1
|
Faa G, Fanos V, Manchia M, Van Eyken P, Suri JS, Saba L. The fascinating theory of fetal programming of adult diseases: A review of the fundamentals of the Barker hypothesis. J Public Health Res 2024; 13:22799036241226817. [PMID: 38434579 PMCID: PMC10908242 DOI: 10.1177/22799036241226817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/27/2023] [Indexed: 03/05/2024] Open
Abstract
The theory of fetal programming of adult diseases was first proposed by David J.P. Barker in the eighties of the previous century, to explain the higher susceptibility of some people toward the development of ischemic heart disease. According to his hypothesis, poor maternal living conditions during gestation represent an important risk factor for the onset of atherosclerotic heart disease later in life. The analysis of the early phases of fetal development is a fundamental tool for the risk stratification of children and adults, allowing the identification of susceptible or resistant subjects to multiple diseases later in life. Here, we provide a narrative summary of the most relevant evidence supporting the Barker hypothesis in multiple fields of medicine, including neuropsychiatric disorders, such as Parkinson disease and Alzheimer disease, kidney failure, atherosclerosis, coronary heart disease, stroke, diabetes, cancer onset and progression, metabolic syndrome, and infectious diseases including COVID-19. Given the consensus on the role of body weight at birth as a practical indicator of the fetal nutritional status during gestation, every subject with a low birth weight should be considered an "at risk" subject for the development of multiple diseases later in life. The hypothesis of the "physiological regenerative medicine," able to improve fetal organs' development in the perinatal period is discussed, in the light of recent experimental data indicating Thymosin Beta-4 as a powerful growth promoter when administered to pregnant mothers before birth.
Collapse
Affiliation(s)
- Gavino Faa
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Vassilios Fanos
- Unit of Neonatology and NICU Center, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - Mirko Manchia
- Unit of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Peter Van Eyken
- Department of Pathology, UZ Genk Regional Hospital, Genk, Belgium
| | - Jasjit S. Suri
- Stroke Diagnostic and Monitoring Division, Atheropoint, Roseville, CA, USA
| | - Luca Saba
- Unit of Radiology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
2
|
Wiener SV. Effects of the environment on the evolution of the vertebrate urinary tract. Nat Rev Urol 2023; 20:719-738. [PMID: 37443264 DOI: 10.1038/s41585-023-00794-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2023] [Indexed: 07/15/2023]
Abstract
Evolution of the vertebrate urinary system occurs in response to numerous selective pressures, which have been incompletely characterized. Developing research into urinary evolution led to the occurrence of clinical applications and insights in paediatric urology, reproductive medicine, urolithiasis and other domains. Each nephron segment and urinary organ has functions that can be contextualized within an evolutionary framework. For example, the structure and function of the glomerulus and proximal tubule are highly conserved, enabling blood cells and proteins to be retained, and facilitating the elimination of oceanic Ca+ and Mg+. Urea emerged as an osmotic mediator during evolution, as cells of large organisms required increased precision in the internal regulation of salinity and solutes. As the first vertebrates moved from water to land, acid-base regulation was shifted from gills to skin and kidneys in amphibians. In reptiles and birds, solute regulation no longer occurred through the skin but through nasal salt glands and post-renally, within the cloaca and the rectum. In placental mammals, nasal salt glands are absent and the rectum and urinary tracts became separate, which limited post-renal urine concentration and led to the necessity of a kidney capable of high urine concentration. Considering the evolutionary and environmental selective pressures that have contributed to renal evolution can help to gain an increased understanding of renal physiology.
Collapse
Affiliation(s)
- Scott V Wiener
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
3
|
DeFreitas MJ, Katsoufis CP, Benny M, Young K, Kulandavelu S, Ahn H, Sfakianaki A, Abitbol CL. Educational Review: The Impact of Perinatal Oxidative Stress on the Developing Kidney. Front Pediatr 2022; 10:853722. [PMID: 35844742 PMCID: PMC9279889 DOI: 10.3389/fped.2022.853722] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/13/2022] [Indexed: 01/01/2023] Open
Abstract
Oxidative stress occurs when there is an imbalance between reactive oxygen species/reactive nitrogen species and antioxidant systems. The interplay between these complex processes is crucial for normal pregnancy and fetal development; however, when oxidative stress predominates, pregnancy related complications and adverse fetal programming such as preterm birth ensues. Understanding how oxidative stress negatively impacts outcomes for the maternal-fetal dyad has allowed for the exploration of antioxidant therapies to prevent and/or mitigate disease progression. In the developing kidney, the negative impact of oxidative stress has also been noted as it relates to the development of hypertension and kidney injury mostly in animal models. Clinical research addressing the implications of oxidative stress in the developing kidney is less developed than that of the neurodevelopmental and respiratory conditions of preterm infants and other vulnerable neonatal groups. Efforts to study the oxidative stress pathway along the continuum of the perinatal period using a team science approach can help to understand the multi-organ dysfunction that the maternal-fetal dyad sustains and guide the investigation of antioxidant therapies to ameliorate the global toxicity. This educational review will provide a comprehensive and multidisciplinary perspective on the impact of oxidative stress during the perinatal period in the development of maternal and fetal/neonatal complications, and implications on developmental programming of accelerated aging and cardiovascular and renal disease for a lifetime.
Collapse
Affiliation(s)
- Marissa J DeFreitas
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami, Miami, FL, United States.,Department of Pediatrics, Batchelor Children's Research Institute, University of Miami, Miami, FL, United States
| | - Chryso P Katsoufis
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami, Miami, FL, United States.,Department of Pediatrics, Batchelor Children's Research Institute, University of Miami, Miami, FL, United States
| | - Merline Benny
- Department of Pediatrics, Batchelor Children's Research Institute, University of Miami, Miami, FL, United States.,Division of Neonatology, Department of Pediatrics, University of Miami, Miami, FL, United States
| | - Karen Young
- Department of Pediatrics, Batchelor Children's Research Institute, University of Miami, Miami, FL, United States.,Division of Neonatology, Department of Pediatrics, University of Miami, Miami, FL, United States
| | - Shathiyah Kulandavelu
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami, Miami, FL, United States.,Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL, United States
| | - Hyunyoung Ahn
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami, Miami, FL, United States
| | - Anna Sfakianaki
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami, Miami, FL, United States
| | - Carolyn L Abitbol
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami, Miami, FL, United States.,Department of Pediatrics, Batchelor Children's Research Institute, University of Miami, Miami, FL, United States
| |
Collapse
|
4
|
Williams S, Charest J, Pollak M, Subramanian BK. Bioengineering Strategies To Develop Podocyte Culture Systems. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:938-948. [PMID: 34541902 PMCID: PMC9419930 DOI: 10.1089/ten.teb.2021.0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Unraveling the complex behavior of healthy and disease podocytes by analyzing the changes in their unique arrangement of foot processes, slit diaphragm and the 3D morphology is a long-standing goal in kidney-glomerular research. The complexities surrounding the podocytes' accessibility in animal models and growing evidence of differences between humans and animal systems have compelled researchers to look for alternate approaches to study podocyte behaviors. With the advent of bioengineered models, an increasingly powerful and diverse set of tools is available to develop novel podocyte culture systems. This review discusses the pertinence of various culture models of podocytes to study podocyte mechanisms in both normal physiology and disease conditions. While no one in vitro system comprehensively recapitulates podocytes' in vivo architecture, we emphasize how the existing systems can be exploited to answer targeted questions on podocyte structure and function. We highlight the distinct advantages and limitations of using these models to study podocyte behaviors and screen therapeutics. Finally, we discuss various considerations and potential engineering strategies for developing next-generation complex 3D culture models for studying podocyte behaviors in vitro.
Collapse
Affiliation(s)
- Sarah Williams
- Beth Israel Deaconess Medical Center, 1859, Boston, Massachusetts, United States;
| | - Joseph Charest
- Draper Laboratory, Biomedical Engineering, 555 Technology Square, Cambridge, Massachusetts, United States, 02139;
| | - Martin Pollak
- Beth Israel Deaconess Medical Center, 1859, Boston, Massachusetts, United States;
| | | |
Collapse
|
5
|
Fanni D, Gerosa C, Loddo C, Castagnola M, Fanos V, Zaffanello M, Faa G. Stem/progenitor cells in fetuses and newborns: overview of immunohistochemical markers. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:22. [PMID: 34219203 PMCID: PMC8255250 DOI: 10.1186/s13619-021-00084-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 04/12/2021] [Indexed: 12/26/2022]
Abstract
Microanatomy of the vast majority of human organs at birth is characterized by marked differences as compared to adult organs, regarding their architecture and the cell types detectable at histology. In preterm neonates, these differences are even more evident, due to the lower level of organ maturation and to ongoing cell differentiation. One of the most remarkable finding in preterm tissues is the presence of huge amounts of stem/progenitor cells in multiple organs, including kidney, brain, heart, adrenals, and lungs. In other organs, such as liver, the completely different burden of cell types in preterm infants is mainly related to the different function of the liver during gestation, mainly focused on hematopoiesis, a function that is taken by bone marrow after birth. Our preliminary studies showed that the antigens expressed by stem/progenitors differ significantly from one organ to the next. Moreover, within each developing human tissue, reactivity for different stem cell markers also changes during gestation, according with the multiple differentiation steps encountered by each progenitor during development. A better knowledge of stem/progenitor cells of preterms will allow neonatologists to boost preterm organ maturation, favoring the differentiation of the multiple cells types that characterize each organ in at term neonates.
Collapse
Affiliation(s)
- D Fanni
- Division of Pathology, University Hospital San Giovanni Di Dio, via Ospedale, 54, Cagliari, Italy.,Department of Biology, College of Science and Technology, Temple University, Phidelphia, USA
| | - C Gerosa
- Division of Pathology, University Hospital San Giovanni Di Dio, via Ospedale, 54, Cagliari, Italy.,Department of Biology, College of Science and Technology, Temple University, Phidelphia, USA
| | - C Loddo
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - M Castagnola
- Laboratory of Biochemistry and Metabolomics, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - V Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - M Zaffanello
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Piazzale Stefani, 1, I-37126, Verona, Italy.
| | - G Faa
- Division of Pathology, University Hospital San Giovanni Di Dio, via Ospedale, 54, Cagliari, Italy.,Department of Biology, College of Science and Technology, Temple University, Phidelphia, USA
| |
Collapse
|
6
|
Crump C, Sundquist J, Winkleby MA, Sundquist K. Preterm birth and risk of chronic kidney disease from childhood into mid-adulthood: national cohort study. BMJ 2019; 365:l1346. [PMID: 31043374 PMCID: PMC6490674 DOI: 10.1136/bmj.l1346] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To investigate the relation between preterm birth (gestational age <37 weeks) and risk of CKD from childhood into mid-adulthood. DESIGN National cohort study. SETTING Sweden. PARTICIPANTS 4 186 615 singleton live births in Sweden during 1973-2014. EXPOSURES Gestational age at birth, identified from nationwide birth records in the Swedish birth registry. MAIN OUTCOME MEASURES CKD, identified from nationwide inpatient and outpatient diagnoses through 2015 (maximum age 43 years). Cox regression was used to examine gestational age at birth and risk of CKD while adjusting for potential confounders, and co-sibling analyses assessed the influence of unmeasured shared familial (genetic or environmental) factors. RESULTS 4305 (0.1%) participants had a diagnosis of CKD during 87.0 million person years of follow-up. Preterm birth and extremely preterm birth (<28 weeks) were associated with nearly twofold and threefold risks of CKD, respectively, from birth into mid-adulthood (adjusted hazard ratio 1.94, 95% confidence interval 1.74 to 2.16; P<0.001; 3.01, 1.67 to 5.45; P<0.001). An increased risk was observed even among those born at early term (37-38 weeks) (1.30, 1.20 to 1.40; P<0.001). The association between preterm birth and CKD was strongest at ages 0-9 years (5.09, 4.11 to 6.31; P<0.001), then weakened but remained increased at ages 10-19 years (1.97, 1.57 to 2.49; P<0.001) and 20-43 years (1.34, 1.15 to 1.57; P<0.001). These associations affected both males and females and did not seem to be related to shared genetic or environmental factors in families. CONCLUSIONS Preterm and early term birth are strong risk factors for the development of CKD from childhood into mid-adulthood. People born prematurely need long term follow-up for monitoring and preventive actions to preserve renal function across the life course.
Collapse
Affiliation(s)
- Casey Crump
- Icahn School of Medicine at Mount Sinai, Departments of Family Medicine and Community Health and of Population Health Science and Policy, One Gustave L Levy Place, Box 1077, New York, NY 10029, USA
| | - Jan Sundquist
- Lund University, Centre for Primary Health Care Research, Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | - Marilyn A Winkleby
- Stanford University, Stanford Prevention Research Centre, Stanford, CA, USA
| | - Kristina Sundquist
- Lund University, Centre for Primary Health Care Research, Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
7
|
Minuth W. Reading First Coordinates from the Nephrogenic Zone in Human Fetal Kidney. Nephron Clin Pract 2017; 138:137-146. [DOI: 10.1159/000481441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 09/11/2017] [Indexed: 01/15/2023] Open
|
8
|
Assessment of kidney function in preterm infants: lifelong implications. Pediatr Nephrol 2016; 31:2213-2222. [PMID: 26846786 DOI: 10.1007/s00467-016-3320-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/20/2015] [Accepted: 12/31/2015] [Indexed: 01/18/2023]
Abstract
This educational review will highlight the historical and contemporary references that establish a basic understanding of measurements of kidney function in the neonate and its relevance for the life of an individual. Importantly, the differential renal function of preterm infants relative to term infants has become paramount with the increased viability of preterm infants and the realization that kidney function is associated with gestational age. Moreover, neonatal kidney function is primarily associated with absolute renal mass and hemodynamic stability. Neonatal kidney function and its early developmental progression predict lifelong cardiovascular and renal disease risks. Validation of estimation equations of kidney function in this population has provided important reference data for other investigations and a clinical basis for prospective and longitudinal follow-up. Future research should be directed towards a better understanding of surrogate markers of kidney function from infancy through adulthood. Pediatric nephrologists should be aware of the developmental aspects of kidney function including the importance of the congenital nephron endowment and the preservation of kidney function throughout a lifetime. • Nephrogenesis occurs in utero in concert with other organ systems by branching morphogenesis, including the lungs, pancreas, and vascular tree, with over 60 % of nephrons being formed during the last trimester. • Infants born preterm before 36 weeks' gestation are in active nephrogenesis and are at increased risk of having a decreased nephron endowment from prenatal and postnatal genetic and epigenetic hazards that will impact the patient for a lifetime. • Post-natal adaptation of kidney function is directly proportional to the number of perfused nephrons, estimated by total kidney volume (TKV), mean arterial pressure (MAP), and gestational age. • Accurate measurement of glomerular filtration rate (GFR) in infants is problematic due to the unavailability of the gold standard inulin. The traditional use of creatinine to estimate GFR is unreliable in preterm infants due to its tubular reabsorption by immature kidneys and its dependence on muscle mass as an endogenous marker. Alternative endogenous markers to estimate GFR are cystatin C and beta trace protein (BTP). • Long-term follow-up of renal function in those born preterm should be life long and should include assessment of GFR, total kidney volume (TKV) relative to body surface area (BSA), and cardiovascular risks including hypertension and vascular stiffness.
Collapse
|
9
|
Minuth WW, Denk L. When morphogenetic proteins encounter special extracellular matrix and cell-cell connections at the interface of the renal stem/progenitor cell niche. Anat Cell Biol 2015; 48:1-9. [PMID: 25806116 PMCID: PMC4371175 DOI: 10.5115/acb.2015.48.1.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 01/30/2015] [Accepted: 02/17/2015] [Indexed: 12/18/2022] Open
Abstract
Reciprocal exchange of morphogenetic proteins between epithelial and mesenchymal cells in a stem/progenitor cell niche results in formation of a nephron. To maintain diffusion of morphogenetic proteins, it is assumed that a close contact exists between involved cells. However, recent publications underline that both types of stem/progenitor cells are separated by a striking interface. To explore this microarchitecture in detail, neonatal rabbit kidneys were fixed in traditional glutaraldehyde (GA) solution for transmission electron microscopy. For contrast enhancing specimens were fixed in GA solution including cupromeronic blue, ruthenium red or tannic acid. To record same perspectives, embedded blocks of parenchyma were cut in exactly orientated vertical and transverse planes to lining collecting ducts. Electron microscopy of specimens fixed by traditional GA solution illustrates a spatial separation of stem/progenitor cells and an unobstrusively looking interface. In contrast, advanced fixation of specimens in GA solution including cupromeronic blue, ruthenium red and tannic acid unmasks earlier not visible extracellular matrix. In addition, projections of mesenchymal cells covered by matrix cross the interface to contact epithelial cells. Surprisingly, the end of a mesenchymal cell projection does not dangle but is enclosed in a fitting sleeve and connected via tunneling nanotubes with the plasma membrane of an epithelial cell. Regarding this complex ensemble the question is to what extent illustrated cell-cell connections and extracellular matrix are involved in communication and transmission of morphogenetic proteins during induction of a nephron.
Collapse
Affiliation(s)
- Will W Minuth
- Institute of Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Lucia Denk
- Institute of Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| |
Collapse
|