3' UTR than the buffalo. In Gangatiri cattle, summer season has significantly higher (P ≤ 0.05) expression of HSP70.1 than the spring and winter. The relative expression of HSP70.1 was increased by more than six folds in summer and nearly 1.5 folds higher in winter in comparison to the spring season. Therefore, HSP70.1 may be considered to have a critical role in the development of thermal tolerance in Gangatiri cattle.
Collapse
Affiliation(s)
- Shanker Dayal
- Division of Livestock and Fishery Management, ICAR Research Complex for Eastern Region, Patna, Bihar, 800014, India.
| | - Birendra Kumar
- Department of Animal Genetics and Breeding, Bihar Veterinary College, Patna, Bihar, 800014, India
| | - Rajni Kumari
- Division of Livestock and Fishery Management, ICAR Research Complex for Eastern Region, Patna, Bihar, 800014, India
| | - Jyoti Kumar
- Division of Livestock and Fishery Management, ICAR Research Complex for Eastern Region, Patna, Bihar, 800014, India
| | - Pradeep Kumar Ray
- Division of Livestock and Fishery Management, ICAR Research Complex for Eastern Region, Patna, Bihar, 800014, India
| | - P C Chandran
- Division of Livestock and Fishery Management, ICAR Research Complex for Eastern Region, Patna, Bihar, 800014, India
| | - Amitava Dey
- Division of Livestock and Fishery Management, ICAR Research Complex for Eastern Region, Patna, Bihar, 800014, India
| |
Collapse
|
4
|
Solanki GB, Singh VK, Kavani FS, Dhami AJ, Savsani HH, Kumar B, Patbandha TK. Seasonal influence on expression of heat shock proteins (HSP70 and HSP90) vis-à-vis functional competence of Gir bull semen. Anim Biotechnol 2023; 34:3739-3748. [PMID: 37269236 DOI: 10.1080/10495398.2023.2218453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The success of assisted reproduction relies on functional competence of frozen-thawed semen. Heat stress affects protein folding leading to aggregation of mis-folded proteins. Hence, a total of 384 (32 ejaculates/bull/season) ejaculates from six matured Gir bulls were used to evaluate physico-morphological parameters, the expression of HSPs (70 and 90) and fertility of frozen-thawed semen. The mean percent individual motility, viability and membrane integrity were significantly (p < 0.01) higher in winter compared to summer. Out of 1200 Gir cows inseminated, 626 confirmed pregnant and the mean conception rate of winter (55.04 ± 0.35) was significantly (p < 0.001) higher than summer (49.33 ± 0.32). A significant (p < 0.01) difference in concentration of HSP70 (ng/mg of protein) but not HSP90was observed between the two seasons. The HSP70 expression in pre-freeze semen of Gir bulls had significant positive correlation with motility (p < 0.01, r = 0.463), viability (p < 0.01, r = 0.565), acrosome integrity (p < 0.05, r = 0.330) and conception rate (p < 0.01, r = 0.431). In conclusion, the season influences physico-morphological parameters and expression of HSP70 but not HSP90 in Gir bull semen. The HSP70 expression is positively correlated with motility, viability, acrosome integrity and fertility of semen. The semen expression of HSP70 may be utilized as biomarker for thermo-tolerance, semen quality and fertilizing capacity of Gir bull semen.
Collapse
Affiliation(s)
- Gajendra B Solanki
- Cattle Breeding Farm, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Vivek K Singh
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, Gujarat, India
| | - Fulabhai S Kavani
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Anand, Gujarat, India
| | - Arjan J Dhami
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Anand, Gujarat, India
| | - Harish H Savsani
- Department of Animal Nutrition, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, Gujarat, India
| | - Binod Kumar
- Department of Veterinary Parasitology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, Gujarat, India
| | - Tapas K Patbandha
- Department of Livestock Production and Management, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, Gujarat, India
| |
Collapse
|
5
|
Ma X, Liu Y, Sun L, Hanif Q, Qu K, Liu J, Zhang J, Huang B, Lei C. A novel SNP of TECPR2 gene associated with heat tolerance in Chinese cattle. Anim Biotechnol 2023; 34:1050-1057. [PMID: 34877906 DOI: 10.1080/10495398.2021.2011305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Heat stress affects the animal production and causes serious economic losses to the husbandry. Tectonin beta-propeller repeat containing 2 (TECPR2) gene plays an important role in autophagy which may affect the temperature sensation in animals. A missense mutation (XM_024981840.1:c.3989 G > A p.Arg1330His) of the transcripts X4 in the bovine TECPR2 gene was identified. In this study, the c.3989 G > A variant in TECPR2 gene was genotyped in a total of 25 cattle breeds (520 individuals). Our results indicated that the frequency of A allele showed a decreasing pattern from southern cattle to northern cattle, while the frequency of G allele showed the opposite pattern, which was consistent with the climate distribution of China. Compared with the GG genotype, southern cattle carried more the AA and AG genotypes. Furthermore, the association results carried out that the frequencies of genotypes (GG, AG, AA) and the value of climate parameters (mean annual temperature (T), relative humidity (RH) and temperature humidity index (THI) were significantly correlated (p < 0.01). Hence, we speculated that the c.3989 G > A variant of TECPR2 gene was associated with the heat tolerance trait in Chinese cattle and the locus may be considered as a molecular marker for Chinese cattle breeding.
Collapse
Affiliation(s)
- Xiaohui Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yangkai Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Luyang Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Quratulain Hanif
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Kaixing Qu
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong, Yunnan, China
| | - Jianyong Liu
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Jicai Zhang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
6
|
Maylem ERS, Ramos GE, Rivera SM, Atabay EC, Atabay EP. Development of adaptability of foreign breeds of water buffalo in Philippine tropical climate. Anim Front 2023; 13:89-91. [PMID: 37841766 PMCID: PMC10575295 DOI: 10.1093/af/vfad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Affiliation(s)
- Excel Rio S Maylem
- Reproduction and Physiology Section, Philippine Carabao Center National Headquarters, Science City of Munoz, Nueva Ecija, Philippines, 3120
| | - Gerald E Ramos
- Reproduction and Physiology Section, Philippine Carabao Center National Headquarters, Science City of Munoz, Nueva Ecija, Philippines, 3120
| | - Shanemae M Rivera
- Reproduction and Physiology Section, Philippine Carabao Center National Headquarters, Science City of Munoz, Nueva Ecija, Philippines, 3120
| | - Edwin C Atabay
- Reproduction and Physiology Section, Philippine Carabao Center National Headquarters, Science City of Munoz, Nueva Ecija, Philippines, 3120
| | - Eufrocina P Atabay
- Reproduction and Physiology Section, Philippine Carabao Center National Headquarters, Science City of Munoz, Nueva Ecija, Philippines, 3120
| |
Collapse
|
7
|
Petrocchi Jasinski F, Evangelista C, Basiricò L, Bernabucci U. Responses of Dairy Buffalo to Heat Stress Conditions and Mitigation Strategies: A Review. Animals (Basel) 2023; 13:1260. [PMID: 37048516 PMCID: PMC10093017 DOI: 10.3390/ani13071260] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Increases in temperature and the greater incidence of extreme events are the consequences of the climate change that is taking place on planet Earth. High temperatures create severe discomfort to animal farms as they are unable to efficiently dissipate their body heat, and for this, they implement mechanisms to reduce the production of endogenous heat (reducing feed intake and production). In tropical and subtropical countries, where buffalo breeding is more widespread, there are strong negative consequences of heat stress (HS) on the production and quality of milk, reproduction, and health. The increase in ambient temperature is also affecting temperate countries in which buffalo farms are starting to highlight problems due to HS. To counteract HS, it is possible to improve buffalo thermotolerance by using a genetic approach, but even if it is essential, it is a long process. Two other mitigation approaches are nutritional strategies, such as the use of vitamins, minerals, and antioxidants and cooling strategies such as shade, fans, sprinklers, and pools. Among the cooling systems that have been evaluated, wallowing or a combination of fans and sprinklers, when wallowing is not available, are good strategies, even if wallowing was the best because it improved the production and reproduction performance and the level of general well-being of the animals.
Collapse
Affiliation(s)
- Francesca Petrocchi Jasinski
- Department of Agriculture and Forests Sciences, University of Tuscia-Viterbo, via San Camillo De Lellis, snc, 01100 Viterbo, Italy
| | - Chiara Evangelista
- Department for Innovation in Biological Agro-Food and Forest Systems, University of Tuscia-Viterbo, via San Camillo De Lellis, snc, 01100 Viterbo, Italy
| | - Loredana Basiricò
- Department of Agriculture and Forests Sciences, University of Tuscia-Viterbo, via San Camillo De Lellis, snc, 01100 Viterbo, Italy
| | - Umberto Bernabucci
- Department of Agriculture and Forests Sciences, University of Tuscia-Viterbo, via San Camillo De Lellis, snc, 01100 Viterbo, Italy
| |
Collapse
|
8
|
Durosaro SO, Iyasere OS, Ilori BM, Oyeniran VJ, Ozoje MO. Molecular regulation, breed differences and genes involved in stress control in farm animals. Domest Anim Endocrinol 2023; 82:106769. [PMID: 36244194 DOI: 10.1016/j.domaniend.2022.106769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022]
Abstract
Stress is a state of disturbed homeostasis evoking a multiplicity of somatic and mental adaptive reactions resulting from any of the 5 freedoms of animals being violated. Many environmental forces disrupt homeostasis in farm animals, such as extreme temperatures, poor nutrition, noise, hunger, and thirst. During stressful situations, neuronal circuits in the limbic system and prefrontal cortex are activated, which lead to the release of adrenalin and noradrenalin. The hormones released during stress are needed for adaptation to acute stress and are regulated by many genes. This review examined molecular regulation, breed differences, and genes involved in stress control in farm animals. Major molecular regulation of stress, such as oxidative, cytosolic heat shock, unfolded protein, and hypoxic responses, were discussed. The responses of various poultry, ruminant, and pig breeds to different stress types were also discussed. Gene expressions and polymorphisms in the neuroendocrine and neurotransmitter pathways were also elucidated. The information obtained from this review will help farmers mitigate stress in farm animals through appropriate breed and gene-assisted selection. Also, information obtained from this review will add to the field of stress genetics since stress is a serious welfare issue in farm animals.
Collapse
Affiliation(s)
- S O Durosaro
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria; Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - O S Iyasere
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - B M Ilori
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - V J Oyeniran
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - M O Ozoje
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| |
Collapse
|
9
|
CHAUDHARY SANDHYAS, SINGH VIRENDRAKUMAR, MANAT TANVID. Effect of heat stress amelioration during dry period on biological responses, proinflammatory cytokines and milk production in subsequent lactation of Surti buffaloes. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2022. [DOI: 10.56093/ijans.v92i10.111320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Present study was conducted on 12 dry Surti buffaloes to assess the effect of heat stress amelioration during dry period on their biological responses and milk production in subsequent lactation. Buffaloes were divided into control (n=6) and treatment (n=6) groups. Treatment buffaloes were housed only during their dry period in shed having wall-mounted fans, roof whitewashed with microfine lime powder and open paddock covered with 75% green net. At -8, -3, +1 and +3 weeks of calving, blood collection and recording of observations (physiological, skin thermography and BCS) were done. Milk composition and daily milk yield were recorded at every 2 weeks up to 11 weeks of lactation, respectively. Shed modification was successful in lowereing air temperature and THI indicating thermal comfort for treatment buffaloes as also revealed by lower temperatures of rectum, tympanic membrane, surface like forehead, eye, udder, coronet and lower respiration rate. Treatment group maintained significantly higher BCS, glucose, total protein, GSH, TAS, in vitro lymphocyte proliferation, neutrophil phagocytic activity and lower levels of urea, creatinine, NEFA, BHBA, SOD, MDA, cortisol, TNF-α, IL-1β, IL-6 and HSP70. These results are indicative of minimum negative energy balance, stress and higher immune response. Milk yield and fat were higher in treatment group. Providing thermal comfort to buffaloes in dry period helped in abating the negative effects of heat stress not only during dry period but also during subsequent lactation along with improved milk yield.
Collapse
|
10
|
Sun L, Cui Z, Huang S, Xue Q, Rehman SU, Luo X, Shi D, Li X. Effect of environmental temperature on semen quality and seminal plasma metabolites of Mediterranean buffalo bulls. Anim Biotechnol 2022; 33:970-980. [PMID: 35352620 DOI: 10.1080/10495398.2022.2056045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
High-quality semen with high viability is critical to improving the in-vitro fertilization efficiency. This study aimed to understand the effect of ambient temperature and humidity on semen quality and seminal plasma biochemical parameters of Mediterranean buffalo in March and July. The metabolites of seminal plasma in two seasons were detected using the UPLC-MS/MS method. The results showed that temperature and humidity index (THI) in March were 66.86 ± 2.98, and 82.94 ± 3.52 in July. Compared with in March, breath frequency, rectal temperature, and heat shock protein 70 expressions of seminal plasma were significantly increased in July (p < 0.05), motility of sperm was dramatically reduced, and sperm deformity rate was significantly increased (p < 0.05). Fructose, acid phosphatase and α-glucosidase in seminal plasma were significantly increased (p < 0.05) in July, while testosterone level was significantly reduced (p < 0.05). Six different metabolites were found in the two groups, which involved in three metabolic pathways, the tricarboxylic acid cycle, glycerophospholipid, glyoxylic acid and dicarboxylic acid. The above results indicate that the increased ambient temperature has obvious side effects on the semen quality of Mediterranean buffalo, and the compromised quality is associated with the change of metabolites related to male hormone secretion, energy metabolism and fatty acid oxidation.
Collapse
Affiliation(s)
- Le Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, P. R. China
| | - Zhichao Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, P. R. China
| | - Shihai Huang
- College of Life Science and Technology, Guangxi University, Nanning, P. R. China
| | - Qingsong Xue
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, P. R. China
| | - Saif Ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, P. R. China
| | - Xi Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, P. R. China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, P. R. China
| | - Xiangping Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, P. R. China
| |
Collapse
|
11
|
Pathirana IN, Garcia SC. Detection of heat-shock protein 70 in cow’s milk using ELISA. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an21506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Zhou J, Yue S, Xue B, Wang Z, Wang L, Peng Q, Xue B. Enhanced supply of methionine regulates protein synthesis in bovine mammary epithelial cells under hyperthermia condition. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:1126-1141. [PMID: 34796352 PMCID: PMC8564303 DOI: 10.5187/jast.2021.e93] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/01/2021] [Accepted: 07/23/2021] [Indexed: 01/06/2023]
Abstract
Recent evidence has shown that methionine (Met) supplementation can improve milk
protein synthesis under hyperthermia (which reduces milk production). To explore
the mechanism by which milk protein synthesis is affected by Met supplementation
under hyperthermia, mammary alveolar (MAC-T) cells were incubated at a
hyperthermic temperature of 42°C for 6 h in media with different
concentrations of Met. While the control group (CON) contained a normal amino
acid concentration profile (60 μg/mL of Met), the three treatment groups
were supplemented with Met at concentrations of 10 μg/mL (MET70, 70
μg/mL of Met), 20 μg/mL (MET80, 80 μg/mL of Met), and 30
μg/mL (MET90,90 μg/mL of Met). Our results show that additional
Met supplementation increases the mRNA and protein levels of BCL2 (B-cell
lymphoma-2, an anti-apoptosis agent), and decreases the mRNA and protein levels
of BAX (Bcl-2-associated X protein, a pro-apoptosis agent), especially at an
additional supplementary concentration of 20 μg/mL (group Met80).
Supplementation with higher concentrations of Met decreased the mRNA levels of
Caspase-3 and
Caspase-9, and increased protein levels of
heat shock protein (HSP70). The total protein levels of the mechanistic target
of rapamycin (mTOR) and the mTOR signalling pathway-related proteins, AKT,
ribosomal protein S6 kinase B1 (RPS6KB1), and ribosomal protein S6 (RPS6),
increased with increasing Met supplementation, and peaked at 80 μg/mL Met
(group Met80). In addition, we also found that additional Met supplementation
upregulated the gene expression of αS1-casein (CSN1S1),
β-casein (CSN2), and the amino acid transporter genes
SLC38A2, SLC38A3 which are known to be
mTOR targets. Additional Met supplementation, however, had no effect on the gene
expression of κ-casein (CSN3) and solute carrier family
34 member 2 (SLC34A2). Our results suggest that additional Met
supplementation with 20 μg/mL may promote the synthesis of milk proteins
in bovine mammary epithelial cells under hyperthermia by inhibiting apoptosis,
activating the AKT-mTOR-RPS6KB1 signalling pathway, and regulating the entry of
amino acids into these cells.
Collapse
Affiliation(s)
- Jia Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuangming Yue
- Department of Bioengineering, Sichuan Water Conservancy Vocation College, Chengdu 611845, China
| | - Benchu Xue
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhisheng Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lizhi Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Quanhui Peng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Bai Xue
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
13
|
Oghbaei H, Hosseini L, Farajdokht F, Rahigh Aghsan S, Majdi A, Sadigh-Eteghad S, Sandoghchian Shotorbani S, Mahmoudi J. Heat stress aggravates oxidative stress, apoptosis, and endoplasmic reticulum stress in the cerebellum of male C57 mice. Mol Biol Rep 2021; 48:5881-5887. [PMID: 34338963 DOI: 10.1007/s11033-021-06582-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/20/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND The current study was set to assess the effect of heat stress exposure on oxidative stress, apoptosis, and endoplasmic reticulum stress markers in the cerebellum of male mice. METHODS Fifty male C57BL/6 mice were assigned to five groups of (I) control, (II) heat stress (HS)7, (III) HS14, (IV) HS21, and (V) HS42 groups. Animals in the control group were not exposed to HS. Mice in the II-V groups were exposed to HS once a day over 7, 14, 21, and 42 days, respectively. Cerebellar reactive oxygen species (ROS) levels, expression of heat shock protein (HSP)70 and caspase 3 as well as endoplasmic reticulum stress-related proteins (PERK, p-PERK, CHOP, and Full-length ATF-6) expression were determined on the 7th, 14th, 21st, and 42nd days. RESULTS ROS levels and HSP70 expression increased following HS on the 14th, 21st, and 42nd days and the 7th, and 14th days with a peak level of expression on the 14th day following HS. HSP70 levels decreased afterward on the 21st and 42nd days compared with the control group. Besides, exposure to HS for 14, 21, and 42 days resulted in a significant increase in the CHOP and p-PERK levels in the cerebellum compared with the control group. Heat exposure also increased protein expression of cleaved caspase 3 and active ATF-6/Full-length ATF-6 on the 21st and 42nd days in the cerebellum compared with the control animals. CONCLUSION These findings indicated that chronic HS augmented oxidative stress, endoplasmic reticulum stress, and apoptosis pathways in the cerebellum of mice.
Collapse
Affiliation(s)
- Hajar Oghbaei
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran.,Deptartment of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Hosseini
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran.,Deptartment of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran.,Deptartment of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Rahigh Aghsan
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran
| | - Alireza Majdi
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran
| | | | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran.
| |
Collapse
|
14
|
Umar SIU, Konwar D, Khan A, Bhat MA, Javid F, Jeelani R, Nabi B, Najar AA, Kumar D, Brahma B. Delineation of temperature-humidity index (THI) as indicator of heat stress in riverine buffaloes (Bubalus bubalis) of a sub-tropical Indian region. Cell Stress Chaperones 2021; 26:657-669. [PMID: 33950472 PMCID: PMC8275759 DOI: 10.1007/s12192-021-01209-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/15/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
The erstwhile developed temperature-humidity index (THI) has been popularly used to indicate heat stress in dairy cattle and often in buffaloes. However, scientific literature suggests differences in thermotolerance and physiological responses to heat stress between cattle and buffalo. Therefore, THI range used to indicate degree of heat stress (mild, moderate, and severe) in cattle should be recalibrated for indicating heat stress in buffaloes. The present study was carried out to delineate THI range to indicate onset and severity of heat stress in buffaloes based on physiological, biochemical, and expression profiling of heat shock response (HSR) genes in animals at different THI. The result indicated early onset of heat stress in buffaloes as compared to cattle. Physiological and biochemical parameters indicated onset of mild signs of heat stress in buffaloes at THI 68-69. Significant deviation in these parameters was again observed at THI range 73-76. At THI 77-80, the physiological and biochemical responses of animals were further intensified indicating extreme alteration in homeostasis. The in vivo expression profiling of HSR genes indicated that members of Hsp70 gene family are expressed in a temporal pattern over different THIs, whereas expressions of Hsf genes were evident during intense heat stress. Overall, the study established that amplitude of heat shock response and THI range for indicating severity of thermal stress for buffaloes are not in unison to cattle. The study also suggests skin temperature of the poll region could be used as non-invasive tool for monitoring heat stress in dairy buffaloes.
Collapse
Affiliation(s)
- Sofi Imran Ul Umar
- Division of Livestock Production and Management, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu (SKUAST-Jammu), R. S. Pura, Jammu, Jammu and Kashmir, 181102, India
| | - Dipanjali Konwar
- Division of Livestock Production and Management, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu (SKUAST-Jammu), R. S. Pura, Jammu, Jammu and Kashmir, 181102, India
| | - Asma Khan
- Division of Livestock Production and Management, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu (SKUAST-Jammu), R. S. Pura, Jammu, Jammu and Kashmir, 181102, India
| | - Mohammad Altaf Bhat
- Division of Veterinary Microbiology, SKUAST-Kashmir, Suhama, Jammu and Kashmir, Kashmir, India
| | - Faizan Javid
- Division of Veterinary Microbiology, SKUAST-Kashmir, Suhama, Jammu and Kashmir, Kashmir, India
| | - Rakhshan Jeelani
- Division of Livestock Production and Management, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu (SKUAST-Jammu), R. S. Pura, Jammu, Jammu and Kashmir, 181102, India
| | - Burhan Nabi
- Division of Veterinary Medicine, SKUAST-Jammu, R. S. Pura, Jammu, Jammu and Kashmir, 181102, India
| | - Afaq Amin Najar
- Division of Veterinary Medicine, SKUAST-Jammu, R. S. Pura, Jammu, Jammu and Kashmir, 181102, India
| | - Dhirendra Kumar
- Division of Animal Genetics and Breeding, SKUAST-Jammu, R. S. Pura, Jammu, Jammu and Kashmir, 181102, India
| | - Biswajit Brahma
- Division of Livestock Production and Management, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu (SKUAST-Jammu), R. S. Pura, Jammu, Jammu and Kashmir, 181102, India.
| |
Collapse
|
15
|
Fang H, Kang L, Abbas Z, Hu L, Chen Y, Tan X, Wang Y, Xu Q. Identification of key Genes and Pathways Associated With Thermal Stress in Peripheral Blood Mononuclear Cells of Holstein Dairy Cattle. Front Genet 2021; 12:662080. [PMID: 34178029 PMCID: PMC8222911 DOI: 10.3389/fgene.2021.662080] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/10/2021] [Indexed: 12/30/2022] Open
Abstract
The objectives of the present study were to identify key genes and biological pathways associated with thermal stress in Chinese Holstein dairy cattle. Hence, we constructed a cell-model, applied various molecular biology experimental techniques and bioinformatics analysis. A total of 55 candidate genes were screened from published literature and the IPA database to examine its regulation under cold (25°C) or heat (42°C) stress in PBMCs. We identified 29 (3 up-regulated and 26 down-regulated) and 41 (15 up-regulated and 26 down-regulated) significantly differentially expressed genes (DEGs) (fold change ≥ 1.2-fold and P < 0.05) after cold and heat stress treatments, respectively. Furthermore, bioinformatics analyses confirmed that major biological processes and pathways associated with thermal stress include protein folding and refolding, protein phosphorylation, transcription factor binding, immune effector process, negative regulation of cell proliferation, autophagy, apoptosis, protein processing in endoplasmic reticulum, estrogen signaling pathway, pathways related to cancer, PI3K- Akt signaling pathway, and MAPK signaling pathway. Based on validation at the cellular and individual levels, the mRNA expression of the HIF1A gene showed upregulation during cold stress and the EIF2A, HSPA1A, HSP90AA1, and HSF1 genes showed downregulation after heat exposure. The RT-qPCR and western blot results revealed that the HIF1A after cold stress and the EIF2A, HSPA1A, HSP90AA1, and HSF1 after heat stress had consistent trend changes at the cellular transcription and translation levels, suggesting as key genes associated with thermal stress response in Holstein dairy cattle. The cellular model established in this study with PBMCs provides a suitable platform to improve our understanding of thermal stress in dairy cattle. Moreover, this study provides an opportunity to develop simultaneously both high-yielding and thermotolerant Chinese Holstein cattle through marker-assisted selection.
Collapse
Affiliation(s)
- Hao Fang
- Institute of Life Sciences and Bio-Engineering, Beijing Jiaotong University, Beijing, China
| | - Ling Kang
- Institute of Life Sciences and Bio-Engineering, Beijing Jiaotong University, Beijing, China
| | - Zaheer Abbas
- Institute of Life Sciences and Bio-Engineering, Beijing Jiaotong University, Beijing, China
| | - Lirong Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yumei Chen
- Institute of Life Sciences and Bio-Engineering, Beijing Jiaotong University, Beijing, China
| | - Xiao Tan
- Institute of Life Sciences and Bio-Engineering, Beijing Jiaotong University, Beijing, China
| | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qing Xu
- Institute of Life Sciences and Bio-Engineering, Beijing Jiaotong University, Beijing, China
| |
Collapse
|
16
|
Water buffalo production in the Brazilian Amazon Basin: a review. Trop Anim Health Prod 2021; 53:343. [PMID: 34089415 DOI: 10.1007/s11250-021-02744-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
The Brazilian Amazon has witnessed, in the last decades, an increase in the water buffalo (Bubalus bubalis) inventory, with interesting productivity results. As the Brazilian Amazon contains the main water buffalo population in the Americas, the aim of this work is to review its most relevant production systems and some peculiarities about meat and milk production in this territory. The opening section describes the Amazon Basin, the most common water buffalo breeds, a brief history of the local livestock farming beginning in 1644. Also, it presents how water buffaloes gradually replaced bovine herds, especially where the latter had a lower productive performance. The use of extensive or more intensified models is pointed out and the ecosystems in which buffaloes are raised are detailed since native or cultivated pastures can be used in floodplains or drylands. Buffalo raising is favored in the Amazon due to the climate, soil, genetic variability of forages, animal adaptability, and physical space. Thus, it is clear that buffaloes have a high potential for meat and milk production and are an alternative in the use of altered areas of the Amazon; and, in the recent past, the low profitability of buffalo farming in traditional production systems in the Amazon was the reason which made this activity economically unattractive. Most recent technologies as outdoor confinements and silvopastoral systems are pointed out as more suitable regarding land-use policies, and buffalo farming for meat and milk production fits perfectly in this context, with productivity and beneficial socioeconomic.
Collapse
|
17
|
Differential expression of miRNAs and related mRNAs during heat stress in buffalo heifers. J Therm Biol 2021; 97:102904. [PMID: 33863422 DOI: 10.1016/j.jtherbio.2021.102904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/15/2022]
Abstract
The present experiment was aimed to study differential expression of miRNAs and related mRNAs during heat stress (HS) in buffalo heifers. Twelve Murrah buffalo heifers aged between 1.5 and 2.0 years, weighting between 250 and 300 Kg were randomly assigned into two equal groups. The animals were kept in the psychrometric chamber under Thermo-neutral (TN; THI = 72) and HS (THI = 87-90) conditions for 6 h every day between 1000 and 1600 h for 21 days. The blood sampling was done at 1500 h on 15th day of the experiment and physiological parameters viz. pulse rate (PR), respiratory rate (RR) and rectal temperature (RT) were recorded at 1500 h on day -5, -3, -1, 0, +1, +3, +5 with respect to blood sampling. PBMCs were used for extraction of miRNAs and total RNA; and first strand cDNA was synthesized. qPCR was performed for relative gene expression studies. Physiological, hematological (erythrocytic indices), biochemical (triglycerides, urea, ALT, AST, LDH), redox (SOD, ROS) and endocrine parameters (T4) altered significantly (P < 0.05) during HS as compared to TN. Out of eight targeted miRNAs only four were expressed in buffalo heifers. The relative expression of bta-mir-142, bta-mir-1248 and bta-mir-2332 was significantly (P < 0.05) up-regulated whereas expression of bta-mir-2478 was significantly (P < 0.05) down-regulated during HS as compared to TN. The relative expression of the predicted target genes i.e. HSF1, HSP60, HSP70, HSPA8 and HSP90 were significantly (P < 0.05) up-regulated whereas HSF4 expression was significantly (P < 0.05) down-regulated during HS as compared to TN. It can be concluded that a THI of 87-90 could lead to a moderate HS in buffalo heifers. Differential expression studies of miRNAs and related mRNAs in present study deciphers the role of miRNAs in the heat tolerance in buffalo heifers.
Collapse
|
18
|
Adu-Asiamah P, Zhang Y, Amoah K, Leng QY, Zheng JH, Yang H, Zhang WL, Zhang L. Evaluation of physiological and molecular responses to acute heat stress in two chicken breeds. Animal 2020; 15:100106. [PMID: 33712219 DOI: 10.1016/j.animal.2020.100106] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/27/2022] Open
Abstract
High environmental temperatures are a foremost concern affecting poultry production; thus, understanding and controlling such conditions are vital to successful production and welfare of poultry. In view of this, a completely randomized design with a 2 × 2 factorial arrangement involving two local strains (Kirin chicken (KC) and Three-yellow chicken (TYC)) and two temperature groups (normal/control = 30 ± 2 °C and acute heat stress (AHS) = 35 ± 1 °C for 8-h with 70% humidity) was used to assess the main regulatory factors such as heat shock protein (HSP70) gene, cytokine genes (IL-1β, IL-6, IL-10), muscle development gene (IGF-1) and tissue histopathological changes. At 56 days old, the temperatures of the comb (CT), feet (FT), eyelid (ET) and rectal (RT) from each group were taken thrice at 0, 2, 4 and 8-h during AHS, and 1 and 3-h recovery period after AHS. At 80 days old, the slaughter weight was also analyzed. The CT and ET of the AHS groups increased during the 8-h trial, while the RT of both strains decreased significantly at 4 h but increased at 8 h in the TYC group. All temperature recordings dropped in the AHS groups of both strains during the recovery period. The results revealed that the mRNA expression of HSP70 in the liver was higher in the heat-stressed group of both strains compared to the control. The expression of HSP70 was shown in the AHS-KC group to be significantly high compared to the control (P < 0.05). Moreover, the IGF1 gene in the liver, breast muscle and leg muscle was downregulated in the AHS-TYC group compared to the control (P < 0.05), although that in the AHS-KC was downregulated in the breast muscle. The mRNA expression of spleen IL-1β significantly decreased in the AHS-TYC group (P < 0.01), whereas that of the AHS-KC had no significant difference (P > 0.05). The mRNA expression of spleen IL-6 and IL-10 was increased in the AHS-KC group but did not exhibit obvious changes in the AHS-TYC. Correspondingly, the histopathological examinations revealed tissue injury in the AHS groups of both strains, with the TYC strain experiencing more severe changes. The final live and carcass weights showed a significant enhancement in the treatments (P < 0.01 and P < 0.05, respectively) and treatment×strain interaction (P < 0.05) with breast muscle rate significantly reducing among the treatments (P < 0.01) at 80 days. In conclusion, the differential response to AHS after physiological, molecular and immune response portrays KC to have better thermal tolerance than the TYC.
Collapse
Affiliation(s)
- P Adu-Asiamah
- College of Coastal Agricultural Sciences, Guangdong Ocean University, 524088 Zhanjiang, Guangdong, PR China
| | - Y Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, 524088 Zhanjiang, Guangdong, PR China
| | - K Amoah
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, 524088 Zhanjiang, Guangdong, PR China
| | - Q Y Leng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, 524088 Zhanjiang, Guangdong, PR China
| | - J H Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, 524088 Zhanjiang, Guangdong, PR China
| | - H Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, 524088 Zhanjiang, Guangdong, PR China
| | - W L Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, 524088 Zhanjiang, Guangdong, PR China
| | - L Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, 524088 Zhanjiang, Guangdong, PR China.
| |
Collapse
|
19
|
Rehman SU, Nadeem A, Javed M, Hassan FU, Luo X, Khalid RB, Liu Q. Genomic Identification, Evolution and Sequence Analysis of the Heat-Shock Protein Gene Family in Buffalo. Genes (Basel) 2020; 11:E1388. [PMID: 33238553 PMCID: PMC7700627 DOI: 10.3390/genes11111388] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Heat-shock proteins (HSP) are conserved chaperones crucial for protein degradation, maturation, and refolding. These adenosine triphosphate dependent chaperones were classified based on their molecular mass that ranges between 10-100 kDA, including; HSP10, HSP40, HSP70, HSP90, HSPB1, HSPD, and HSPH1 family. HSPs are essential for cellular responses and imperative for protein homeostasis and survival under stress conditions. This study performed a computational analysis of the HSP protein family to better understand these proteins at the molecular level. Physiochemical properties, multiple sequence alignment, and phylogenetic analysis were performed for 64 HSP genes in the Bubalus bubalis genome. Four genes were identified as belonging to the HSP90 family, 10 to HSP70, 39 to HSP40, 8 to HSPB, one for each HSPD, HSPH1, and HSP10, respectively. The aliphatic index was higher for HSP90 and HSP70 as compared to the HSP40 family, indicating their greater thermostability. Grand Average of hydropathicity Index values indicated the hydrophilic nature of HSP90, HSP70, and HSP40. Multiple sequence alignment indicated the presence of highly conserved consensus sequences that are plausibly significant for the preservation of structural integrity of proteins. In addition, this study has expanded our current knowledge concerning the genetic diversity and phylogenetic relatedness of HSPs of buffalo with other mammalian species. The phylogenetic tree revealed that buffalo is more closely related to Capra hircus and distantly associated with Danio rerio. Our findings provide an understanding of HSPs in buffalo at the molecular level for the first time. This study highlights functionally important HSPs and indicates the need for further investigations to better understand the role and mechanism of HSPs.
Collapse
Affiliation(s)
- Saif ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.u.R.); (X.L.)
| | - Asif Nadeem
- Department of Biotechnology, Virtual University of Pakistan, Lahore-54000, Pakistan;
| | - Maryam Javed
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore-54000, Pakistan; (M.J.); (R.B.K.)
| | - Faiz-ul Hassan
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad-38040, Pakistan;
| | - Xier Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.u.R.); (X.L.)
| | - Ruqayya Bint Khalid
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore-54000, Pakistan; (M.J.); (R.B.K.)
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.u.R.); (X.L.)
| |
Collapse
|
20
|
Araújo M, Luna E, Oliveira J, Guido S, Silva E, Barbosa S, Santoro K. Caracterização do gene do choque térmico (HSP-70.1) e sua relação com características de produção em bovinos leiteiros criados no semiárido brasileiro. ARQ BRAS MED VET ZOO 2020. [DOI: 10.1590/1678-4162-11147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
RESUMO Objetivou-se com este trabalho avaliar a diversidade genética do gene HSP-70.1 e associar os polimorfismos encontrados com a performance de vacas leiteiras das raças Holandesa, Girolando (5/8H-G) e Sindi criadas em região do semiárido brasileiro. Os polimorfismos foram identificados e avaliados pela técnica de PCR-RFLP, usando-se a enzima de restrição EcoRII. Avaliou-se a variabilidade genética por meio do índice de diversidade padrão e da análise de variância molecular (AMOVA). Os polimorfismos identificados foram avaliados sobre as características de produção de leite. Foram identificados sete alelos, os quais demonstraram que houve polimorfismo para a região gênica analisada, e alguns alelos foram compartilhados entre os rebanhos. As raças bovinas Holandesa e Sindi foram similares geneticamente para o gene analisado. A AMOVA demonstrou que há variação genética entre os rebanhos e dentro deles, com a maior parte da variação ocorrendo dentro dos rebanhos para todos os grupos avaliados. Houve efeito dos alelos identificados sobre a produção de leite dos rebanhos das raças Holandesa (P<0,0001) e Girolando (P<0,0117). O gene HSP-70.1 foi polimórfico na população de bovinos leiteiros estudada, sendo, portanto, um marcador molecular promissor para avaliar a produção de leite de raças criadas em região semiárida.
Collapse
Affiliation(s)
| | | | | | - S.I. Guido
- Instituto Agronômico de Pernambuco, Brazil
| | - E.C. Silva
- Universidade Federal Rural de Pernambuco, Brazil
| | | | | |
Collapse
|
21
|
Madhusoodan AP, Bagath M, Sejian V, Krishnan G, Rashamol VP, Savitha ST, Awachat VB, Bhatta R. Summer season induced changes in quantitative expression patterns of different heat shock response genes in Salem black goats. Trop Anim Health Prod 2020; 52:2725-2730. [PMID: 32144656 DOI: 10.1007/s11250-020-02242-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 02/17/2020] [Indexed: 12/11/2022]
Abstract
Research efforts of elucidating the molecular mechanisms governing heat shock response which imparts thermo-tolerance ability to indigenous breeds are very scanty. Therefore, a study was conducted with the primary objective to determine the impact of heat stress on the expression pattern of different heat shock response genes in the hepatic tissues of indigenous Salem Black goat. The study was conducted for a period of 45 days in twelve 1-year-old female Salem Black breed goats. The animals were randomly allocated into two groups of six animals each, C (n = 6; Salem Black control) and HS (n = 6; Salem Black heat stress). The C animals were maintained in the shed in comfort condition while HS animals were exposed outside to summer heat stress between 10:00 h to 16:00 h during experimental period. The animals were slaughtered at the end of study and their liver samples were collected for assessing the different heat shock response genes. Based on the results obtained from the study it was established that the heat shock protein 70 (HSP70), HSP90, super oxide dismutase (SOD), nitrous oxide synthase 1 (NOS1) genes were significantly (P < 0.05) down regulated. However, heat stress did not influence the expression pattern of heat shock factor-1 (HSF1) gene. The lower level of expression of all heat shock response genes may be due to less magnitude of heat stress in the study to induce cellular stress response in Salem Black goats.
Collapse
Affiliation(s)
- A P Madhusoodan
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore, Karnataka, 560030, India.,ICAR-Indian Veterinary Research Institute, Mukteshwar Campus, Mukteshwar, India
| | - M Bagath
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore, Karnataka, 560030, India
| | - V Sejian
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore, Karnataka, 560030, India.
| | - G Krishnan
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore, Karnataka, 560030, India
| | - V P Rashamol
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore, Karnataka, 560030, India
| | - S T Savitha
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore, Karnataka, 560030, India.,Veterinary College, Karnataka Veterinary Animal and Fisheries Sciences University, Hebbal, Bangalore, 560024, India
| | - V B Awachat
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore, Karnataka, 560030, India
| | - R Bhatta
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore, Karnataka, 560030, India
| |
Collapse
|
22
|
Kumar B, Sahoo AK, Dayal S, Das AK, Taraphder S, Batabyal S, Ray PK, Kumari R. Investigating genetic variability in Hsp70 gene-5'-fragment and its association with thermotolerance in Murrah buffalo (Bubalus bubalis) under sub-tropical climate of India. Cell Stress Chaperones 2020; 25:317-326. [PMID: 32020511 PMCID: PMC7058762 DOI: 10.1007/s12192-020-01075-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/10/2020] [Accepted: 01/22/2020] [Indexed: 10/25/2022] Open
Abstract
The present study was undertaken to investigate genetic variability in a fragment comprising 5'UTR along with partial coding sequence of Hsp70 gene and its association with thermotolerance traits in Murrah buffalo at ICAR-Research Complex for Eastern Region, Patna (India). The allelic variants were identified from genomic DNA samples using SSCP technique. The PCR products were sequenced and analyzed. Data on different thermotolerance traits recorded in three seasons were analyzed by least squares ANOVA taking the SSCP genotypes as fixed effect. Two allelic variants (A and B), each of 503-bp in size, were documented with frequency of 0.59 and 0.41, respectively, and three genotypes (AA, AB and BB) with corresponding frequency of 0.30, 0.58 and 0.12. The allelic variants were due to single nucleotide substitution at 55th base position leading to a change of threonine (A) to methionine (B) in amino acid sequence. Both the allelic variants had 99.8% similarity in nucleotide sequence. In phylogenetic tree, allele A was in a cluster while allele B and Gangatiri cattle sequence formed a different cluster. The SSCP genotypes had significant effect on different thermotolerance traits in summer with thermo-humidity index of ≥ 84. Buffaloes with AA genotype had the highest (P ˂ 0.05) summer evening rectal temperature, respiration rate and pulse rate, inferring that the buffaloes carrying AA genotype had more stress in summer than those with AB and BB genotype. These SSCP genotypes might have differential role in heat shock protein response to induce thermotolerance of Murrah buffaloes in Gangetic plains.
Collapse
Affiliation(s)
- Birendra Kumar
- Department of Animal Genetics and Breeding, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, West Bengal, 741252, India
| | - Ajit Kumar Sahoo
- Department of Animal Genetics and Breeding, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, West Bengal, 741252, India
| | - Shanker Dayal
- Division of Livestock and Fishery Management, ICAR-Research Complex for Eastern Region, Patna, Bihar, 800014, India
| | - Ananta Kumar Das
- Department of Animal Genetics and Breeding, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, West Bengal, 741252, India.
| | - Subhash Taraphder
- Department of Animal Genetics and Breeding, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, West Bengal, 741252, India
| | - Subhasis Batabyal
- Department of Veterinary Biochemistry, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, West Bengal, 741252, India
| | - Pradeep Kumar Ray
- Division of Livestock and Fishery Management, ICAR-Research Complex for Eastern Region, Patna, Bihar, 800014, India
| | - Rajni Kumari
- Division of Livestock and Fishery Management, ICAR-Research Complex for Eastern Region, Patna, Bihar, 800014, India
| |
Collapse
|
23
|
Sun J, Zhang H, Hu B, Xie Y, Wang D, Zhang J, Chen T, Luo J, Wang S, Jiang Q, Xi Q, Chen Z, Zhang Y. Emerging Roles of Heat-Induced circRNAs Related to Lactogenesis in Lactating Sows. Front Genet 2020; 10:1347. [PMID: 32117411 PMCID: PMC7027193 DOI: 10.3389/fgene.2019.01347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/10/2019] [Indexed: 11/13/2022] Open
Abstract
Heat stress negatively influences milk production and disrupts normal physiological activity of lactating sows, but the precious mechanisms by which hyperthermia adversely affects milk synthesis in sows still remain for further study. Circular RNAs are a novel class of non-coding RNAs with regulatory functions in various physiological and pathological processes. The expression profiles and functions of circRNAs of sows in lactogenesis remain largely unknown. In the present study, long-term heat stress (HS) resulted in a greater concentration of serum HSP70, LDH, and IgG, as well as decreased levels of COR, SOD, and PRL. HS reduced the total solids, fat, and lactose of sow milk, and HS significantly depressed CSNαs1, CSNαs2, and CSNκ biosynthesis. Transcriptome sequencing of lactating porcine mammary glands identified 42 upregulated and 25 downregulated transcripts in HS vs. control. Functional annotation of these differentially-expressed transcripts revealed four heat-induced genes involved in lactation. Moreover, 29 upregulated and 21 downregulated circRNA candidates were found in response to HS. Forty-two positively correlated circRNA-mRNA expression patterns were constructed between the four lactogenic genes and differentially expressed circRNAs. Five circRNA-miRNA-mRNA post-transcriptional networks were identified involving genes in the HS response of lactating sows. In this study we establish a valuable resource for circRNA biology in sow lactation. Analysis of a circRNA-miRNA-mRNA network further uncovered a novel layer of post-transcriptional regulation that could be used to improve sow milk production.
Collapse
Affiliation(s)
- Jiajie Sun
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Haojie Zhang
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Baoyu Hu
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Yueqin Xie
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Dongyang Wang
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Jinzhi Zhang
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Ting Chen
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Junyi Luo
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Songbo Wang
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Qinyan Jiang
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Qianyun Xi
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Zujing Chen
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Yongliang Zhang
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| |
Collapse
|
24
|
Kumar B, Sahoo AK, Dayal S, Das AK, Taraphder S, Batabyal S, Ray PK, Kumari R. Genetic profiling of Hsp70 gene in Murrah buffalo (Bubalus bubalis) under sub-tropical climate of India. Cell Stress Chaperones 2019; 24:1187-1195. [PMID: 31642046 PMCID: PMC6883022 DOI: 10.1007/s12192-019-01042-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/22/2019] [Accepted: 10/02/2019] [Indexed: 01/20/2023] Open
Abstract
This study was aimed to genetic profiling of heat shock protein 70 (Hsp70) gene in Murrah buffalo investigating 50 unrelated adult animals at ICAR-Research Complex for Eastern Region, Patna (India) in winter, spring, and summer. PCR ready genomic DNA samples and season-wise total RNA samples were prepared. The PCR products of Hsp70 eluted from agarose gel were sequenced and analyzed. The first-strand cDNA was synthesized and concentration was equalized to 25 ng/μl. Expression kinetics of mRNA transcripts in different seasons was studied using Brilliant SYBR Green QPCR technique and the data retrieved was analyzed by least-squares ANOVA. DNA sequencing by primer walking revealed four allelic variants of Hsp70 gene. Alignment study revealed one substitution in 5'UTR, six substitutions in coding region, and one addition in 3'UTR. The highest percent identity and negligible phylogenetic distance were found among the alleles and reference bovine sequences. The relative mRNA expression was significantly higher in summer when THI ≥ 84 than the spring and winter; fold change increased by 4.5 times in summer than the spring whereas found nearly half in winter. These findings can be useful for heat stress management in buffaloes and help in understanding the mechanism of thermo-regulation well.
Collapse
Affiliation(s)
- Birendra Kumar
- Department of Animal Genetics and Breeding, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, West Bengal, 741252, India
| | - Ajit Kumar Sahoo
- Department of Animal Genetics and Breeding, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, West Bengal, 741252, India
| | - Shanker Dayal
- Division of Livestock and Fishery Management, ICAR-Research Complex for Eastern Region, Patna, Bihar, 800014, India
| | - Ananta Kumar Das
- Department of Animal Genetics and Breeding, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, West Bengal, 741252, India.
| | - Subhash Taraphder
- Department of Animal Genetics and Breeding, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, West Bengal, 741252, India
| | - Subhasis Batabyal
- Department of Veterinary Biochemistry, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, West Bengal, 741252, India
| | - Pradeep Kumar Ray
- Division of Livestock and Fishery Management, ICAR-Research Complex for Eastern Region, Patna, Bihar, 800014, India
| | - Rajni Kumari
- Division of Livestock and Fishery Management, ICAR-Research Complex for Eastern Region, Patna, Bihar, 800014, India
| |
Collapse
|
25
|
Samad HA, Konyak YY, Latheef SK, Kumar A, Khan IA, Verma V, Chouhan VS, Verma MR, Maurya VP, Kumar P, Sarkar M, Singh G. Alpha lipoic acid supplementation ameliorates the wrath of simulated tropical heat and humidity stress in male Murrah buffaloes. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2019; 63:1331-1346. [PMID: 31280374 DOI: 10.1007/s00484-019-01750-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/17/2019] [Accepted: 06/14/2019] [Indexed: 06/09/2023]
Abstract
A supplement which ameliorates temperature-humidity menace in food producing livestock is a prerequisite to develop climate smart agricultural packages. A study was conducted to investigate the heat stress ameliorative efficacy of alpha lipoic acid (ALA) in male Murrah water buffaloes (Bubalus bubalis). Eighteen animals (293.61 ± 4.66Kg Bwt) were randomly allocated into three groups (n = 6); NHSC (non-heat-stressed control), HS (heat-stressed) and HSLA (heat-stressed-supplemented with ALA@32 mg/kg Bwt orally) based on the temperature humidity index (THI) and ALA supplementation. HS and HSLA were exposed to simulated heat challenge in a climatically controlled chamber (40 °C) for 21 consecutive days, 6 h daily. Physiological responses viz. Respiration rate (RR), Pulse rate (PR) and Rectal temperature (RT) were recorded daily before and after heat exposure. Blood samples were collected at the end of heat exposure on days 1, 6, 11, 16, and 21 and on day 28 (7th day post exposure which is considered as recovery) for peripheral blood mononuclear cells (PBMCs) separation, followed by RNA and Protein extraction for Real time quantitative PCR and Western blot analysis respectively, of heat shock proteins (HSPs). Two-way repeated measure ANOVA was performed between groups at different experimental periods. RR (post exposure) in HS and HSLA was significantly higher (P < 0.05) than NHSC from day 1 onwards but HSLA varied significantly from the HS 8th day onwards. Post exposure RT and PR in both HS and HSLA varied (P < 0.05) from NHSC throughout the study; but between HS and HSLA, RT significantly varied on initial 2 days and last 6 days (from days 16 to 21). HSP70 mRNA expression significantly up regulated in high THI groups with respect to the low THI group throughout the experimental period. During chronic stress (days 16 and 21) HSP70 significantly (P < 0.05) increased in HS but not in HSLA (P > 0.05) with respect to NHSC. ALA supplementation up-regulates and sustains (P < 0.05) the expression of HSP90 in HSLA in comparison to the HS and NHSC. HSP105 expression was significantly up-regulated (P < 0.05) in HS on days 16 and 21 (during long-term exposure) but only on day 21 (P < 0.05) in HSLA. HSP70, HSP90, and HSP105 protein expression dynamics were akin to the mRNA transcript data between the study groups. In conclusion, supplementing ALA ameliorates the deleterious effect of heat stress as reflected by improved physiological and cellular responses. ALA supplementation improved cellular antioxidant status and sustained otherwise easily decaying heat shock responses which concertedly hasten the baton change from a limited window of thermo tolerance to long run acclimatization.
Collapse
Affiliation(s)
- H A Samad
- Division of Physiology & Climatology, ICAR-IndianVeterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Y Y Konyak
- Division of Physiology & Climatology, ICAR-IndianVeterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - S K Latheef
- Division of Pathology, ICAR-IndianVeterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - A Kumar
- Division of Physiology & Climatology, ICAR-IndianVeterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - I A Khan
- Dolphin PG Institue of Biomedical & Natural Science, Dehradun, Uttarakhand, India
| | - V Verma
- Division of Physiology & Climatology, ICAR-IndianVeterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - V S Chouhan
- Division of Physiology & Climatology, ICAR-IndianVeterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - M R Verma
- Division of Livestock economics and statistics, ICAR-IndianVeterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - V P Maurya
- Division of Physiology & Climatology, ICAR-IndianVeterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Puneet Kumar
- Division of Physiology & Climatology, ICAR-IndianVeterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - M Sarkar
- Division of Physiology & Climatology, ICAR-IndianVeterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - G Singh
- Division of Physiology & Climatology, ICAR-IndianVeterinary Research Institute, Bareilly, Uttar Pradesh, India.
| |
Collapse
|
26
|
Rashamol VP, Sejian V, Pragna P, Lees AM, Bagath M, Krishnan G, Gaughan JB. Prediction models, assessment methodologies and biotechnological tools to quantify heat stress response in ruminant livestock. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2019; 63:1265-1281. [PMID: 31129758 DOI: 10.1007/s00484-019-01735-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/30/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Livestock industries have an important role in ensuring global food security. This review discusses the importance of quantifying the heat stress response of ruminants, with an emphasis on identifying thermo-tolerant breeds. There are numerous heat stress prediction models that have attempted to quantify the response of ruminant livestock to hot climatic conditions. This review highlights the importance of investigating prediction models beyond the temperature-humidity index (THI). Furthermore, this review highlights the importance of incorporating other climatic variables when developing prediction indices to ensure the accurate prediction of heat stress in ruminants. Prediction models, particularly the heat load index (HLI) were developed to overcome the limitations of the THI by incorporating ambient temperature (AT), relative humidity (RH), solar radiation (SR) and wind speed (WS). Furthermore refinements to existing prediction models have been undertaken to account for the interactions between climatic variables and physiological traits of livestock. Specifically, studies have investigated the relationships between coat characteristics, respiration rate (RR), body temperature (BT), sweating rate, vasodilation, body weight (BW), body condition score (BCS), fatness and feed intake with climatic conditions. While advancements in prediction models have been occurring, there has also been substantial advancement in the methodologies used to quantify animal responses to heat stress. The most recent development in this field is the application of radio frequency identification (RFID) technology to record animal behaviour and various physiological responses. Rumen temperature measurements using rumen boluses and skin temperature recording using infrared thermography (IRT) are making inroads to redefine the quantification of the heat stress response of ruminants. Further, this review describes several advanced biotechnological tools that can be used to identify climate resilient breeds of ruminant livestock.
Collapse
Affiliation(s)
- V P Rashamol
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore, Karnataka, 560030, India
- Academy of Climate Change Education and Research, Kerala Agricultural University, Vellanikkara, Thrissur, Kerala, India
| | - V Sejian
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore, Karnataka, 560030, India.
- Animal Physiology Division, National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, 560030, India.
| | - P Pragna
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore, Karnataka, 560030, India
- Academy of Climate Change Education and Research, Kerala Agricultural University, Vellanikkara, Thrissur, Kerala, India
| | - A M Lees
- Agriculture & Food, Commonwealth Scientific and Industrial Research Organization, Armidale, New South Wales, 2350, Australia
| | - M Bagath
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore, Karnataka, 560030, India
| | - G Krishnan
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore, Karnataka, 560030, India
| | - J B Gaughan
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, Queensland, 4343, Australia
| |
Collapse
|
27
|
Erfani M, Ghazi Tabatabaei Z, Sadigh-Eteghad S, Farokhi-Sisakht F, Farajdokht F, Mahmoudi J, Karimi P, Nasrolahi A. Rosa canina L. methanolic extract prevents heat stress-induced memory dysfunction in rats. Exp Physiol 2019; 104:1544-1554. [PMID: 31297904 DOI: 10.1113/ep087535] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/09/2019] [Indexed: 12/17/2022]
Abstract
NEW FINDINGS What is the central question of this study? Heat stress has harmful effects on the brain structure and synaptic density via induction of oxidative stress and neuroinflammation, which result in neuronal damage in the hippocampus and thereby cognitive impairments. In this study, we investigate the effect of Rosa canina treatment on cognitive function in heat stress-exposed rats and its underlying mechanisms. What is the main finding and its importance? We show that R. canina improves cognitive deficits induced by heat stress by attenuation of oxidative stress and neuroinflammation and by upregulation of synaptic proteins in the hippocampus. ABSTRACT The aim of the study was to evaluate the effects of aqueous methanolic extract of Rosa canina (RC) dried fruits on oxidative stress, inflammation, synaptic degeneration and memory dysfunction induced by heat stress (HS) in rats. Sixty adult male Wistar rats were randomly divided into five groups as follows: the control group received normal saline (NS); the HS group was exposed to heat stress (43°C) for 15 min once a day for 2 weeks; and HS+R groups were exposed to heat stress and received one of three doses (250, 500 or 1000 mg kg-1 ) of RC methanolic extract for 2 weeks. A passive avoidance test and a Y-maze test were performed to assess learning and memory. The levels of reactive oxygen species were assessed. The serum cortisol concentration and hippocampal total antioxidant capacity, superoxide dismutase and glutathione peroxidase were also detected using spectrophotometry. The protein expressions of c-Fos, heat-shock protein-70, tumour necrosis factor-α, growth-associated protein 43, post-synaptic density-95 and synaptophysin were evaluated in the hippocampal tissue. The results showed that RC significantly improved cognitive dysfunction induced by HS, which was accompanied by downregulation of tumour necrosis factor-α and upregulation of growth-associated protein 43 and synaptophysin proteins in the hippocampus of HS-exposed rats. Furthermore, RC significantly attenuated serum cortisol concentrations and upregulated heat shock protein-70 and c-Fos in the hippocampus. In addition, the administration of RC attenuated reactive oxygen species levels and enhanced antioxidant defense in the hippocampus. These findings indicate that RC attenuated the deleterious effect of HS on cognition through its antioxidant properties and by enhancing synaptic function and plasticity.
Collapse
Affiliation(s)
- Marjan Erfani
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | | | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pouran Karimi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ava Nasrolahi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Molecular Medicine, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
28
|
Afsal A, Bagath M, Sejian V, Krishnan G, Beena V, Bhatta R. Effect of heat stress on HSP70 gene expression pattern in different vital organs of Malabari goats. BIOL RHYTHM RES 2019. [DOI: 10.1080/09291016.2019.1600270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- A. Afsal
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
- Academy of Climate Change Education and Research, Kerala Agricultural University, Thrissur, India
- Centre for Animal Adaptation to Environment and Climate Change Studies, Kerala Veterinary and Animal Sciences University, Thrissur, India
| | - M. Bagath
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - V. Sejian
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - G. Krishnan
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - V. Beena
- Centre for Animal Adaptation to Environment and Climate Change Studies, Kerala Veterinary and Animal Sciences University, Thrissur, India
| | - R. Bhatta
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| |
Collapse
|
29
|
Xu Y, Lai X, Li Z, Zhang X, Luo Q. Effect of chronic heat stress on some physiological and immunological parameters in different breed of broilers. Poult Sci 2018; 97:4073-4082. [PMID: 29931080 PMCID: PMC6162357 DOI: 10.3382/ps/pey256] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 06/01/2018] [Indexed: 12/19/2022] Open
Abstract
The differences in physiological and immunological parameters and pathological damage to organ tissues exposed to chronic heat stress provide the basis for evaluating heat resistance of different chicken breeds (white recessive rock [WRR] and The Lingshan [LS]). Ninety broilers of each breed were divided equally into a chronic heat stress group and a no heat stress group. The effects of chronic heat stress on the physiological and immunological parameters of broilers were analyzed using flow cytometry, ELISA, RT-qPCR, etc. Under heat stress conditions: (1) H and H/L values were significantly increased (P < 0.01) in the 2 breeds, and were higher in the WRR broilers than in the LS broilers at a late stage (P < 0.05). Although the corticosterone levels were also significantly increased (P < 0.01) in both breeds, they were lower in the 49 d WRR broilers than in the LS broilers (P < 0.01). The number of leukocytes were significantly increased in the 49 d WRR broilers (P < 0.01), whereas the number of CD3+, CD8+ cells, and erythrocytes were significantly reduced (P < 0.05). A significantly (P < 0.01) lower number of CD3+, CD4+ T-lymphocytes, and CD4+/CD8+ were present in WRR compared to that in the LS broilers. (2) The HSP70 transcript was significantly increased in the WRR broilers (P < 0.01), and was higher than the level in the LS broilers. The expression level of HSP70 protein was significantly (P < 0.05) increased in WRR broilers. (3) The WRR broilers developed cardiac and leg muscle inflammatory cellular hyperplasia and local inflammatory lesions, as well as cerebral meningitis and inflammatory hyperplasia of the brain tissue. The LS broilers developed mild cerebral inflammatory hyperplasia and mild inflammatory cellular proliferation in the leg muscle. In conclusion, under heat stress conditions, the relative physiological and immunological parameters were worse in the WRR broilers than in the LS broilers. The WRR broilers showed poor heat tolerance as evidenced from the expression of HSP70 and the extent of histopathological damages.
Collapse
Affiliation(s)
- Yongjie Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Xiaodan Lai
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Zhipeng Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Qingbin Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| |
Collapse
|
30
|
Aleena J, Sejian V, Bagath M, Krishnan G, Beena V, Bhatta R. Resilience of three indigenous goat breeds to heat stress based on phenotypic traits and PBMC HSP70 expression. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2018; 62:1995-2005. [PMID: 30178111 DOI: 10.1007/s00484-018-1604-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/16/2018] [Accepted: 08/23/2018] [Indexed: 05/20/2023]
Abstract
The objective of this experiment was to evaluate the influence of summer heat stress on physiological and behavioral responses of Osmanabadi, Salem Black, and Malabari goats. The study also evaluated the differences in heat shock protein 70 (HSP70) expression pattern between these breeds. The study was conducted over 45 days during summer (April-May) using 36 1-year-old female goats by randomly allocating them into six groups with six animals in each group: Osmanabadi control (Osmanabadi CON), Osmanabadi heat stress (Osmanabadi HS), Malabari control (Malabari CON), Malabari heat stress (Malabari HS), Salem Black control (Salem Black CON), and Salem Black heat stress (Salem Black HS). The Osmanabadi CON, Malabari CON, and Salem Black CON animals were housed in a shed while the Osmanabadi HS, Malabari HS, and Salem Black HS groups were subjected to heat stress by exposing them to outside environment between 1000 and 1600 h during the experimental period. All 36 animals were provided with ad libitum feed and water. The data generated were analyzed by general linear model (GLM) repeated measurement analysis of variance. Results indicated that the drinking frequency (DF) was higher (p < 0.01) in heat stress groups (12.58, 12.25, and 10.75 times for the Osmanabadi HS, Malabari HS, and Salem Black HS, respectively) as compared to their respective control groups (5.67, 6.25, 5.58 times for the Osmanabadi CON, Malabari CON, and Salem Black CON, respectively). Water intake (WI) also showed similar trend to DF. The urinating frequency also (UF) differed between breeds with lower value (p < 0.05) recorded in the Salem Black HS (1.5 times) compared to the Malabari HS (2.92 times). The highest (p < 0.05) rumination time (RuT) was recorded in the Malabari HS (48.00 min) than both the Osmanabadi HS (20.91 min) and Salem Black HS (23.67 min). The heat stress increased (p < 0.05) all physiological variables at 1400 h. The findings of this study suggest RR, RT, and PBMC HSP70 are reliable biological markers for evaluating thermo-tolerance capacity of indigenous goat breeds.
Collapse
Affiliation(s)
- J Aleena
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, 560030, India
- Academy of Climate Change Education and Research, Kerala Agricultural University, Vellanikkara, Thrissur, Kerala, India
- Centre for Animal Adaptation to Environment and Climate Change Studies, Kerala Veterinary and Animal Sciences University, Mannuthy, Thrissur, Kerala, India
| | - V Sejian
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, 560030, India.
| | - M Bagath
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, 560030, India
| | - G Krishnan
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, 560030, India
| | - V Beena
- Centre for Animal Adaptation to Environment and Climate Change Studies, Kerala Veterinary and Animal Sciences University, Mannuthy, Thrissur, Kerala, India
| | - R Bhatta
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, 560030, India
| |
Collapse
|
31
|
Abstract
In this Research Communication we describe the effect of temperature and humidity index (THI) on various physiological traits, the plasma heat shock protein 70 (HSP70), heat shock protein 90 (HSP90) and cortisol levels and other blood parameters in crossbred buffalo (Nili-Ravi × Murrah) and Mediterranean buffalo to compare their tolerance to heat stress. As expected, crossbred buffalo had a significantly higher rectal temperature (RT), body surface temperature (BT), respiratory rate (RR), HSP70 and HSP90 levels in summer compared to spring and winter. RT and BT were also significantly higher in spring compared to winter. A significant correlation existed between THI and RT (r = 0·81) and RR (r = 0·84). Importantly, in summer the crossbred buffalo had a significantly lower RT, BT and RR and higher HSP70, HSP90 and cortisol levels than the Mediterranean buffalo. In conclusion, higher THI was associated with significant increase in RT, RR, BT, HSP70, HSP90 and cortisol levels, and the crossbred buffalo were more heat tolerant than Mediterranean buffalo.
Collapse
|
32
|
Krishnan G, Paul V, Biswas TK, Chouhan VS, Das PJ, Sejian V. Diurnal variation and oscillatory patterns in physiological responses and HSP70 profile in heat stressed yaks at high altitude. BIOL RHYTHM RES 2018. [DOI: 10.1080/09291016.2018.1424770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- G. Krishnan
- ICAR-National Research Centre on Yak, Dirang, India
- ICAR-National Institute of Animal Nutrition & Physiology, Bangalore, India
| | - V. Paul
- ICAR-National Research Centre on Yak, Dirang, India
| | - T. K. Biswas
- ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - V. S. Chouhan
- ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - P. J. Das
- ICAR-National Research Centre on Ping, Guwahati, India
| | - V. Sejian
- ICAR-National Institute of Animal Nutrition & Physiology, Bangalore, India
| |
Collapse
|
33
|
Developmental and molecular responses of buffalo (Bubalus bubalis) cumulus–oocyte complex maturedin vitrounder heat shock conditions. ZYGOTE 2018; 26:177-190. [DOI: 10.1017/s0967199418000072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SummaryTo investigate the effects of physiologically relevant heat shock during oocyte maturation, buffalo cumulus–oocyte complexes (COCs) were cultured at 38.5°C (control) or were exposed to 39.5°C (T1) or 40.5°C (T2) for the first 6 h ofin vitromaturation (IVM), followed by 38.5°C through the next 18 h/IVM and early embryonic development up to the blastocyst stage. Gene expression analysis was performed on selected target genes (HSF-1,HSF-2,HSP-70,HSP-90,BAX,p53,SOD1,COX1,MAPK14) in denuded oocytes and their isolated cumulus cells resulting from control COCs as well as from COCs exposed to a temperature of 39.5°C (T1). The results indicated that heat shock significantly (P< 0.01) decreased the maturation rate in T1 and T2 cells compared with the control. Afterin vitrofertilization (IVF), cleavage rate was lower (P< 0.01) for oocytes exposed to heat stress, and the percentage of oocytes arrested at the 2- or 4-cell stage was higher (P< 0.01) than that of the control. The percentage of oocytes that developed to the 8-cell, 16-cell or blastocyst stage was lower (P< 0.01) in both T1 and T2 groups compared with the control group. mRNA expression levels for the studied genes were decreased (P< 0.05) in treated oocytes (T1) except forHSP-90andHSF-1, which were increased. In cumulus cells isolated from COCs (T1), the expression for the target genes was upregulated except forBAX, which was downregulated. The results of this study demonstrated that exposure of buffalo oocytes to elevated temperatures for 6 h severely compromised their developmental competence and gene expression.
Collapse
|
34
|
Moon M, Huh E, Lee W, Song EJ, Hwang DS, Lee TH, Oh MS. Coptidis Rhizoma Prevents Heat Stress-Induced Brain Damage and Cognitive Impairment in Mice. Nutrients 2017; 9:nu9101057. [PMID: 28946610 PMCID: PMC5691674 DOI: 10.3390/nu9101057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/14/2017] [Accepted: 09/21/2017] [Indexed: 12/13/2022] Open
Abstract
Heat stress conditions lead to neuroinflammation, neuronal death, and memory loss in animals. Coptidis Rhizoma (CR) exhibits potent fever-reducing effects and has been used as an important traditional medicinal herb for treating fever. However, to date, the effects of antipyretic CR on heat-induced brain damages have not been investigated. In this study, CR significantly reduced the elevation of ear and rectal temperatures after exposure to heat in mice. Additionally, CR attenuated hyperthermia-induced stress responses, such as release of cortisol into the blood, and upregulation of heat shock protein and c-Fos in the hypothalamus and hippocampus of mice. The administration of CR inhibited gliosis and neuronal loss induced by thermal stress in the hippocampal CA3 region. Treatment with CR also reduced the heat stress-induced expression of nuclear factor kappa β, tumor necrosis factor-α, and interleukin-1β (IL-1β) in the hippocampus. Moreover, CR significantly decreased proinflammatory mediators such as IL-9 and IL-13 in the heat-stressed hypothalamus. Furthermore, CR attenuated cognitive dysfunction triggered by thermal stress. These results indicate that CR protects the brain against heat stress-mediated brain damage via amelioration of hyperthermia and neuroinflammation in mice, suggesting that fever-reducing CR can attenuate thermal stress-induced neuropathology.
Collapse
Affiliation(s)
- Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea.
| | - Eugene Huh
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
- Department of Herbal Pharmacology, College of Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Wonil Lee
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Eun Ji Song
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea.
| | - Deok-Sang Hwang
- Department of Korean Gynecology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Tae Hee Lee
- Department of Formulae Pharmacology, School of Oriental Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Korea.
| | - Myung Sook Oh
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| |
Collapse
|
35
|
Developmental competence and expression profile of genes in buffalo (Bubalus bubalis) oocytes and embryos collected under different environmental stress. Cytotechnology 2016; 68:2271-2285. [PMID: 27650183 DOI: 10.1007/s10616-016-0022-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 08/23/2016] [Indexed: 12/14/2022] Open
Abstract
The study examined the effects of different environmental stress on developmental competence and the relative abundance (RA) of various gene transcripts in oocytes and embryos of buffalo. Oocytes collected during cold period (CP) and hot period (HP) were matured, fertilized and cultured in vitro to blastocyst hatching stage. The mRNA expression patterns of genes implicated in developmental competence (OCT-4, IGF-2R and GDF-9), heat shock (HSP-70.1), oxidative stress (MnSOD), metabolism (GLUT-1), pro-apoptosis (BAX) and anti-apoptosis (BCL-2) were evaluated in immature and matured oocytes as well as in pre-implantation stage embryos. Oocytes reaching MII stage, cleavage rates, blastocyst yield and hatching rates increased (P < 0.05) during the CP. In MII oocytes and 2-cell embryos, the RA of OCT-4, IGF-2R, GDF-9, MnSOD and GLUT-1 decreased (P < 0.05) during the HP. In 4-cell embryos, the RA of OCT-4, IGF-2R and BCL-2 decreased (P < 0.05) in the HP, whereas GDF-9 increased (P < 0.05). In 8-to 16-cell embryos, the RA of OCT-4 and BCL-2 decreased (P < 0. 05) in the HP, whereas HSP-70.1 and BAX expression increased (P < 0.05). In morula and blastocyst, the RA of OCT-4, IGF-2R and MnSOD decreased (P < 0.05) during the HP, whereas HSP-70.1 was increased (P < 0.05). In conclusion, deleterious seasonal effects induced at the GV-stage carry-over to subsequent embryonic developmental stages and compromise oocyte developmental competence and quality of developed blastocysts.
Collapse
|