1
|
Carossino M, Vissani MA, Barrandeguy ME, Balasuriya UBR, Parreño V. Equine Rotavirus A under the One Health Lens: Potential Impacts on Public Health. Viruses 2024; 16:130. [PMID: 38257830 PMCID: PMC10819593 DOI: 10.3390/v16010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/29/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Group A rotaviruses are a well-known cause of viral gastroenteritis in infants and children, as well as in many mammalian species and birds, affecting them at a young age. This group of viruses has a double-stranded, segmented RNA genome with high genetic diversity linked to point mutations, recombination, and, importantly, reassortment. While initial molecular investigations undertaken in the 1900s suggested host range restriction among group A rotaviruses based on the fact that different gene segments were distributed among different animal species, recent molecular surveillance and genome constellation genotyping studies conducted by the Rotavirus Classification Working Group (RCWG) have shown that animal rotaviruses serve as a source of diversification of human rotavirus A, highlighting their zoonotic potential. Rotaviruses occurring in various animal species have been linked with contributing genetic material to human rotaviruses, including horses, with the most recent identification of equine-like G3 rotavirus A infecting children. The goal of this article is to review relevant information related to rotavirus structure/genomic organization, epidemiology (with a focus on human and equine rotavirus A), evolution, inter-species transmission, and the potential zoonotic role of equine and other animal rotaviruses. Diagnostics, surveillance and the current status of human and livestock vaccines against RVA are also reviewed.
Collapse
Affiliation(s)
- Mariano Carossino
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Maria Aldana Vissani
- Escuela de Veterinaria, Facultad de Ciencias Agrarias y Veterinarias, Universidad del Salvador, Pilar, Buenos Aires B1630AHU, Argentina; (M.A.V.); (M.E.B.)
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina
| | - Maria E. Barrandeguy
- Escuela de Veterinaria, Facultad de Ciencias Agrarias y Veterinarias, Universidad del Salvador, Pilar, Buenos Aires B1630AHU, Argentina; (M.A.V.); (M.E.B.)
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
| | - Udeni B. R. Balasuriya
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Viviana Parreño
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina
| |
Collapse
|
2
|
Louge Uriarte EL, Badaracco A, Spetter MJ, Miño S, Armendano JI, Zeller M, Heylen E, Späth E, Leunda MR, Moreira AR, Matthijnssens J, Parreño V, Odeón AC. Molecular Epidemiology of Rotavirus A in Calves: Evolutionary Analysis of a Bovine G8P[11] Strain and Spatio-Temporal Dynamics of G6 Lineages in the Americas. Viruses 2023; 15:2115. [PMID: 37896894 PMCID: PMC10611311 DOI: 10.3390/v15102115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Rotavirus A (RVA) causes diarrhea in calves and frequently possesses the G6 and P[5]/P[11] genotypes, whereas G8 is less common. We aimed to compare RVA infections and G/P genotypes in beef and dairy calves from major livestock regions of Argentina, elucidate the evolutionary origin of a G8 strain and analyze the G8 lineages, infer the phylogenetic relationship of RVA field strains, and investigate the evolution and spatio-temporal dynamics of the main G6 lineages in American countries. Fecal samples (n = 422) from diarrheic (beef, 104; dairy, 137) and non-diarrheic (beef, 78; dairy, 103) calves were analyzed by ELISA and semi-nested multiplex RT-PCR. Sequencing, phylogenetic, phylodynamic, and phylogeographic analyses were performed. RVA infections were more frequent in beef (22.0%) than in dairy (14.2%) calves. Prevalent genotypes and G6 lineages were G6(IV)P[5] in beef (90.9%) and G6(III)P[11] (41.2%) or mixed genotypes (23.5%) in dairy calves. The only G8 strain was phylogenetically related to bovine and artiodactyl bovine-like strains. Re-analyses inside the G8 genotype identified G8(I) to G8(VIII) lineages. Of all G6 strains characterized, the G6(IV)P[5](I) strains from "Cuenca del Salado" (Argentina) and Uruguay clustered together. According to farm location, a clustering pattern for G6(IV)P[5] strains of beef farms was observed. Both G6 lineage strains together revealed an evolutionary rate of 1.24 × 10-3 substitutions/site/year, and the time to the most recent common ancestor was dated in 1853. The most probable ancestral locations were Argentina in 1981 for G6(III) strains and the USA in 1940 for G6(IV) strains. The highest migration rates for both G6 lineages together were from Argentina to Brazil and Uruguay. Altogether, the epidemiology, genetic diversity, and phylogeny of RVA in calves can differ according to the production system and farm location. We provide novel knowledge about the evolutionary origin of a bovine G8P[11] strain. Finally, bovine G6 strains from American countries would have originated in the USA nearly a century before its first description.
Collapse
Affiliation(s)
- Enrique L. Louge Uriarte
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible, Ruta 226, km 73.5, Balcarce B7620, Buenos Aires, Argentina; (M.R.L.); (A.R.M.)
| | - Alejandra Badaracco
- Instituto Nacional de Tecnología Agropecuaria, EEA Montecarlo, Av. El Libertador Nº 2472, Montecarlo CP3384, Misiones, Argentina;
| | - Maximiliano J. Spetter
- Facultad de Ciencias Veterinarias, Departamento de Fisiopatología, Centro de Investigación Veterinaria de Tandil (CIVETAN), Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco s/n, Tandil CP7000, Buenos Aires, Argentina; (M.J.S.); (J.I.A.)
| | - Samuel Miño
- Instituto Nacional de Tecnología Agropecuaria, EEA Cerro Azul, Ruta 14, km 836, Cerro Azul CP3313, Misiones, Argentina;
| | - Joaquín I. Armendano
- Facultad de Ciencias Veterinarias, Departamento de Fisiopatología, Centro de Investigación Veterinaria de Tandil (CIVETAN), Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco s/n, Tandil CP7000, Buenos Aires, Argentina; (M.J.S.); (J.I.A.)
| | - Mark Zeller
- Laboratory of Viral Metagenomics, Department of Microbiology, Immunology and Transplantation, Rega Institute, University of Leuven, Herestraat 49, 3000 Leuven, Belgium; (M.Z.); (E.H.)
| | - Elisabeth Heylen
- Laboratory of Viral Metagenomics, Department of Microbiology, Immunology and Transplantation, Rega Institute, University of Leuven, Herestraat 49, 3000 Leuven, Belgium; (M.Z.); (E.H.)
| | - Ernesto Späth
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Ruta 226, km 73.5, Balcarce B7620, Buenos Aires, Argentina; (E.S.); (A.C.O.)
| | - María Rosa Leunda
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible, Ruta 226, km 73.5, Balcarce B7620, Buenos Aires, Argentina; (M.R.L.); (A.R.M.)
| | - Ana Rita Moreira
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible, Ruta 226, km 73.5, Balcarce B7620, Buenos Aires, Argentina; (M.R.L.); (A.R.M.)
| | - Jelle Matthijnssens
- Laboratory of Viral Metagenomics, Department of Microbiology, Immunology and Transplantation, Rega Institute, University of Leuven, Herestraat 49, 3000 Leuven, Belgium; (M.Z.); (E.H.)
| | - Viviana Parreño
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Virología e Innovaciones Tecnológicas, Nicolas Repetto y de los Reseros s/n, Hurlingham CP1686, Buenos Aires, Argentina
| | - Anselmo C. Odeón
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Ruta 226, km 73.5, Balcarce B7620, Buenos Aires, Argentina; (E.S.); (A.C.O.)
| |
Collapse
|
3
|
Pansri P, Svensmark B, Liu G, Thamsborg SM, Kudirkiene E, Nielsen HV, Goecke NB, Olsen JE. Evaluation of a novel multiplex qPCR method for rapid detection and quantification of pathogens associated with calf diarrhoea. J Appl Microbiol 2022; 133:2516-2527. [PMID: 35858716 PMCID: PMC9796748 DOI: 10.1111/jam.15722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 01/07/2023]
Abstract
AIMS Diarrhoea is a common health problem in calves and a main reason for use of antimicrobials. It is associated with several bacterial, viral and parasitic pathogens, most of which are commonly present in healthy animals. Methods, which quantify the causative agents, may therefore improve confidence in associating a pathogen to the disease. This study evaluated a novel commercially available, multiplex quantitative polymerase chain reaction (qPCR) assay (Enterit4Calves) for detection and quantification of pathogens associated with calf-diarrhoea. METHODS AND RESULTS Performance of the method was first evaluated under laboratory conditions. Then it was compared with current routine methods for detection of pathogens in faecal samples from 65 calves with diarrhoea and in 30 spiked faecal samples. The qPCR efficiencies were between 84%-103% and detection limits of 100-1000 copies of nucleic acids per sample were observed. Correct identification was obtained on 42 strains of cultured target bacteria, with only one false positive reaction from 135 nontarget bacteria. Kappa values for agreement between the novel assay and current routine methods varied between 0.38 and 0.83. CONCLUSION The novel qPCR method showed good performance under laboratory conditions and a fair to good agreement with current routine methods when used for testing of field samples. SIGNIFICANCE AND IMPACT OF STUDY In addition to having fair to good detection abilities, the novel qPCR method allowed quantification of pathogens. In the future, use of quantification may improve diagnosis and hence treatment of calf diarrhoea.
Collapse
Affiliation(s)
| | | | - Gang Liu
- Department of Veterinary and Animal SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Stig Milan Thamsborg
- Department of Veterinary and Animal SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Egle Kudirkiene
- Department of Veterinary and Animal SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Henrik Vedel Nielsen
- Department of Microbiology and Infection ControlStatens Serum InstitutCopenhagenDenmark
| | | | - John Elmerdahl Olsen
- Department of Veterinary and Animal SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
4
|
Cho HC, Kim EM, Shin SU, Park J, Choi KS. Molecular surveillance of rotavirus A associated with diarrheic calves from the Republic of Korea and full genomic characterization of bovine-porcine reassortant G5P[7] strain. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 100:105266. [PMID: 35276340 DOI: 10.1016/j.meegid.2022.105266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Group A rotavirus (RVA) is the most common diarrhea-causing pathogen among humans and animals worldwide. Rotavirus infection in neonatal calves causes major problems in the livestock industry. This study aimed to determine the prevalence and genetic diversity of bovine rotavirus (BoRVA) infections in calves with diarrhea and to perform whole genome analysis of an unusual strain, designated as RVA/Calf-wt/KOR/KNU-GJ2/2020/G5P[7], that was detected in a 2-day-old diarrheic calf. From 459 diarrheic calves aged 1-40 days, fecal samples were collected and BoRVA infections were screened using real-time RT-PCR targeting VP6 gene. BoRVA was detected in 195 (42.4%) samples and was most prevalent in calves aged 1-10 days (47.2%). No significant difference in the BoRVA infection rate was observed between calves born in herds that were (42.1%) and were not (42.6%) vaccinated against BoRVA. A binomial regression analysis revealed that calves aged 1-10 days (95% confidence intervals [CI]:1.18-24.34; P = 0.000) and 11-20 days (95% CI: 0.76-16.83, P = 0.000) had a 5.37- and 3.58-fold higher BoRVA prevalence in comparison to those aged 31-40 days, respectively. The RVA-positive samples were subsequently subjected to amplification of the VP7 and VP4 genes for determining G and P genotypes. Overall, 45 (23.1%, 45/195) and 63 (32.3, 63/195) sequences for VP7 and VP4 were obtained. In this study, four G and three P genotypes were identified. G6 (86.7%) was the most prevalent genotype, followed by G8 (8.9%), G10 (2.2%), and G5 (2.2%). P[5] (92.1%) was the most frequently detected, followed by P[11] (6.3%), and P[7] (1.6%). The G6P[5] (82.2%) is the most common combination found in Korean native calves with diarrhea, whereas G6P[11] (4.4%) and G10P[11] (2.2%) had relatively low prevalence. G8P[5] (8.9%) was identified for the first time in diarrheic calves in the KOR. The uncommon strain KNU-GJ2 exhibited a G5-P[7]-I5-R1-C1-M2-A1-N1-T1-E1-H1 genotype constellation possessing a typical porcine RVA backbone, with the exception of the VP3 gene, which is derived from bovine. Phylogenetically, except for VP3, ten gene segments of KNU-GJ2 were closely related to porcine, porcine-like, and reassortant bovine strains. Interestingly, the VP3-M2 gene of KNU-GJ2 clustered with bovine-like strains as well as reassortant porcine and bovine strains. Comparison of the NSP4s within a species-specific region of amino acids 131-141 demonstrated that KNU-GJ2 belonged to genotype B with porcine RVAs; however, it differed from porcine RVAs by one to three amino acids. The present study is fundamental to understanding the epidemiology and genotypes of circulating RVAs throughout the KOR and underscoring the importance of continuous monitoring and molecular characterization of RVAs circulating within animal populations for future vaccine development.
Collapse
Affiliation(s)
- Hyung-Chul Cho
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Eun-Mi Kim
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Seung-Uk Shin
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Jinho Park
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Kyoung-Seong Choi
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju 37224, Republic of Korea.
| |
Collapse
|
5
|
Miranda ARM, da Silva Mendes G, Santos N. Rotaviruses A and C in dairy cattle in the state of Rio de Janeiro, Brazil. Braz J Microbiol 2022; 53:1657-1663. [PMID: 35478312 PMCID: PMC9433513 DOI: 10.1007/s42770-022-00764-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/16/2022] [Indexed: 11/28/2022] Open
Abstract
Stool samples were collected from calves from nine family-based small dairy farms in the state of Rio de Janeiro, for detection and characterization of rotavirus (RV) species A, B, and C (RVA, RVB, and RVC, respectively) by reverse transcription polymerase chain reaction. Twenty-six samples (27.7%) were positive for at least one of the species: 22 (23.4%) samples were positive only for RVA, 3 (3.2%) were positive for RVC, and one sample (1.1%) had co-infection of RVA and RVC. RVB was not detected. Seven (21.9%; n = 32) animals with diarrhea and 19 (30.1% n = 62) asymptomatic animals were positive, with no significant difference in positivity (p = 0.3677). RV was detected in all properties studied, at rates between 14.3 and 80%, demonstrating the widespread circulation of RV in four of the seven geographic regions of the state of Rio de Janeiro. Infection was more prevalent among animals ≤ 6 months of age. Sequence analysis of a portion of the RVA VP6-encoding gene identified the I2 genotype. RVC was also detected; to our knowledge, this is the first description of this agent in cattle in Brazil. The data presented here should add knowledge regarding the importance and prevalence of RV in our national territory, and may facilitate the planning and implementation of control and prevention measures for bovine rotavirus infections in Brazil.
Collapse
Affiliation(s)
- Adriele R M Miranda
- Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho - 373, Cidade Universitária, Rio de Janeiro, RJ, 21.947-902, Brazil
| | - Gabriella da Silva Mendes
- Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho - 373, Cidade Universitária, Rio de Janeiro, RJ, 21.947-902, Brazil
| | - Norma Santos
- Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho - 373, Cidade Universitária, Rio de Janeiro, RJ, 21.947-902, Brazil.
| |
Collapse
|
6
|
Maier GU, Breitenbuecher J, Gomez JP, Samah F, Fausak E, Van Noord M. Vaccination for the Prevention of Neonatal Calf Diarrhea in Cow-Calf Operations: A Scoping Review. Vet Anim Sci 2022; 15:100238. [PMID: 35243126 PMCID: PMC8866090 DOI: 10.1016/j.vas.2022.100238] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 11/18/2022] Open
Abstract
Since 1950, 113 articles on vaccines for the prevention of neonatal calf diarrhea have been published in the English literature Results for field trials using commercial vaccines for E. coli, bovine rotavirus, and bovine coronavirus infections are variable No field trials for commercial Salmonella vaccines have shown efficacy Vaccines for protozoal pathogens causing calf scours as well as the importance of several emerging enteric viruses of cattle need further research
Neonatal calf diarrhea (NCD), also known as scours, is an important disease of preweaned calves that affects the production and welfare of beef herds. While hygiene and nutrition are important in reducing the incidence of NCD, vaccination of dams or calves is often employed for the prevention of NCD. The present scoping review summarizes the available peer-reviewed scientific English literature on vaccination of dams or calves for the prevention of NCD over the past decades. The online databases Medline, CAB Abstracts, and Biosis were searched for articles on the topic published between 1950 and 2020. Online software was used to systematically evaluate 2807 citations for inclusion through pre-determined criteria in a 2-step process. In the 113 articles included in the review, vaccines tested targeted the pathogens E. coli (n = 43), bovine rotavirus (BRV, n = 38), Salmonella (n = 29), bovine coronavirus (BCV, n = 14), bovine viral diarrhea virus (n= 7), and other pathogens (n = 8). Field trials for commercial vaccines have been published for the most important pathogens, and results on efficacy are variable for such vaccines targeting BRV, BCV, and E. coli. Meta-analyses exploring efficacy of these vaccines would be helpful to practitioners and producers. No field studies on commercial products have shown efficacy for Salmonella vaccines so that a meta-analysis would unlikely come to a different conclusion. Further research is needed on vaccines for protozoal pathogens like Cryptosporidium parvum as well as on the importance of several emerging enteric viruses in calves.
Collapse
Affiliation(s)
- Gabriele Ute Maier
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, 1 Shields Ave, Davis, CA, 95616, USA
- Corresponding author
| | - Jefferson Breitenbuecher
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, 1 Shields Ave, Davis, CA, 95616, USA
| | - Jose Pablo Gomez
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, 1 Shields Ave, Davis, CA, 95616, USA
| | - Festus Samah
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, 1 Shields Ave, Davis, CA, 95616, USA
| | - Erik Fausak
- University Library, University of California, Davis, 1 Shields Ave, Davis, CA, 95616, USA
| | - Megan Van Noord
- University Library, University of California, Davis, 1 Shields Ave, Davis, CA, 95616, USA
| |
Collapse
|
7
|
Viidu DA, Mõtus K. Implementation of a pre-calving vaccination programme against rotavirus, coronavirus and enterotoxigenic Escherichia coli (F5) and association with dairy calf survival. BMC Vet Res 2022; 18:59. [PMID: 35090439 PMCID: PMC8935617 DOI: 10.1186/s12917-022-03154-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 01/10/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Diarrhea is one of the most common diseases and causes of death in calves during the first month of life. Pre-calving vaccination programme (PVP) against the most common diarrhea-causing pathogens could help to avoid this threat if hyperimmune transition milk (TM) is fed to calves throughout the whole susceptibility period. The aim of this retrospective cohort study was to reveal the implementation practices of PVPs in large commercial dairy farms and to compare calf-level mortality hazards during the first year of vaccination (V+ period) and a year before implementing the vaccination programme (V- period). A questionnaire was filled out in 15 large-scale dairy farms in Estonia that used PVP. The farms were assigned into three groups based on compliance with the vaccine directions for use and TM feeding practices. Calf-level time-to-event data was analyzed with an observation period of 21 days and on-farm mortality due to diarrhea being the event of interest.
Results
During the V+ period, a significant decline in diarrhea-induced calf mortality was identified in three out of six herds that followed vaccination instructions and fed TM for at least 14 days. On average, calf mortality hazard due to diarrhea decreased among these herds (hazard rate ratio (HR) = 0.72, 95% confidence interval (CI) 0.63; 0.81). In the group of correctly vaccinating herds where TM was fed for less than 14 days, diarrhea-induced calf mortality decreased in two herds and remained unchanged in two herds with average diarrhea-induced calf mortality hazard declining significantly during the vaccination period (HR = 0.24, 95% CI 0.14; 0.41). Among the three farms that deviated from the vaccination instructions, the average calf mortality hazard increased in the V+ period (HR = 1.61, 95% CI 1.21; 2.14).
Conclusions
This study revealed that implementing a PVP might aid to reduce diarrhea-induced calf mortality in large commercial dairy farms. There is a need to increase veterinarians´ and farmers´ awareness about the importance of including pregnant heifers into the vaccination programme and emphasize the importance of prolonged feeding of hyperimmune TM to calves.
Collapse
|
8
|
Monteagudo LV, Benito AA, Lázaro-Gaspar S, Arnal JL, Martin-Jurado D, Menjon R, Quílez J. Occurrence of Rotavirus A Genotypes and Other Enteric Pathogens in Diarrheic Suckling Piglets from Spanish Swine Farms. Animals (Basel) 2022; 12:ani12030251. [PMID: 35158575 PMCID: PMC8833434 DOI: 10.3390/ani12030251] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Neonatal diarrhea is a major cause of economic losses in the swine industry worldwide and has significant impact in Spain, which is one of the biggest pork producers globally. Multiple infectious agents can contribute to this condition, with some viruses such as species A rotavirus (RVA) playing a major role. Studies on their occurrence and genetic diversity are essential for development of RVA vaccines. In this study, fecal samples from diarrheic suckling piglets originating from farms distributed throughout Spain were analyzed for RVA and four other common enteric pathogens using molecular methods. The individual prevalence was 89.4%, 64.4%, 44.9%, 33.7% and 4.4% for Clostridiumperfringens, Clostridioides (formerly Clostridium) difficile, species A rotavirus, species C rotavirus and porcine epidemic diarrhea virus, respectively. Most specimens (96.9%) were positive for at least one of the target pathogens and concurrent infections were common. The molecular characterization of RVA positive specimens of specific genes used for genotyping revealed the extensive genetic diversity of RVA strains circulating in swine herds in Spain. Comparison with genotypes contained in the commercial vaccine available in Spain showed differences in the identity of the predominant RVA genotypes from diarrheic piglets in the sampled pig farms. These findings contribute to the surveillance of RVA strains circulating in swine herds in Spain and may help optimize target vaccine design. Abstract Species A rotavirus (RVA) is a major viral pathogen causing diarrhea in suckling piglets. Studies on its genetic heterogeneity have implications for vaccine efficacy in the field. In this study, fecal samples (n = 866) from diarrheic piglets younger than 28 days were analyzed over a two-year period (2018–2019). Samples were submitted from 426 farms located in 36 provinces throughout Spain and were tested using real-time PCR (qPCR) and reverse transcription real-time PCR (RT-qPCR) for five enteric pathogens. The individual prevalence was 89.4%, 64.4%, 44.9%, 33.7% and 4.4% for Clostridiumperfringens, Clostridioides (formerly Clostridium) difficile, species A rotavirus, species C rotavirus and porcine epidemic diarrhea virus, respectively. Most specimens (96.9%) were positive for at least one of the target pathogens, and more than 80% of samples harbored mixed infections. Nucleotide sequencing of 70 specimens positive for RVA revealed the presence of the VP7 genotypes G4, G9, G3, G5, G11 and the VP4 genotypes P7, P23, P6 and P13, with the combinations G4P7 and G9P23 being the most prevalent, and especially in the areas with the highest pig population. The study shows the extensive genetic diversity of RVA strains as well as discrepancies with the genotypes contained in the vaccine available in Spain, and multiple amino acid differences in antigenic epitopes of different G- and P- genotypes with the vaccine strains. Further investigations are needed to determine the efficacy of the vaccine to confer clinical protection against heterologous strains.
Collapse
Affiliation(s)
- Luis V. Monteagudo
- Department of Anatomy, Embryology and Genetics, Faculty of Veterinary Sciences, University of Zaragoza, 50013 Zaragoza, Spain;
- Agrifood Institute of Aragón (IA2), University of Zaragoza-CITA, 50013 Zaragoza, Spain
| | - Alfredo A. Benito
- EXOPOL S.L, Pol Rio Gállego D/14, San Mateo del Gállego, 50840 Zaragoza, Spain; (A.A.B.); (S.L.-G.); (J.L.A.); (D.M.-J.)
| | - Sofía Lázaro-Gaspar
- EXOPOL S.L, Pol Rio Gállego D/14, San Mateo del Gállego, 50840 Zaragoza, Spain; (A.A.B.); (S.L.-G.); (J.L.A.); (D.M.-J.)
| | - José L. Arnal
- EXOPOL S.L, Pol Rio Gállego D/14, San Mateo del Gállego, 50840 Zaragoza, Spain; (A.A.B.); (S.L.-G.); (J.L.A.); (D.M.-J.)
| | - Desirée Martin-Jurado
- EXOPOL S.L, Pol Rio Gállego D/14, San Mateo del Gállego, 50840 Zaragoza, Spain; (A.A.B.); (S.L.-G.); (J.L.A.); (D.M.-J.)
| | - Rut Menjon
- MSD Animal Health España, Carbajosa de la Sagrada, 37188 Salamanca, Spain;
| | - Joaquín Quílez
- Agrifood Institute of Aragón (IA2), University of Zaragoza-CITA, 50013 Zaragoza, Spain
- Department of Animal Pathology, Faculty of Veterinary Sciences, University of Zaragoza, 50013 Zaragoza, Spain
- Correspondence: ; Tel.: +34-976-762150
| |
Collapse
|
9
|
Longitudinal health outcomes for enteric pathogens in preweaned calves on Ohio dairy farms. Prev Vet Med 2021; 190:105323. [PMID: 33756433 DOI: 10.1016/j.prevetmed.2021.105323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 11/23/2022]
Abstract
Calf gastrointestinal disease remains one of the main causes of productivity and economic losses on dairy operations. The majority of pre-weaned calf mortality is attributed to diarrhea or other digestive problems. Five enteric pathogens are commonly associated with diarrhea in dairy calves, including bovine rotavirus, bovine coronavirus, Escherichia coli, Salmonella spp., and Cryptosporidium parvum. Pathogen-associated differences in health outcomes and case fatality rates have not been well-characterized. Additionally, updated prevalence estimates may reflect important changes in the epidemiology of the pathogens on dairy farms. For this cohort study, fecal samples were collected from 276 clinically ill calves across 5 central Ohio dairy farms on the first day of diarrheal diagnosis. Genomic techniques, including reverse transcription polymerase chain reaction (RT-PCR) and droplet digital polymerase chain reaction (ddPCR) were used to test for the presence of the five enteric pathogens. A Poisson regression model was used to estimate the relative risk of mortality, and a survival analysis with a Cox regression model was used to analyze time to return to a healthy clinical status by pathogen. Rotavirus was the most frequently identified at 68.1 % (188/276), followed by F5 (K99)+E. coli at 42.5 % (114/268), C. parvum at 28.4 % (66/232), coronavirus at 5.8 % (16/276), and Salmonella had the lowest prevalence at 3.7 % (10/268). Risk of mortality tended to be higher for calves infected with Salmonella (RR = 3.83; 95 %CI: 0.93, 16.02, p = 0.062); however, the time to return to a healthy clinical status was not different for different pathogens. Only farm was a significant predictor of time to return to health (p = 0.017); the within-farm median duration of signs substantially varied between 2 and 7 days. The results suggest that the prevalence and distribution of rotaviral infections is higher than reported in prior studies. With the exception of infections caused by Salmonella spp., pathogen diagnosis on the first day of diarrhea was a poor predictor of the outcome and duration of disease. These results are critical to guide the implementation of prevention measures to detect, treat, and prevent calf diarrhea.
Collapse
|
10
|
Benito AA, Monteagudo LV, Arnal JL, Baselga C, Quílez J. Occurrence and genetic diversity of rotavirus A in faeces of diarrheic calves submitted to a veterinary laboratory in Spain. Prev Vet Med 2020; 185:105196. [PMID: 33197724 DOI: 10.1016/j.prevetmed.2020.105196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 01/28/2023]
Abstract
A total of 237 faecal specimens from diarrheic calves younger than two months were collected and submitted for diagnosis of enteropathogens over a two-year period (2017-2018) to a veterinary laboratory. Samples originated from 193 dairy and beef farms in 29 provinces distributed throughout Spain, and were tested for the occurrence of three target enteric pathogens by reverse transcription real-time PCR (RT-qPCR): bovine rotavirus A (RVA), Cryptosporidium parvum and bovine coronavirus (BCoV). RT-PCR and nucleotide sequencing analysis were used to determine the G (VP7 gene) and P (VP4 gene) genotypes of 26 specimens positive for RVA. A total of 188 specimens (79.3 %) were positive for at least one of the three target enteric pathogens, and 101 samples (42.6 %) harbored mixed infections. The individual prevalence was 57.8 %, 50.6 % and 23.6 % for C. parvum, RVA and BCoV, respectively. Molecular analysis of selected RVA strains revealed the presence of the G6, G10, G3, P[5] and P[11] genotypes, with the combinations G6P[5] and G6P[11] being the most prevalent. Alignments of nucleotide sequences of the VP7 and VP4 markers showed a high frequency of single nucleotide polymorphisms (SNPs), with up to 294 SNPs found in 869bp of sequence at the G6 genotype (0.338 SNPs/nt), which reveals the extensive genetic diversity of RVA strains. Phylogenetic analysis of the VP7 gene of the G6 strains revealed four distinct lineages, with most strains clustering in the G6-IV lineage. The discrepancies between the RVA genotypes circulating in the sampled cattle farms and the genotypes contained in commercial vaccines currently available in Spain are discussed. We believe that this is the first study on the molecular characterization of rotavirus infecting cattle in Spain.
Collapse
Affiliation(s)
- Alfredo A Benito
- EXOPOL S.L, Pol Rio Gállego D/8, San Mateo del Gállego, Zaragoza, Spain
| | - Luis V Monteagudo
- Department of Anatomy, Embryology and Genetics, Faculty of Veterinary Sciences, University of Zaragoza, Miguel Servet 177, 50013, Zaragoza, Spain; Agrifood Institute of Aragon (IA2), University of Zaragoza-CITA, Miguel Servet 177, 50013, Zaragoza, Spain
| | - José L Arnal
- EXOPOL S.L, Pol Rio Gállego D/8, San Mateo del Gállego, Zaragoza, Spain
| | - Cristina Baselga
- EXOPOL S.L, Pol Rio Gállego D/8, San Mateo del Gállego, Zaragoza, Spain
| | - Joaquín Quílez
- Department of Animal Pathology, Faculty of Veterinary Sciences, University of Zaragoza, Miguel Servet 177, 50013, Zaragoza, Spain; Agrifood Institute of Aragon (IA2), University of Zaragoza-CITA, Miguel Servet 177, 50013, Zaragoza, Spain.
| |
Collapse
|
11
|
Castells M, Caffarena RD, Casaux ML, Schild C, Miño S, Castells F, Castells D, Victoria M, Riet-Correa F, Giannitti F, Parreño V, Colina R. Phylogenetic Analyses of Rotavirus A from Cattle in Uruguay Reveal the Circulation of Common and Uncommon Genotypes and Suggest Interspecies Transmission. Pathogens 2020; 9:pathogens9070570. [PMID: 32674420 PMCID: PMC7400708 DOI: 10.3390/pathogens9070570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/20/2020] [Accepted: 06/30/2020] [Indexed: 12/21/2022] Open
Abstract
Uruguay is one of the main exporters of beef and dairy products, and cattle production is one of the main economic sectors in this country. Rotavirus A (RVA) is the main pathogen associated with neonatal calf diarrhea (NCD), a syndrome that leads to significant economic losses to the livestock industry. The aims of this study are to determine the frequency of RVA infections, and to analyze the genetic diversity of RVA strains in calves in Uruguay. A total of 833 samples from dairy and beef calves were analyzed through RT-qPCR and sequencing. RVA was detected in 57.0% of the samples. The frequency of detection was significantly higher in dairy (59.5%) than beef (28.4%) calves (p < 0.001), while it did not differ significantly among calves born in herds that were vaccinated (64.0%) or not vaccinated (66.7%) against NCD. The frequency of RVA detection and the viral load were significantly higher in samples from diarrheic (72.1%, 7.99 log10 genome copies/mL of feces) than non-diarrheic (59.9%, 7.35 log10 genome copies/mL of feces) calves (p < 0.005 and p = 0.007, respectively). The observed G-types (VP7) were G6 (77.6%), G10 (20.7%), and G24 (1.7%), while the P-types were P[5] (28.4%), P[11] (70.7%), and P[33] (0.9%). The G-type and P-type combinations were G6P[11] (40.4%), G6P[5] (38.6%), G10P[11] (19.3%), and the uncommon genotype G24P[33] (1.8%). VP6 and NSP1-5 genotyping were performed to better characterize some strains. The phylogenetic analyses suggested interspecies transmission, including transmission between animals and humans.
Collapse
Affiliation(s)
- Matías Castells
- Laboratorio de Virología Molecular, CENUR Litoral Norte, Centro Universitario de Salto, Universidad de la República, Rivera 1350, Salto 50000, Uruguay;
- Instituto Nacional de Investigación Agropecuaria (INIA), Plataforma de Investigación en Salud Animal, Estación Experimental la Estanzuela, Ruta 50 km 11, Colonia 70000, Uruguay; (R.D.C.); (M.L.C.); (C.S.); (F.R.-C.); (F.G.)
- Correspondence: (M.C.); (R.C.); Tel.: +598-4734-2924 (M.C. & R.C.)
| | - Rubén Darío Caffarena
- Instituto Nacional de Investigación Agropecuaria (INIA), Plataforma de Investigación en Salud Animal, Estación Experimental la Estanzuela, Ruta 50 km 11, Colonia 70000, Uruguay; (R.D.C.); (M.L.C.); (C.S.); (F.R.-C.); (F.G.)
- Facultad de Veterinaria, Universidad de la República, Alberto Lasplaces 1620, Montevideo 11600, Uruguay
| | - María Laura Casaux
- Instituto Nacional de Investigación Agropecuaria (INIA), Plataforma de Investigación en Salud Animal, Estación Experimental la Estanzuela, Ruta 50 km 11, Colonia 70000, Uruguay; (R.D.C.); (M.L.C.); (C.S.); (F.R.-C.); (F.G.)
| | - Carlos Schild
- Instituto Nacional de Investigación Agropecuaria (INIA), Plataforma de Investigación en Salud Animal, Estación Experimental la Estanzuela, Ruta 50 km 11, Colonia 70000, Uruguay; (R.D.C.); (M.L.C.); (C.S.); (F.R.-C.); (F.G.)
| | - Samuel Miño
- Sección de Virus Gastroentéricos, Instituto de Virología, CICVyA, INTA Castelar, Buenos Aires 1686, Argentina; (S.M.); (V.P.)
| | - Felipe Castells
- Doctor en Veterinaria en Ejercicio Libre, Asociado al Laboratorio de Virología Molecular, CENUR Litoral Norte, Centro Universitario de Salto, Universidad de la República, Rivera 1350, Salto 50000, Uruguay;
| | - Daniel Castells
- Centro de Investigación y Experimentación Dr. Alejandro Gallinal, Secretariado Uruguayo de la Lana, Ruta 7 km 140, Cerro Colorado, Florida 94000, Uruguay;
| | - Matías Victoria
- Laboratorio de Virología Molecular, CENUR Litoral Norte, Centro Universitario de Salto, Universidad de la República, Rivera 1350, Salto 50000, Uruguay;
| | - Franklin Riet-Correa
- Instituto Nacional de Investigación Agropecuaria (INIA), Plataforma de Investigación en Salud Animal, Estación Experimental la Estanzuela, Ruta 50 km 11, Colonia 70000, Uruguay; (R.D.C.); (M.L.C.); (C.S.); (F.R.-C.); (F.G.)
| | - Federico Giannitti
- Instituto Nacional de Investigación Agropecuaria (INIA), Plataforma de Investigación en Salud Animal, Estación Experimental la Estanzuela, Ruta 50 km 11, Colonia 70000, Uruguay; (R.D.C.); (M.L.C.); (C.S.); (F.R.-C.); (F.G.)
| | - Viviana Parreño
- Sección de Virus Gastroentéricos, Instituto de Virología, CICVyA, INTA Castelar, Buenos Aires 1686, Argentina; (S.M.); (V.P.)
| | - Rodney Colina
- Laboratorio de Virología Molecular, CENUR Litoral Norte, Centro Universitario de Salto, Universidad de la República, Rivera 1350, Salto 50000, Uruguay;
- Correspondence: (M.C.); (R.C.); Tel.: +598-4734-2924 (M.C. & R.C.)
| |
Collapse
|
12
|
Genotype constellation of a rotavirus A field strain with an uncommon G8P[11] genotype combination in a rotavirus-vaccinated dairy cattle herd. Arch Virol 2020; 165:1855-1861. [PMID: 32472289 DOI: 10.1007/s00705-020-04675-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/22/2020] [Indexed: 01/14/2023]
Abstract
In this report we describe the genotype constellation of a bovine rotavirus A (RVA) strain with an uncommon G8P[11] genotype combination. The RVA/Cow-wt/BRA/Y136/2017/G8P[11] strain was classified as G8-P[11]-I2-R5-C2-M2-A3-N2-T9-E2-H3. Phylogenetic analysis based on the VP7 gene showed that the Y136 strain and a human G8P[1] strain comprise a putative new (VII) lineage for the G8 genotype. In addition, two other genotypes, R5 (VP1) and T9 (NSP3), were identified in the constellation of Y136 that are rarely found in RVA strains of bovine origin. The immunological pressure caused by regular vaccination of cows might be responsible for the selection of heterologous RVA strains.
Collapse
|
13
|
Gravinatti ML, Barbosa CM, Soares RM, Gregori F. Synanthropic rodents as virus reservoirs and transmitters. Rev Soc Bras Med Trop 2020; 53:e20190486. [PMID: 32049206 PMCID: PMC7083353 DOI: 10.1590/0037-8682-0486-2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 01/09/2020] [Indexed: 12/27/2022] Open
Abstract
This review focuses on reports of hepatitis E virus, hantavirus, rotavirus,
coronavirus, and arenavirus in synanthropic rodents (Rattus
rattus, Rattus norvegicus, and Mus
musculus) within urban environments. Despite their potential impact
on human health, relatively few studies have addressed the monitoring of these
viruses in rodents. Comprehensive control and preventive activities should
include actions such as the elimination or reduction of rat and mouse
populations, sanitary education, reduction of shelters for the animals, and
restriction of the access of rodents to residences, water, and food
supplies.
Collapse
Affiliation(s)
- Mara Lucia Gravinatti
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Rodrigo Martins Soares
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Fábio Gregori
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
14
|
Timurkan MÖ, Alkan F. Identification of rotavirus A strains in small ruminants: first detection of G8P[1] genotypes in sheep in Turkey. Arch Virol 2019; 165:425-431. [PMID: 31828508 DOI: 10.1007/s00705-019-04476-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022]
Abstract
Although members of rotavirus group A (RVA) are major enteric pathogens of humans and animals of many species, their impact on the health of small ruminants is not well documented. In this study, we conducted a molecular analysis of VP4, VP7, VP6 and NSP4 genes of RVAs detected using a commercial antigen ELISA in small ruminants with or without diarrhea in Turkey. Of the RVAs detected in sheep, one strain (Kutahya) was characterized as genotype G8P[1]-I2-E2. Two others (Ankara-1 and Ankara-2) were identified as NSP4 E2 and VP6 I2 genotypes, although they were untyped for the VP4 and VP7 genes. The RVAs from two goats were characterized as genotype G6P [1]-I2-E2. This is the first detection of in goats RVA genotypes G6P [1], which had previously only been found in cattle in Turkey, and of RVA in sheep. The study extends our current knowledge about the circulation of two RVA G genotypes, G6 and G8, in goat herds, and the detection of the G8 genotype in sheep in Turkey. This provides further information about the molecular epidemiology of RVAs in different animal species and indicates that additional surveillance programs are needed to determine the epidemiology of RVA in small ruminants and other species.
Collapse
Affiliation(s)
- Mehmet Özkan Timurkan
- Department of Virology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Feray Alkan
- Department of Virology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
15
|
Fritzen JTT, Oliveira MV, Lorenzetti E, Miyabe FM, Viziack MP, Rodrigues CA, Ayres H, Alfieri AF, Alfieri AA. Longitudinal surveillance of rotavirus A genotypes circulating in a high milk yield dairy cattle herd after the introduction of a rotavirus vaccine. Vet Microbiol 2019; 230:260-264. [PMID: 30827398 PMCID: PMC7117106 DOI: 10.1016/j.vetmic.2019.02.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 11/25/2022]
Abstract
RVA vaccination program reduces the frequency and intensity of diarrhea in dairy calves. The vaccination immune pressure can select specific genotypes in RVA field strains. RVA genotype G10P[11] in fecal samples of calves from G6P[5] vaccinated dairy cattle herds.
Worldwide, neonatal diarrhea is one of the most important health issues affecting dairy calves, and rotavirus A (RVA) is one of its primary causes. Among the measures to mitigate the risk of diarrhea outbreaks, cow vaccination stands out as one of the most important. However, the immune pressure resulting from routine vaccination may be able to select specific G and P genotypes in RVA field strains. This study aimed to determine the frequency and intensity of neonatal diarrhea and the incidence of RVA and attempted to monitor the G and P genotypes present in the RVA strains circulating in a high milk yield cattle herd vaccinated with RVA G6P[5] strain. Fecal samples (n = 1220) from 122 Holstein heifer calves between 0–30 days old that were born from RVA-vaccinated cows were collected at 10 different time points, regardless of the presence or absence of diarrhea. The presence of RVA in fecal samples was determined by the polyacrylamide gel electrophoresis (PAGE) technique and confirmed by reverse transcription polymerase chain reaction (RT-PCR). G and P amplicons from 10 RVA-positive fecal samples from calves of different ages and collections were subjected to nucleotide sequencing. The proportion of the calves and fecal samples that were positive for RVA were 62.3% (76/122) and 8.1% (99/1220), respectively. Using sequence analysis, all 10 RVA field strains presented genotype G10P[11]. The protection of G6P[5] vaccination is clear, as this genotype was not detected in this study, and it is known that vaccination against RVA reduces the incidence of diarrhea independent of genotype involved. This result demonstrates the importance of epidemiological monitoring of RVA genotypes circulating in vaccinated dairy cattle herds to the early detection of new potential pathogenic RVA strains.
Collapse
Affiliation(s)
- Juliana T T Fritzen
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid - Campus Universitário, 86057-970, PO Box 10011, Londrina, Paraná, Brazil
| | - Marcos V Oliveira
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid - Campus Universitário, 86057-970, PO Box 10011, Londrina, Paraná, Brazil
| | - Elis Lorenzetti
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid - Campus Universitário, 86057-970, PO Box 10011, Londrina, Paraná, Brazil
| | - Flávia M Miyabe
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid - Campus Universitário, 86057-970, PO Box 10011, Londrina, Paraná, Brazil
| | - Mariana P Viziack
- Department of Animal Reproduction, FMVZ/USP. 87, Prof. Dr. Orlando Marques de Paiva Ave, Cidade Universitária, 05508-270, São Paulo, São Paulo, Brazil
| | - Carlos A Rodrigues
- SAMVET, 1600, Getúlio Vargas Ave, Jardim São Paulo, 13570-390, São Carlos, São Paulo, Brazil
| | - Henderson Ayres
- MSD Animal Health, 296, Dr. Chucri Zaidan Ave, Vila Cordeiro, 50030-000, São Paulo, São Paulo, Brazil
| | - Alice F Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid - Campus Universitário, 86057-970, PO Box 10011, Londrina, Paraná, Brazil; Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid - Campus Universitário, 86057-970, Londrina, Paraná, Brazil
| | - Amauri A Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid - Campus Universitário, 86057-970, PO Box 10011, Londrina, Paraná, Brazil; National Institute of Science and Technology for Dairy Production Chain (INCT - LEITE), Universidade Estadual de Londrina, Rodovia Celso Garcia Cid - Campus Universitário, 86057-970, Londrina, Paraná, Brazil.
| |
Collapse
|
16
|
Cross-sectional study of the G and P genotypes of rotavirus A field strains circulating in regularly vaccinated dairy cattle herds. Trop Anim Health Prod 2018; 51:887-892. [DOI: 10.1007/s11250-018-1769-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 10/27/2022]
|
17
|
Dairy calf rearing unit and infectious diseases: diarrhea outbreak by bovine coronavirus as a model for the dispersion of pathogenic microorganisms. Trop Anim Health Prod 2018; 50:1937-1940. [PMID: 29671238 PMCID: PMC7088610 DOI: 10.1007/s11250-018-1592-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/09/2018] [Indexed: 01/28/2023]
Abstract
Dairy calf rearing unit is a management system that is only recently being implemented by some milk producer’s cooperatives in southern Brazil. However, aspects related to the health profile of the heifer calves that arrive in the rearing unit as well as about biosecurity practices and microbiological challenges have not yet been evaluated in this rearing system in a tropical country. Diarrhea is the main and most frequent consequence of enteric infections in newborn calves. This study, through some etiological and epidemiological characteristics of an outbreak of neonatal diarrhea, has the aim to alert to the possibility of pathogenic microorganism spread in a dairy heifer calf rearing unit. The diarrhea outbreak presented some non-regular characteristics observed in bovine coronavirus (BCoV) enteric infections in dairy calves. The spread of infection was extremely rapid (1 week); the attack rate (> 50%) was much higher than that observed in calves subjected to conventional rearing; and the age range (5 to 90 days) of the affected heifer calves was much broader than that often observed in the BCoV diarrhea worldwide. These unusual epidemiological characteristics observed in this BCoV diarrhea outbreak raise awareness of the health threat present in calf rearing units as well as of the easy and rapid viral spread in a population of young animals from different dairy herds and, therefore, with very distinct immunological status.
Collapse
|