1
|
Yıldırım Y, Doğan F, Bozkurt G, Küçük A, Acar G, Bilge-Dağalp S. Identification and molecular characterization of two papillomavirus genotypes in teat papillomatosis cases in hair goats, in Türkiye. Comp Immunol Microbiol Infect Dis 2024; 104:102111. [PMID: 38101193 DOI: 10.1016/j.cimid.2023.102111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
Papillomaviruses can cause benign or malignant proliferations on the host's skin and mucous membranes. Recent genetic studies have identified many new papillomavirus types. In this study, molecular detection and typing was performed on papilloma samples from eight hair goats with teat papillomatosis. The papilloma samples were tested with degenerate (FAP59/FAP64,MY09/MY11) and type-specific primers. One sample was positive with degenerate (MY09/MY11) and two samples were positive with Caprahircus papillomavirus-1 type specific primers. The MY09/MY11 primer sequence indicated identity to the closest Ovine papillomavirus type-2 (77.9%). The ChPV-1 primer sequence was similar to the closest ChPV-1 (99.4%). Investigating papillomavirus types in different animal species is important for determining the evolution, prevalence, host range, and interspecies transmission potential of papillomaviruses, and to indicate suitable therapeutics for later development.
Collapse
Affiliation(s)
- Yakup Yıldırım
- Burdur Mehmet Akif Ersoy University, Faculty of Veterinary Medicine, Department of Virology, Burdur, Türkiye.
| | - Fırat Doğan
- Hatay Mustafa Kemal University, Faculty of Veterinary Medicine, Department of Virology, Hatay, Türkiye.
| | - Gökhan Bozkurt
- Burdur Mehmet Akif Ersoy University, Faculty of Veterinary Medicine, Department of Obstetrics & Gynecology, Burdur, Türkiye.
| | - Ali Küçük
- Burdur Mehmet Akif Ersoy University, Faculty of Veterinary Medicine, Veterinary Training Hospital, Burdur, Türkiye.
| | - Gülizar Acar
- Atatürk University, Faculty of Veterinary Medicine, Department of Virology, Erzurum, Türkiye.
| | - Seval Bilge-Dağalp
- Ankara University, Faculty of Veterinary Medicine, Department of Virology, Ankara, Türkiye.
| |
Collapse
|
2
|
Medeiros-Fonseca B, Abreu-Silva AL, Medeiros R, Oliveira PA, Gil da Costa RM. Pteridium spp. and Bovine Papillomavirus: Partners in Cancer. Front Vet Sci 2021; 8:758720. [PMID: 34796228 PMCID: PMC8593235 DOI: 10.3389/fvets.2021.758720] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/06/2021] [Indexed: 11/30/2022] Open
Abstract
Bovine papillomavirus (BPV) are a cause for global concern due to their wide distribution and the wide range of benign and malignant diseases they are able to induce. Those lesions include cutaneous and upper digestive papillomas, multiple histological types of urinary bladder cancers—most often associated with BPV1 and BPV2—and squamous cell carcinomas of the upper digestive system, associated with BPV4. Clinical, epidemiological and experimental evidence shows that exposure to bracken fern (Pteridium spp.) and other related ferns plays an important role in allowing viral persistence and promoting the malignant transformation of early viral lesions. This carcinogenic potential has been attributed to bracken illudane glycoside compounds with immune suppressive and mutagenic properties, such as ptaquiloside. This review addresses the role of BPV in tumorigenesis and its interactions with bracken illudane glycosides. Current data indicates that inactivation of cytotoxic T lymphocytes and natural killer cells by bracken fern illudanes plays a significant role in allowing viral persistence and lesion progression, while BPV drives unchecked cell proliferation and allows the accumulation of genetic damage caused by chemical mutagens. Despite limited progress in controlling bracken infestation in pasturelands, bracken toxins remain a threat to animal health. The number of recognized BPV types has steadily increased over the years and now reaches 24 genotypes with different pathogenic properties. It remains essential to widen the available knowledge concerning BPV and its synergistic interactions with bracken chemical carcinogens, in order to achieve satisfactory control of the livestock losses they induce worldwide.
Collapse
Affiliation(s)
- Beatriz Medeiros-Fonseca
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Veterinary Sciences Department, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana Lúcia Abreu-Silva
- Veterinary Sciences Department, State University of Maranhão (UEMA), São Luís, Brazil
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Rede de Investigação em Saúde (RISE)@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal.,Molecular Oncology and Viral Pathology Group, Faculty of Medicine, University of Porto, Porto, Portugal.,Biomedicine Research Center (CEBIMED), Faculty of Health Sciences, Fernando Pessoa University, Porto, Portugal.,Virology Service, Portuguese Institute of Oncology (IPO-Porto), Porto, Portugal
| | - Paula A Oliveira
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Veterinary Sciences Department, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Rui M Gil da Costa
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Rede de Investigação em Saúde (RISE)@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal.,LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal.,Post-graduate Programme in Adult Health (PPGSAD), Department of Morphology, Federal University of Maranhão (UFMA), UFMA University Hospital (HUUFMA), São Luís, Brazil
| |
Collapse
|
3
|
Meng Q, Ning C, Wang L, Ren Y, Li J, Xiao C, Li Y, Li Z, He Z, Cai X, Qiao J. Molecular detection and genetic diversity of bovine papillomavirus in dairy cows in Xinjiang, China. J Vet Sci 2021; 22:e50. [PMID: 34170091 PMCID: PMC8318792 DOI: 10.4142/jvs.2021.22.e50] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 01/25/2023] Open
Abstract
Background Bovine papillomatosis is a type of proliferative tumor disease of skin and mucosae caused by bovine papillomavirus (BPV). As a transboundary and emerging disease in cattle, it poses a potential threat to the dairy industry. Objectives The aim of this study is to detect and clarify the genetic diversity of BPV circulating in dairy cows in Xinjiang, China. Methods 122 papilloma skin lesions from 8 intensive dairy farms located in different regions of Xinjiang, China were detected by polymerase chain reaction. The genetic evolution relationships of various types of BPVs were analyzed by examining this phylogenetic tree. Results Ten genotypes of BPV (BPV1, BPV2, BPV3, BPV6, BPV7, BPV8, BPV10, BPV11, BPV13, and BPV14) were detected and identified in dairy cows. These were the first reported detections of BPV13 and BPV14 in Xinjiang, Mixed infections were detected, and there were geographical differences in the distribution of the BPV genotypes. Notably, the BPV infection rate among young cattle (< 1-year-old) developed from the same supply of frozen sperm was higher than that of the other young cows naturally raised under the same environmental conditions. Conclusions Genotyping based on the L1 gene of BPV showed that BPVs circulating in Xinjiang China displayed substantial genetic diversity. This study provided valuable data at the molecular epidemiology level, which is conducive to developing deep insights into the genetic diversity and pathogenic characteristics of BPVs in dairy cows.
Collapse
Affiliation(s)
- Qingling Meng
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Chengcheng Ning
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Lixia Wang
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Yan Ren
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China
| | - Jie Li
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Chencheng Xiao
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Yanfang Li
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Zhiyuan Li
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Zhihao He
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Xuepeng Cai
- State Key Lab of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Jun Qiao
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China.
| |
Collapse
|
4
|
Sobhy NM, Singh V, El Damaty HM, Mor SK, Youssef CRB, Goyal SM. Molecular characterization of a novel Camelus dromedarius papillomavirus. Comp Immunol Microbiol Infect Dis 2020; 73:101561. [PMID: 33091861 DOI: 10.1016/j.cimid.2020.101561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 11/28/2022]
Abstract
Papillomaviruses affect both human and non-human hosts. In camels, papillomatosis is caused by Camelus dromedarius papillomavirus type 1 and 2 (CdPV1 and CdPV2, respectively). In late 2018, an outbreak of camelpox occurred in a herd of fattening camels in Egypt. Several animals were found to be co-infected with camelpox and camel papillomaviruses. The morbidity with papillomatosis was 35 %. The infection was confirmed by PCR then Illumina sequencing revealed the presence of a complete genome of two CdPVs. One of these was CdPV1 (MT130101) and the other was a putative novel virus, tentatively named as CdPV3 (MT130100). Seven ORFs and a long upstream regulatory region were identified in the genomes of both viruses. Pairwise comparisons of L1 gene revealed 98.92 % nt identity between MT130101/CdPV1/Egypt/2018 and HQ912790/CdPV1/Sudan/2009 with 100 % coverage. However, MT130100/CdPV3/ Egypt/2018 showed only 68.99 % nt identity with the closest genome HQ912791/CdPV2/Sudan/2009. Phylogenetic analyses indicated that CdPV1 and CdPV3 belonged to the genus Deltapapillomavirus. These results should be useful for future CdPVs molecular surveillance and construction of evolutionary characteristics of this virus.
Collapse
Affiliation(s)
- Nader M Sobhy
- Department of Animal Medicine, Infectious Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia 44511, Egypt; Veterinary Diagnostic Laboratory and Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| | - Vikash Singh
- Veterinary Diagnostic Laboratory and Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Hend M El Damaty
- Department of Animal Medicine, Infectious Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia 44511, Egypt
| | - Sunil K Mor
- Veterinary Diagnostic Laboratory and Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Christiana R B Youssef
- Department of Microbiology, Faculty of Pharmacy, Zagazig University, Zagazig, Sharkia 44519, Egypt
| | - Sagar M Goyal
- Veterinary Diagnostic Laboratory and Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
5
|
Figueirêdo RP, Santos GF, Oliveira LB, Santos LABO, Barreto DM, Cândido AL, Campos AC, Azevedo EO, Batista MVA. High Genotypic Diversity, Putative New Types and Intra-Genotype Variants of Bovine Papillomavirus in Northeast Brazil. Pathogens 2020; 9:pathogens9090748. [PMID: 32942526 PMCID: PMC7558504 DOI: 10.3390/pathogens9090748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
Bovine papillomavirus (BPV) can cause damage to the epithelial and mucosal tissue and currently presents 28 known types. Not all BPV types are associated with the development of cancer in cattle. Studies have shown that variants of human papillomavirus types can present different pathogenic profiles. However, despite the similarity, it is not yet known whether variants of BPV types can also present varying degrees of pathogenicity. Thus, the aim of this study was to evaluate the genetic variability of BPV types and variants isolated in Northeastern Brazil. Samples were obtained from animals with papillomatous lesions. BPV DNA was detected by the amplification of the L1 gene and genotyping was performed by sequencing. Mutations were analyzed in a phylogenetic, structural and functional context. In total, 52 positive samples were obtained and 11 different BPV types were identified in the samples. Ten putative new BPV types were also identified. In addition, several non-synonymous mutations were identified and predicted to alter protein stability, having an impact on immune evasion. The study demonstrated a high genetic diversity of BPV in the region with a large number of mutations identified, serving as a basis for more efficient control measures to be adopted for bovine papillomatosis.
Collapse
Affiliation(s)
- Rebeca P. Figueirêdo
- Laboratory of Molecular Genetics and Biotechnology (GMBio), Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão 49100-000, Brazil; (R.P.F.); (G.F.S.); (L.B.O.); (L.A.B.O.S.)
| | - Gabriela F. Santos
- Laboratory of Molecular Genetics and Biotechnology (GMBio), Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão 49100-000, Brazil; (R.P.F.); (G.F.S.); (L.B.O.); (L.A.B.O.S.)
| | - Luana B. Oliveira
- Laboratory of Molecular Genetics and Biotechnology (GMBio), Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão 49100-000, Brazil; (R.P.F.); (G.F.S.); (L.B.O.); (L.A.B.O.S.)
| | - Lucas A. B. O. Santos
- Laboratory of Molecular Genetics and Biotechnology (GMBio), Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão 49100-000, Brazil; (R.P.F.); (G.F.S.); (L.B.O.); (L.A.B.O.S.)
| | | | - Alexandre L. Cândido
- Department of Morphology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão 49100-000, Brazil;
| | - Ana C. Campos
- Núcleo de Graduação em Medicina Veterinária, Campus do Sertão, Federal University of Sergipe, Nossa Sra. da Glória 49680-000, Brazil;
| | - Edisio O. Azevedo
- Department of Veterinary Medicine, Federal University of Sergipe, São Cristóvão 49100-000, Brazil;
| | - Marcus V. A. Batista
- Laboratory of Molecular Genetics and Biotechnology (GMBio), Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão 49100-000, Brazil; (R.P.F.); (G.F.S.); (L.B.O.); (L.A.B.O.S.)
- Correspondence: or ; Tel.: +55-79-3194-6615
| |
Collapse
|
6
|
Daudt C, da Silva FRC, Cibulski SP, Streck AF, Laurie RE, Munday JS, Canal CW. Bovine papillomavirus 24: a novel member of the genus Xipapillomavirus detected in the Amazon region. Arch Virol 2018; 164:637-641. [PMID: 30417199 DOI: 10.1007/s00705-018-4092-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/18/2018] [Indexed: 01/13/2023]
Abstract
Bovine papillomaviruses (BPVs) have been described as etiologic agents of cutaneous and mucosal papillomas in cattle. In the present study, we describe a new BPV that was detected in a cutaneous papilloma from a cow. Phylogenetic analysis suggests that this virus belong to the genus Xipapillomavirus, and we refer to it here as BPV type 24 (BPV24). Coinfection with members of the genera Epsilonpapillomavirus and Deltapapillomavirus in a cutaneous papilloma from a different animal was also detected, and the full genomes of these viruses were sequenced. Both papillomas were from cattle within Acre State in the Amazon region of Brazil. The data presented here demonstrate the utility of using high-throughput methods to indentify coinfections and allow the characterization of new genomes.
Collapse
Affiliation(s)
- Cíntia Daudt
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, Rio Grande do Sul, Brazil
- Laboratório de Virologia Geral e Parasitologia, Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, Campus Universitário, Rio Branco, Acre, Brazil
| | - Flavio R C da Silva
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, Rio Grande do Sul, Brazil
- Laboratório de Virologia Geral e Parasitologia, Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, Campus Universitário, Rio Branco, Acre, Brazil
| | - Samuel P Cibulski
- Laboratório de Biologia Celular e Molecular, Centro de Biotecnologia-CBiotec, Universidade Federal da Paraíba, Cidade Universitária, João Pessoa, Paraíba, CEP 58051-900, Brazil
| | - André F Streck
- Centro de Ciências Biológicas e da Saúde-CCBS, Universidade de Caxias do Sul-UCS, Caxias do Sul, Rio Grande do Sul, 95070-560, Brazil
| | - Rebecca E Laurie
- Otago Genomics and Bioinformatics Facility, Otago University, Dunedin, New Zealand
| | - John S Munday
- Pathobiology, School of Veterinary Sciences, Massey University, Palmerston North, New Zealand
| | - Cláudio W Canal
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
7
|
Daudt C, Da Silva FRC, Lunardi M, Alves CBDT, Weber MN, Cibulski SP, Alfieri AF, Alfieri AA, Canal CW. Papillomaviruses in ruminants: An update. Transbound Emerg Dis 2018; 65:1381-1395. [DOI: 10.1111/tbed.12868] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Indexed: 02/06/2023]
Affiliation(s)
- C. Daudt
- Laboratório de Virologia Veterinária; Faculdade de Veterinária; Universidade Federal do Rio Grande do Sul; Porto Alegre RS Brazil
- Centro de Ciências Biológicas e da Natureza; Universidade Federal do Acre; Rio Branco AC Brazil
| | - F. R. C. Da Silva
- Laboratório de Virologia Veterinária; Faculdade de Veterinária; Universidade Federal do Rio Grande do Sul; Porto Alegre RS Brazil
- Centro de Ciências Biológicas e da Natureza; Universidade Federal do Acre; Rio Branco AC Brazil
| | - M. Lunardi
- Laboratório de Virologia Animal; Departamento de Medicina Veterinária Preventiva; Universidade Estadual de Londrina; Londrina PR Brazil
- Laboratório de Microbiologia Veterinária; Hospital Escola Veterinário; Universidade de Cuiabá; Várzea Grande MT Brazil
| | - C. B. D. T. Alves
- Laboratório de Virologia Veterinária; Faculdade de Veterinária; Universidade Federal do Rio Grande do Sul; Porto Alegre RS Brazil
| | - M. N. Weber
- Laboratório de Virologia Veterinária; Faculdade de Veterinária; Universidade Federal do Rio Grande do Sul; Porto Alegre RS Brazil
| | - S. P. Cibulski
- Laboratório de Virologia Veterinária; Faculdade de Veterinária; Universidade Federal do Rio Grande do Sul; Porto Alegre RS Brazil
| | - A. F. Alfieri
- Laboratório de Virologia Animal; Departamento de Medicina Veterinária Preventiva; Universidade Estadual de Londrina; Londrina PR Brazil
| | - A. A. Alfieri
- Laboratório de Virologia Animal; Departamento de Medicina Veterinária Preventiva; Universidade Estadual de Londrina; Londrina PR Brazil
- Laboratório Multiusuário em Saúde Animal; Unidade de Biologia Molecular; Universidade Estadual de Londrina; Londrina PR Brazil
| | - C. W. Canal
- Laboratório de Virologia Veterinária; Faculdade de Veterinária; Universidade Federal do Rio Grande do Sul; Porto Alegre RS Brazil
| |
Collapse
|
8
|
Hainisch EK, Abel-Reichwald H, Shafti-Keramat S, Pratscher B, Corteggio A, Borzacchiello G, Wetzig M, Jindra C, Tichy A, Kirnbauer R, Brandt S. Potential of a BPV1 L1 VLP vaccine to prevent BPV1- or BPV2-induced pseudo-sarcoid formation and safety and immunogenicity of EcPV2 L1 VLPs in horse. J Gen Virol 2017; 98:230-241. [PMID: 28284277 DOI: 10.1099/jgv.0.000673] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We have previously shown that immunization of horses with bovine papillomavirus type 1 (BPV1) L1 virus-like particles (VLPs) is safe and highly immunogenic and that BPV1 and bovine papillomavirus type 2 (BPV2) are closely related serotypes. Here we evaluated the protective potential of a BPV1 L1 VLP vaccine against experimental BPV1 and BPV2 challenge and studied the safety and immunogenicity of a bivalent equine papillomavirus type 2 (EcPV2)/BPV1 L1 VLP vaccine. Fourteen healthy horses were immunized with BPV1 L1 VLPs (100 µg per injection) plus adjuvant on days 0 and 28, while seven remained unvaccinated. On day 42, all 21 horses were challenged intradermally at 10 sites of the neck with 107 BPV1 virions per injection. In analogy, 14 horses immunized twice with EcPV2 plus BPV1 L1 VLPs (50 µg each) and seven control animals were challenged with 107 BPV2 virions per injection. Immunization with BPV1 L1 VLPs alone induced a robust antibody response (day 42 median titre: 12 800), and BPV1-inoculated skin remained unchanged in 13/14 vaccinated horses. Immunization with the bivalent vaccine was safe, resulted in lower median day 42 antibody titres of 400 for BPV1 and 1600 for EcPV2 and conferred significant yet incomplete cross-protection from BPV2-induced tumour formation, with 11/14 horses developing small, short-lived papules. Control horses developed pseudo-sarcoids at all inoculation sites. The monovalent BPV1 L1 VLP vaccine proved highly effective in protecting horses from BPV1-induced pseudo-sarcoid formation. Incomplete protection from BPV2-induced tumour development conferred by the bivalent vaccine is due to the poorer immune response by immune interference or lower cross-neutralization titres to heterologous BPV2 virions.
Collapse
Affiliation(s)
- Edmund K Hainisch
- Large Animal Surgery and Orthopaedics, Equine Clinic, University of Veterinary Medicine, Vienna, Austria.,Research Group Oncology, Equine Clinic, University of Veterinary Medicine, Vienna, Austria
| | - Hans Abel-Reichwald
- Research Group Oncology, Equine Clinic, University of Veterinary Medicine, Vienna, Austria
| | - Saeed Shafti-Keramat
- Laboratory of Viral Oncology, Division of Immunology, Allergy and Infectious Disease, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Barbara Pratscher
- Research Group Oncology, Equine Clinic, University of Veterinary Medicine, Vienna, Austria
| | - Annunziata Corteggio
- Institute of Protein Biochemistry, National Research Council of Italy, Naples, Italy
| | - Giuseppe Borzacchiello
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Maria Wetzig
- Research Group Oncology, Equine Clinic, University of Veterinary Medicine, Vienna, Austria
| | - Christoph Jindra
- Research Group Oncology, Equine Clinic, University of Veterinary Medicine, Vienna, Austria
| | - Alexander Tichy
- Bioinformatics and Biostatistics Platform, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Reinhard Kirnbauer
- Laboratory of Viral Oncology, Division of Immunology, Allergy and Infectious Disease, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sabine Brandt
- Research Group Oncology, Equine Clinic, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
9
|
Abel-Reichwald H, Hainisch EK, Zahalka S, Corteggio A, Borzacchiello G, Massa B, Merlone L, Nasir L, Burden F, Brandt S. Epidemiologic analysis of a sarcoid outbreak involving 12 of 111 donkeys in Northern Italy. Vet Microbiol 2016; 196:85-92. [DOI: 10.1016/j.vetmic.2016.10.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/14/2016] [Accepted: 10/15/2016] [Indexed: 01/05/2023]
|
10
|
Gil da Costa RM, Peleteiro MC, Pires MA, DiMaio D. An Update on Canine, Feline and Bovine Papillomaviruses. Transbound Emerg Dis 2016; 64:1371-1379. [PMID: 27615361 DOI: 10.1111/tbed.12555] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Indexed: 12/14/2022]
Abstract
Over recent years, a growing number of papillomaviruses have been identified, which cause a wide range of lesions in domestic and wild animals. Papillomavirus-induced lesions may have a great impact on animal health, and some diseases observed in farm animals are associated with significant economic losses. This concise review brings together recent advancements on animal papillomavirus research, providing the scientific community and veterinary practitioners with an update on this rapidly evolving field. Among others, bovine, canine and feline papillomaviruses (BPV, CPV and FcaPV) are most extensively discussed, in view of the recent discovery of new viral types and their worldwide importance for animal health. Feline papillomaviruses 2 is an emerging, highly prevalent pathogen in domestic cats, associated with a subset of malignant skin lesions. Aspects related to cross-species infection by BPV and its environmental co-factors are also addressed. Animal papillomaviruses are also fascinating models for studying molecular and cell biology and have recently inspired some major breakthroughs. Overall, it is clear that additional, international and systematic efforts are needed to clarify which lesions are caused by which viral types and to develop experimental models for studying animal papillomavirus.
Collapse
Affiliation(s)
- R M Gil da Costa
- LEPABE, Chemical Engineering Department, Faculty of Engineering, University of Porto (FEUP), Porto, Portugal.,Molecular Oncology and Viral Pathology Group, CI-IPOP, Portuguese Institute of Oncology, Porto, Portugal
| | - M C Peleteiro
- Faculty of Veterinary Medicine, CIISA, University of Lisbon, Lisboa, Portugal
| | - M A Pires
- Veterinary Sciences Department, CECAV, University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - D DiMaio
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.,Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA.,Yale Cancer Center, New Haven, CT, USA
| |
Collapse
|
11
|
da Silva FRC, Cibulski SP, Daudt C, Weber MN, Guimarães LLB, Streck AF, Mayer FQ, Roehe PM, Canal CW. Novel Bovine Papillomavirus Type Discovered by Rolling-Circle Amplification Coupled with Next-Generation Sequencing. PLoS One 2016; 11:e0162345. [PMID: 27606703 PMCID: PMC5015974 DOI: 10.1371/journal.pone.0162345] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/22/2016] [Indexed: 02/06/2023] Open
Abstract
Currently, fifteen bovine papillomavirus (BPV) types have been identified and classified into four genera: Deltapapillomavirus, Epsilonpapillomavirus, Dyoxipapillomavirus, and Xipapillomavirus. Here, the complete genome sequence of a new BPV type (BPV 04AC14) recovered from a papillomatous lesion is reported. The genome is 7,282 bp in length and exhibits the classic genetic organization and motifs of the members of Papillomaviridae. Maximum likelihood phylogenetic analyses revealed that BPV 04AC14 clusters with members of the Xipapillomavirus genus. The nucleotide sequence of the L1 capsid protein of the novel BPV is closely related to its counterpart, BPV3, with which it shares 79% similarity. These findings suggest that this virus is a new BPV type of the Xipapillomavirus genus.
Collapse
Affiliation(s)
- Flavio R. C. da Silva
- Laboratório de Virologia – Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre Rio Branco, Acre, Brazil
| | - Samuel P. Cibulski
- Laboratório de Virologia – Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cíntia Daudt
- Laboratório de Virologia – Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Matheus N. Weber
- Laboratório de Virologia – Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lorena L. B. Guimarães
- Laboratório de Virologia – Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - André F. Streck
- Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Fabiana Q. Mayer
- Laboratório de Biologia Molecular – Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Fundação Estadual de Pesquisa Agropecuária, Eldorado do Sul, Eldorado do Sul, Rio Grande do Sul, Brazil
| | - Paulo M. Roehe
- Departamento de Microbiologia Imunologia e Parasitologia – Laboratório de Virologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cláudio W. Canal
- Laboratório de Virologia – Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- * E-mail:
| |
Collapse
|
12
|
Roperto S, Munday JS, Corrado F, Goria M, Roperto F. Detection of bovine papillomavirus type 14 DNA sequences in urinary bladder tumors in cattle. Vet Microbiol 2016; 190:1-4. [DOI: 10.1016/j.vetmic.2016.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/05/2016] [Accepted: 04/07/2016] [Indexed: 10/21/2022]
|
13
|
Genomic characterization of a novel Epsilonpapillomavirus associated with pigmented papillomas in a red deer (Cervus elaphus). Virus Genes 2016; 52:633-9. [PMID: 27154332 DOI: 10.1007/s11262-016-1340-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/08/2016] [Indexed: 10/21/2022]
Abstract
Two of a group of 15 farmed European red (Cervus elaphus elaphus) X wapiti (C. e. canadensis) deer stags developed multiple persistent pigmented squamous papillomas (warts) on their chins. DNA was extracted from a papilloma and a short section of DNA from a novel papillomavirus (PV) was amplified. This short sequence was used to design 'outward facing' primers to amplify the remainder of the circular PV DNA. The PCR product was sequenced using next-generation sequencing and the full genome of the PV, consisting of 8082 bp, was assembled and analysed. The novel PV was designated Cervus elaphus papillomavirus (CePV) type 2. The putative coding regions of CePV2 were predicted to produce four early and two late proteins with two other potential ORFs also noted. Phylogenetic analysis of ORF L1 revealed greater than 60 %, but less than 70 % similarity, to Bos taurus papillomavirus (BPV) types -5 and -7. As both BPV5 and BPV7 are Epsilonpapillomavirus 1, CePV2 is proposed as the first Epsilonpapillomavirus 2 PV type. This is the first EpsilonPV to be identified in a non-bovine species and the first non-DeltaPV to be identified as a cause of disease in any deer species.
Collapse
|
14
|
da Silva FRC, Daudt C, Streck AF, Weber MN, Filho RVL, Driemeier D, Canal CW. Genetic characterization of Amazonian bovine papillomavirus reveals the existence of four new putative types. Virus Genes 2015; 51:77-84. [PMID: 26116287 DOI: 10.1007/s11262-015-1220-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/18/2015] [Indexed: 10/23/2022]
Abstract
Papillomaviruses are small and complex viruses that belong to the Papillomaviridae family, which comprises 39 genera. The bovine papillomavirus (BPV) causes an infectious disease that is characterized by chronic and proliferative benign tumors that affect cattle worldwide. Different genotypes of BPVs can cause distinct skin and mucosal lesions and the immunity they raise has low cross-protection. This report aimed to genotype BPVs in cattle from Northern Brazil based on nucleotide partial sequences of the L1 ORF. Skin wart samples from 39 bovines clinically and histopathologically diagnosed as cutaneous papillomatosis from Acre and Rondônia States were analyzed. The results revealed four already reported BPV types (BPVs 1, 2, 11, and 13), nine putative new BPV subtypes and four putative new BPV types as well as two putative new BPV types that were already reported. To our knowledge, this is the first record of BPVs from the Brazilian Amazon region that identified new possible BPV types and subtypes circulating in this population. These findings point to the great genetic diversity of BPVs that are present in this region and highlight the importance of this knowledge before further studies about vaccination are attempted.
Collapse
Affiliation(s)
- Flavio R C da Silva
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9090, Prédio 42.602, Porto Alegre, Rio Grande do Sul, CEP 91540-000, Brazil
| | | | | | | | | | | | | |
Collapse
|
15
|
Trewby H, Ayele G, Borzacchiello G, Brandt S, Campo MS, Del Fava C, Marais J, Leonardi L, Vanselow B, Biek R, Nasir L. Analysis of the long control region of bovine papillomavirus type 1 associated with sarcoids in equine hosts indicates multiple cross-species transmission events and phylogeographical structure. J Gen Virol 2014; 95:2748-2756. [PMID: 25185436 DOI: 10.1099/vir.0.066589-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Papillomaviruses are a family of slowly evolving DNA viruses and their evolution is commonly linked to that of their host species. However, whilst bovine papillomavirus-1 (BPV-1) primarily causes warts in its natural host, the cow, it can also cause locally aggressive and invasive skin tumours in equids, known as sarcoids, and thus provides a rare contemporary example of cross-species transmission of a papillomavirus. Here, we describe the first phylogenetic analysis of BPV-1 in equine sarcoids to our knowledge, allowing us to explore the evolutionary history of BPV-1 and investigate its cross-species association with equids. A phylogenetic analysis of the BPV-1 transcriptional promoter region (the long control region or LCR) was conducted on 15 bovine and 116 equine samples from four continents. Incorporating previous estimates for evolutionary rates in papillomavirus implied that the genetic diversity in the LCR variants was ancient and predated domestication of both equids and cattle. The phylogeny demonstrated geographical segregation into an ancestral group (African, South American and Australian samples), and a more recently derived, largely European clade. Whilst our data are consistent with BPV-1 originating in cattle, we found evidence of multiple, probably relatively recent, cross-species transmission events into horses. We also demonstrated the high prevalence of one particular sequence variant (variant 20), and suggest this may indicate that this variant shows a fitness advantage in equids. Although strong host specificity remains the norm in papillomaviruses, our results demonstrate that exceptions to this rule exist and can become epidemiologically relevant.
Collapse
Affiliation(s)
- Hannah Trewby
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Gizachew Ayele
- Addis Ababa University, College of Veterinary Medicine and Agriculture, Ethiopia
| | - Giuseppe Borzacchiello
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Italy
| | - Sabine Brandt
- Research Oncology Group, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - M Saveria Campo
- School of Veterinary Medicine, University of Glasgow, Glasgow, UK
| | | | | | - Leonardo Leonardi
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Barbara Vanselow
- NSW Department of Primary Industries, UNE, Armidale, NSW, Australia University of New England, Australia
| | - Roman Biek
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Lubna Nasir
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
16
|
Bocaneti F, Altamura G, Corteggio A, Velescu E, Roperto F, Borzacchiello G. Bovine Papillomavirus: New Insights into an Old Disease. Transbound Emerg Dis 2014; 63:14-23. [PMID: 24661978 DOI: 10.1111/tbed.12222] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Indexed: 12/17/2022]
Abstract
Bovine papillomaviruses (BPVs) are small DNA tumoral viruses able to induce benign cutaneous and/or mucosal epithelial lesions. Generally, the benign tumours affecting the skin or mucosa spontaneously regress, but under special circumstances, the defence system may be overwhelmed, thus leading to cancer, especially in the presence of immunosuppressant and mutagen agents from bracken fern. To date, thirteen different BPV genotypes have been associated with skin and mucosal tumours in cattle, and out of these, only four types (BPV-1, -2, -5 and -13) cross-infect other species. Recent investigations in vivo have revealed new insights into the epidemiology and pathogenesis of this viral infection. This review briefly discusses viral epidemiology, will give data on BPV genome structure and viral genes and will describe the cellular events and new aspects of both cutaneous and mucosal tumours in large ruminants. Finally, some aspects of active immunization will be described.
Collapse
Affiliation(s)
- F Bocaneti
- Department of Public Health, Faculty of Veterinary Medicine, University of Agriculture Sciences and Veterinary Medicine, Iasi, Romania
| | - G Altamura
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Napoli, Italy
| | - A Corteggio
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Napoli, Italy
| | - E Velescu
- Department of Public Health, Faculty of Veterinary Medicine, University of Agriculture Sciences and Veterinary Medicine, Iasi, Romania
| | - F Roperto
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Napoli, Italy
| | - G Borzacchiello
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Napoli, Italy
| |
Collapse
|
17
|
Papillomavirus associated diseases of the horse. Vet Microbiol 2013; 167:159-67. [DOI: 10.1016/j.vetmic.2013.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 07/04/2013] [Accepted: 08/05/2013] [Indexed: 12/30/2022]
|
18
|
Molecular epidemiology of bovine papillomatosis and the identification of a putative new virus type in Brazilian cattle. Vet J 2013; 197:368-73. [DOI: 10.1016/j.tvjl.2013.01.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 01/05/2013] [Accepted: 01/20/2013] [Indexed: 11/23/2022]
|
19
|
Kumar P, Nagarajan N, Saikumar G, Arya RS, Somvanshi R. Detection of Bovine Papilloma Viruses in Wart-Like Lesions of Upper Gastrointestinal Tract of Cattle and Buffaloes. Transbound Emerg Dis 2013; 62:264-71. [DOI: 10.1111/tbed.12127] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Indexed: 02/02/2023]
Affiliation(s)
- P. Kumar
- Division of Pathology; Indian Veterinary Research Institute; Izatnagar India
| | - N. Nagarajan
- Division of Pathology; Indian Veterinary Research Institute; Izatnagar India
| | - G. Saikumar
- Division of Pathology; Indian Veterinary Research Institute; Izatnagar India
| | - R. S. Arya
- Division of Pathology; Indian Veterinary Research Institute; Izatnagar India
| | - R. Somvanshi
- Division of Pathology; Indian Veterinary Research Institute; Izatnagar India
| |
Collapse
|
20
|
Bovine papillomavirus in Brazil: detection of coinfection of unusual types by a PCR-RFLP method. BIOMED RESEARCH INTERNATIONAL 2013; 2013:270898. [PMID: 23865043 PMCID: PMC3705948 DOI: 10.1155/2013/270898] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/16/2013] [Indexed: 11/23/2022]
Abstract
Bovine papillomavirus (BPV) is recognized as a causal agent of benign and malignant tumors in cattle. Thirteen types of BPV are currently characterized and classified into three distinct genera, associated with different pathological outcomes. The described BPV types as well as other putative ones have been demonstrated by molecular biology methods, mainly by the employment of degenerated PCR primers. Specifically, divergences in the nucleotide sequence of the L1 gene are useful for the identification and classification of new papillomavirus types. On the present work, a method based on the PCR-RFLP technique and DNA sequencing was evaluated as a screening tool, allowing for the detection of two relatively rare types of BPV in lesions samples from a six-year-old Holstein dairy cow, chronically affected with cutaneous papillomatosis. These findings point to the dissemination of BPVs with unclear pathogenic potential, since two relatively rare, new described BPV types, which were first characterized in Japan, were also detected in Brazil.
Collapse
|
21
|
Rector A, Van Ranst M. Animal papillomaviruses. Virology 2013; 445:213-23. [PMID: 23711385 DOI: 10.1016/j.virol.2013.05.007] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/29/2013] [Accepted: 05/03/2013] [Indexed: 11/26/2022]
Abstract
We provide an overview of the host range, taxonomic classification and genomic diversity of animal papillomaviruses. The complete genomes of 112 non-human papillomavirus types, recovered from 54 different host species, are currently available in GenBank. The recent characterizations of reptilian papillomaviruses extend the host range of the Papillomaviridae to include all amniotes. Although the genetically diverse papillomaviruses have a highly conserved genomic lay-out, deviations from this prototypic genome organization are observed in several animal papillomaviruses, and only the core ORFs E1, E2, L2 and L1 are present in all characterized papillomavirus genomes. The discovery of papilloma-polyoma hybrids BPCV1 and BPCV2, containing a papillomaviral late region but an early region encoding typical polyomaviral nonstructural proteins, and the detection of recombination breakpoints between the early and late coding regions of cetacean papillomaviruses, could indicate that early and late gene cassettes of papillomaviruses are relatively independent entities that can be interchanged by recombination.
Collapse
Affiliation(s)
- Annabel Rector
- Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| | | |
Collapse
|
22
|
Batista MVA, Freitas AC, Balbino VQ. Entropy-based approach for selecting informative regions in the L1 gene of bovine papillomavirus for phylogenetic inference and primer design. GENETICS AND MOLECULAR RESEARCH 2013; 12:400-7. [PMID: 23420364 DOI: 10.4238/2013.february.8.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bovine papillomaviruses (BPVs) cause many benign and malignant lesions in cattle and other animals. Twelve BPV types have been identified so far, and several putative novel BPV types have been detected based on the analysis of L1 gene fragments, generated by FAP59/64 and MY11/09 primers. Phylogenetic trees are important in studies that describe novel BPV types. However, topological mistakes could be a problem in such studies. Therefore, we made use of entropy to find phylogenetic informative regions in the BPV L1 gene sequences from all 12 BPVs. Six data sets were created and phylogenetically compared to each other using neighbor-joining and maximum likelihood methods of phylogenetic tree reconstruction. We found two major regions in the L1 gene, using an entropy-based approach, which selects regions with low information complexity. More robust phylogenetic trees were obtained with these regions, when compared to the ones obtained with FAP59/64 and MY11/09 primers. More robust phylogenetic trees are important to accurately position novel BPV types, subtypes and variants. We conclude that an entropy-based approach is a good methodology for selecting regions of the L1 gene of BPVs that could be used to design more specific and sensitive degenerate primers, for the development of improved diagnostic methods.
Collapse
Affiliation(s)
- M V A Batista
- Departamento de Genética, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, PE, Brasil.
| | | | | |
Collapse
|
23
|
Corteggio A, Altamura G, Roperto F, Borzacchiello G. Bovine papillomavirus E5 and E7 oncoproteins in naturally occurring tumors: are two better than one? Infect Agent Cancer 2013; 8:1. [PMID: 23302179 PMCID: PMC3562249 DOI: 10.1186/1750-9378-8-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 01/07/2013] [Indexed: 11/10/2022] Open
Abstract
Bovine papillomaviruses (BPVs) are oncogenic DNA viruses, which mainly induce benign lesions of cutaneous and/or mucosal epithelia in cattle. Thirteen (BPV 1-13) different viral genotypes have been characterized so far. BPVs are usually species-specific but BPV 1/2 may also infect equids as well as buffaloes and bison and cause tumors in these species. BPV-induced benign lesions usually regress, however occasionally they develop into cancer particularly in the presence of environmental carcinogenic co-factors. The major transforming protein of BPV is E5, a very short hydrophobic, transmembrane protein with many oncogenic activities. E5 contributes to cell transformation through the activation of the cellular β receptor for the platelet-derived growth factor (PDGFβ-r), it also decreases cell surface expression of major histocompatibility complex class I (MHCI) causing viral escape from immunosurveillance, and plays a role in the inhibition of the intracellular communication by means of aberrant connexin expression. E7 is considered as a weak transforming gene, it synergies with E5 in cell transformation during cancer development. E7 expression correlates in vivo with the over-expression of β1-integrin, which plays a role in the regulation of keratinocytes proliferation and differentiation. Additionally, E7 is involved in cell-mediated immune responses leading to tumour rejection, in anoikis process by direct binding to p600, and in invasion process by upregulation of Matrix metalloproteinase1 (MMP-1) expression. Studies on the role of BPV E5 and E7 oncoproteins in naturally occurring tumours are of scientific value, as they may shed new light on the biological role of these two oncogenes in cell transformation.
Collapse
Affiliation(s)
- Annunziata Corteggio
- Department of Pathology and Animal Health, University of Naples Federico II, Via Veterinaria, Napoli 1 80137, Italy.
| | | | | | | |
Collapse
|
24
|
Bos grunniens papillomavirus type 1: a novel deltapapillomavirus associated with fibropapilloma in yak. J Gen Virol 2013; 94:159-165. [DOI: 10.1099/vir.0.046086-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Papillomaviruses (PVs) have been widely identified among vertebrates, but have not yet been reported to infect yaks. We report, for the first time, a novel deltapapillomavirus that was associated with fibropapilloma in yak herds on the Qinghai–Tibetan Plateau. Six skin papilloma samples were collected and examined using histopathology, immunohistochemistry and PCR assays. The samples were identified as fibropapilloma and were found to contain PV antigens. Sequencing of diagnostic PCR products and the full-length genome revealed that all samples were infected with the same PV type. The whole virus genome was 7946 bp in length and possessed the common PV genomic organization. The virus was identified as a novel PV type and designated Bos grunniens papillomavirus type 1 (BgPV-1) based on the nucleotide sequence alignment of the L1 ORF. It is classified in the Delta-4 species of the genus Deltapapillomavirus based on phylogenetic analysis of the L1 ORF. Identification of this novel PV type provides further information about the pathology, development of diagnostic methods and evolutionary studies of the family Papillomaviridae.
Collapse
|
25
|
Bam J, Kumar P, Leishangthem GD, Saikia A, Somvanshi R. Spontaneous Cutaneous Papillomatosis in Yaks and Detection and Quantification of Bovine Papillomavirus-1 and -2. Transbound Emerg Dis 2012. [DOI: 10.1111/j.1865-1682.2012.01361.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Chemes LB, Glavina J, Alonso LG, Marino-Buslje C, de Prat-Gay G, Sánchez IE. Sequence evolution of the intrinsically disordered and globular domains of a model viral oncoprotein. PLoS One 2012; 7:e47661. [PMID: 23118886 PMCID: PMC3485249 DOI: 10.1371/journal.pone.0047661] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 09/14/2012] [Indexed: 12/11/2022] Open
Abstract
In the present work, we have used the papillomavirus E7 oncoprotein to pursue structure-function and evolutionary studies that take into account intrinsic disorder and the conformational diversity of globular domains. The intrinsically disordered (E7N) and globular (E7C) domains of E7 show similar degrees of conservation and co-evolution. We found that E7N can be described in terms of conserved and coevolving linear motifs separated by variable linkers, while sequence evolution of E7C is compatible with the known homodimeric structure yet suggests other activities for the domain. Within E7N, inter-residue relationships such as residue co-evolution and restricted intermotif distances map functional coupling and co-occurrence of linear motifs that evolve in a coordinate manner. Within E7C, additional cysteine residues proximal to the zinc-binding site may allow redox regulation of E7 function. Moreover, we describe a conserved binding site for disordered domains on the surface of E7C and suggest a putative target linear motif. Both homodimerization and peptide binding activities of E7C are also present in the distantly related host PHD domains, showing that these two proteins share not only structural homology but also functional similarities, and strengthening the view that they evolved from a common ancestor. Finally, we integrate the multiple activities and conformations of E7 into a hierarchy of structure-function relationships.
Collapse
Affiliation(s)
- Lucía B. Chemes
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina
| | - Juliana Glavina
- Protein Physiology Laboratory, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Leonardo G. Alonso
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina
| | - Cristina Marino-Buslje
- Structural Bioinformatics Laboratory. Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina
| | - Gonzalo de Prat-Gay
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina
| | - Ignacio E. Sánchez
- Protein Physiology Laboratory, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
27
|
Carvalho CCR, Batista MVA, Silva MAR, Balbino VQ, Freitas AC. Detection of Bovine Papillomavirus Types, Co-Infection and a Putative New BPV11 Subtype in Cattle. Transbound Emerg Dis 2012; 59:441-7. [DOI: 10.1111/j.1865-1682.2011.01296.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
28
|
Zhu W, Dong J, Shimizu E, Hatama S, Kadota K, Goto Y, Haga T. Characterization of novel bovine papillomavirus type 12 (BPV-12) causing epithelial papilloma. Arch Virol 2011; 157:85-91. [DOI: 10.1007/s00705-011-1140-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 10/03/2011] [Indexed: 11/24/2022]
|
29
|
Ure AE, Elfadl AK, Khalafalla AI, Gameel AAR, Dillner J, Forslund O. Characterization of the complete genomes of Camelus dromedarius papillomavirus types 1 and 2. J Gen Virol 2011; 92:1769-1777. [PMID: 21471319 DOI: 10.1099/vir.0.031039-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Camel papillomatosis has been described previously, but the genome of the suspected papillomavirus (PV) has not been identified. An outbreak of papillomatosis occurred in a dromedary farm of 55 animals in Sudan during August 2009. The disease was only present in young animals aged about 3-7 months, of which 44 % (11/25) were affected with lesions, mainly on the lips and lower jaw. This study reports for the first time the complete genomes of Camelus dromedarius papillomavirus types 1 (CdPV1) and 2 (CdPV2), isolated from a cauliflower-like nodule and a round oval raised nodule, respectively. Pairwise comparisons of their L1 nucleotide sequences revealed 69.2 % identity, and phylogenetic analyses suggested that these two PV types are grouped within the genus Deltapapillomavirus. Both viruses were isolated from fibropapillomas, although no putative E5 proteins homologous to that of bovine papillomavirus type 1 were identified. The genetic information will be useful for evolutionary studies of the family Papillomaviridae, as well as for the development of diagnostic methods for surveillance of the disease in dromedaries.
Collapse
Affiliation(s)
- A E Ure
- Department of Laboratory Medicine, Medical Microbiology, Skåne University Hospital, Lund University, Malmö, Sweden
| | - A K Elfadl
- Department of Pathology, Faculty of Veterinary Medicine, University of Khartoum, PO Box 32, Khartoum North, Sudan
| | - A I Khalafalla
- Department of Microbiology, Faculty of Veterinary Medicine, University of Khartoum, PO Box 32, Khartoum North, Sudan
| | - A A R Gameel
- Department of Pathology, Faculty of Veterinary Medicine, University of Khartoum, PO Box 32, Khartoum North, Sudan
| | - J Dillner
- Department of Laboratory Medicine, Medical Microbiology, Skåne University Hospital, Lund University, Malmö, Sweden
| | - O Forslund
- Department of Laboratory Medicine, Medical Microbiology, Skåne University Hospital, Lund University, Malmö, Sweden
| |
Collapse
|
30
|
Roperto S, Comazzi S, Ciusani E, Paolini F, Borzacchiello G, Esposito I, Lucà R, Russo V, Urraro C, Venuti A, Roperto F. PBMCs are additional sites of productive infection of bovine papillomavirus type 2. J Gen Virol 2011; 92:1787-1794. [PMID: 21525209 DOI: 10.1099/vir.0.031740-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bovine papillomavirus type 2 (BPV-2) is an oncogenic virus infecting both epithelial and mesenchymal cells. Its life cycle, similar to other papillomaviruses (PVs), appears to be linked to epithelial differentiation. Human and bovine PVs have been known to reside in a latent, episomal form in PBMCs; therefore, it is believed that blood cells, like all mesenchymal cells, function as non-permissive carriers. Here, for the first time in veterinary and comparative medicine, the BPV-2 E5 oncoprotein and the major structural L1 capsid protein, known to be expressed only in productive infections, were shown to occur in defined subsets of PBMCs. E5 oncoprotein was detected in sorted T- and B-cells as well as in monocytes by flow cytometry and Western blot analysis. However, CD4(+) and CD8(+) lymphocytes appeared to be the main circulating targets of the virus, thus possibly representing the most important reservoir of active BPV-2 in blood. L1 protein was identified by flow cytometry in a population of blood cells recognized as lymphocytes by morphological scatter properties. Western blot analysis was performed on lysates obtained from the sorted subpopulations of PBMCs and detected L1 protein in CD4(+) and CD8(+) cells only. Thus, this study showed that CD4(+) and CD8(+) lymphocytes are permissive for BPV-2 and are new, hitherto unknown sites of productive PV infection. In light of these observations, the life cycle of PVs needs to be revisited to gain novel insights into the epidemiology of BPV infection and the pathogenesis of related diseases.
Collapse
Affiliation(s)
- Sante Roperto
- Dipartimento di Patologia e Sanità Animale, Sezione di Malattie Infettive, Facoltà di Medicina Veterinaria, Università di Napoli Federico II, Napoli, Italy
| | - Stefano Comazzi
- Dipartimento di Patologia Animale, Igiene e Sanità Pubblica Veterinaria, Facoltà di Medicina Veterinaria, Università di Milano, Milano, Italy
| | - Emilio Ciusani
- Fondazione IRCCS Istituto Neurologico 'Carlo Besta', Milano, Italy
| | - Francesca Paolini
- Laboratorio di Virologia, Regina Elena Cancer Institute, Rome, Italy
| | - Giuseppe Borzacchiello
- Dipartimento di Patologia e Sanità Animale, Sezione Patologia Generale, Facoltà di Medicina Veterinaria, Università di Napoli Federico II, Napoli, Italy
| | - Iolanda Esposito
- Dipartimento di Patologia e Sanità Animale, Sezione Patologia Generale, Facoltà di Medicina Veterinaria, Università di Napoli Federico II, Napoli, Italy
| | - Roberta Lucà
- Dipartimento di Patologia e Sanità Animale, Sezione Patologia Generale, Facoltà di Medicina Veterinaria, Università di Napoli Federico II, Napoli, Italy
| | - Valeria Russo
- Dipartimento di Patologia e Sanità Animale, Sezione Patologia Generale, Facoltà di Medicina Veterinaria, Università di Napoli Federico II, Napoli, Italy
| | - Chiara Urraro
- Dipartimento di Patologia e Sanità Animale, Sezione Patologia Generale, Facoltà di Medicina Veterinaria, Università di Napoli Federico II, Napoli, Italy
| | - Aldo Venuti
- Laboratorio di Virologia, Regina Elena Cancer Institute, Rome, Italy
| | - Franco Roperto
- Dipartimento di Patologia e Sanità Animale, Sezione Patologia Generale, Facoltà di Medicina Veterinaria, Università di Napoli Federico II, Napoli, Italy
| |
Collapse
|
31
|
Hatama S, Ishihara R, Ueda Y, Kanno T, Uchida I. Detection of a novel bovine papillomavirus type 11 (BPV-11) using xipapillomavirus consensus polymerase chain reaction primers. Arch Virol 2011; 156:1281-5. [PMID: 21424729 DOI: 10.1007/s00705-011-0970-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 03/04/2011] [Indexed: 11/29/2022]
Abstract
Polymerase chain reaction-based bovine papillomavirus (BPV) detection methods using a combination of two primer sets, subAup/subAdw and subBup/subBdw, have enabled the broad-spectrum detection of most characterized BPV types. These methods were used to detect the partial L1 nucleotide sequence of BPV types from 167 cutaneous warts in cattle. Three potentially new viruses were detected using subBup/subBdw primer sets. The partial nucleotide sequences of these viruses were most similar to BPV-4, -6 and -9. Whole genome sequencing of one sample defines a new BPV type in the genus Xipapillomavirus, designated BPV-11.
Collapse
Affiliation(s)
- Shinichi Hatama
- Hokkaido Research Station, National Institute of Animal Health, 4 Hitsujigaoka, Toyohira, Sapporo, 062-0045, Japan.
| | | | | | | | | |
Collapse
|
32
|
Lunardi M, Claus MP, Alfieri AA, Fungaro MHP, Alfieri AF. Phylogenetic position of an uncharacterized Brazilian strain of bovine papillomavirus in the genus Xipapillomavirus based on sequencing of the L1 open reading frame. Genet Mol Biol 2010; 33:745-9. [PMID: 21637585 PMCID: PMC3036134 DOI: 10.1590/s1415-47572010005000091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 07/08/2010] [Indexed: 11/26/2022] Open
Abstract
The use of PCR assays with degenerate primers has suggested the existence of numerous as yet uncharacterized bovine papillomaviruses (BPV). Despite the endemic nature of BPV infections, the identification of BPV types in Brazilian cattle is still only sporadic. However, in a recent analysis of a partial segment of the L1 gene, we observed notable diversity among the BPV types detected. The aim of this study was to determine the phylogenetic position of the previously identified wild strain BPV/BR-UEL2 detected in the state of Paraná in Brazil. Since previous analysis of the partial L1 sequence had shown that this strain was most closely related to BPV type 4, genus-specific primers were designed. Phylogenetic analysis using complete L1 ORF sequences revealed that BPV/BR-UEL2 was related to BPV types classified in the genus Xipapillomavirus and shared the highest L1 nucleotide sequence similarity with BPV type 4 (78%). This finding suggests that BPV/BR-UEL2 should be classified as a potential new type of BPV in the genus Xipapillomavirus.
Collapse
Affiliation(s)
- Michele Lunardi
- Laboratório de Virologia Animal, Departamento de Medicina Veterinária Preventiva, Universidade Estadual de Londrina, Londrina, PR Brazil
| | | | | | | | | |
Collapse
|
33
|
Schmitt M, Fiedler V, Müller M. Prevalence of BPV genotypes in a German cowshed determined by a novel multiplex BPV genotyping assay. J Virol Methods 2010; 170:67-72. [PMID: 20816698 DOI: 10.1016/j.jviromet.2010.08.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 08/10/2010] [Accepted: 08/25/2010] [Indexed: 11/17/2022]
Abstract
Bovine papillomaviruses (BPV) induce benign tumours of the cutaneous or mucosal epithelia in cattle, but are also involved in the development of cancer of the urinary bladder and of the upper gastrointestinal tract. Current BPV genotyping assays employ techniques developed originally for the detection of human papillomaviruses. These methods rely on consensus PCR amplification and subsequent sequencing and are cumbersome and limited in their analytic sensitivity to detect BPV, especially in multiple infections. In this study, a novel multiplex BPV genotyping assay is described to detect sensitively and specifically BPV-1 to -10 as well as BaPV-11. The assay is based on a multiplex PCR using novel broad-spectrum bovine papillomavirus (BSBP) primers followed by multiplex bovine genotyping (MBG) by Luminex xMAP technology. The detection limit of the assay was shown to be between 10 and 100 BPV genomes. In a first application, BPV was detected in 100% of wart preparations with BPV-8 being most prevalent, followed by types 6, 1 and 10. The majority of warts were positive for at least four BPV types. In conclusion, BSBP-PCR/MBG is a powerful high-throughput method suitable for the study of the natural history of BPV and could be useful to veterinarians for the monitoring of the efficacy of future BPV vaccines.
Collapse
Affiliation(s)
- Markus Schmitt
- Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, Heidelberg, Germany.
| | | | | |
Collapse
|
34
|
Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology 2010; 401:70-9. [PMID: 20206957 DOI: 10.1016/j.virol.2010.02.002] [Citation(s) in RCA: 1112] [Impact Index Per Article: 79.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 01/27/2010] [Accepted: 02/03/2010] [Indexed: 10/19/2022]
Abstract
We present an expansion of the classification of the family Papillomaviridae, which now contains 29 genera formed by 189 papillomavirus (PV) types isolated from humans (120 types), non-human mammals, birds and reptiles (64, 3 and 2 types, respectively). To accommodate the number of PV genera exceeding the Greek alphabet, the prefix "dyo" is used, continuing after the Omega-PVs with Dyodelta-PVs. The current set of human PVs is contained within five genera, whereas mammalian, avian and reptile PVs are contained within 20, 3 and 1 genera, respectively. We propose standardizations to the names of a number of animal PVs. As prerequisite for a coherent nomenclature of animal PVs, we propose founding a reference center for animal PVs. We discuss that based on emerging species concepts derived from genome sequences, PV types could be promoted to the taxonomic level of species, but we do not recommend implementing this change at the current time.
Collapse
|
35
|
Lange CE, Tobler K, Ackermann M, Panakova L, Thoday KL, Favrot C. Three novel canine papillomaviruses support taxonomic clade formation. J Gen Virol 2009; 90:2615-2621. [PMID: 19656968 DOI: 10.1099/vir.0.014498-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
More than 100 human papillomaviruses (HPVs) have been identified and had their whole genomes sequenced. Most of these HPVs can be classified into three distinct genera, the alpha-, beta- and gamma-papillomaviruses (PVs). Of note, only one or a small number of PVs have been identified for each individual animal species. However, four canine PVs (CPVs) (COPV, CPV2, CPV3 and CPV4) have been described and their entire genomic sequences have been published. Based on their sequence similarities, they belong to three distinct clades. In the present study, circular viral DNA was amplified from three dogs showing signs of pigmented plaques, endophytic papilloma or in situ squamous cell carcinoma. Analysis of the DNA sequences suggested that these are three novel viruses (CPV5, CPV6 and CPV7) whose genomes comprise all the conserved sequence elements of known PVs. The genomes of these seven CPVs were compared in order properly classify them. Interestingly, phylogenetic analyses, as well as pairwise sequence alignments of the putative amino acid sequences, revealed that CPV5 grouped well with CPV3 and CPV4, whereas CPV7 grouped with CPV2 but neither group fitted with other classified PVs. However, CPV6 grouped with COPV, a lambda-PV. Based on this evidence, allocation of CPVs into three distinct clades could therefore be supported. Thus, similar to HPVs, it might be that the known and currently unknown CPVs are related and form just a few clades or genera.
Collapse
Affiliation(s)
- Christian E Lange
- Institute of Virology, Vetsuisse Faculty, Winterthurerstrasse 266a, CH-8057 Zurich, Switzerland.,Dermatology Department, Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, Winterthurerstrasse 260, CH-8057 Zurich, Switzerland
| | - Kurt Tobler
- Institute of Virology, Vetsuisse Faculty, Winterthurerstrasse 266a, CH-8057 Zurich, Switzerland
| | - Mathias Ackermann
- Institute of Virology, Vetsuisse Faculty, Winterthurerstrasse 266a, CH-8057 Zurich, Switzerland
| | - Lucia Panakova
- Small Animal Hospital, Am Schonenwald, D-55765 Birkenfeld, Germany
| | - Keith L Thoday
- The Royal (Dick) School of Veterinary Studies, Dermatology Unit, Division of Veterinary Clinical Sciences, The University of Edinburgh, Roslin EH25 9RG, Midlothian, Scotland, UK
| | - Claude Favrot
- Dermatology Department, Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, Winterthurerstrasse 260, CH-8057 Zurich, Switzerland
| |
Collapse
|
36
|
Bovine papillomavirus type 9 induces epithelial papillomas on the teat skin of heifers. Vet Microbiol 2009; 136:347-51. [DOI: 10.1016/j.vetmic.2008.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 10/31/2008] [Accepted: 11/04/2008] [Indexed: 11/18/2022]
|
37
|
Claus MP, Lunardi M, Alfieri AF, Sartori D, Fungaro MHP, Alfieri AA. Identification of the recently described new type of bovine papillomavirus (BPV-8) in a Brazilian beef cattle herd. PESQUISA VETERINARIA BRASILEIRA 2009. [DOI: 10.1590/s0100-736x2009000100003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bovine papillomavirus type 8 (BPV-8) was first detected and described in teat warts as well as in healthy teat skin from cattle raised in Japan. The entire viral genome was sequenced in 2007. Additionally, a variant of BPV-8, BPV-8-EB, was also identified from papillomatous lesions of a European bison in Slovakia. In Brazil, despite the relatively common occurrence of BPV infections, the identification and determination of viral types present in cattle is still sporadic. The aim of this study is to report the occurrence of the recently described BPV-8 in Brazil. The virus was identified in a skin warts obtained from a beef cattle herd located in Parana state, southern Brazil. The papilloma had a macular, non-verrucous gross aspect and was located on the dorsal thorax of a cow. Polymerase chain reaction (PCR) was performed using generic primers for partial amplification of L1 gene. The obtained amplicon (480bp) was cloned and two selected clones were sequenced. The nucleotide sequence was compared to existing papillomaviral genomic sequences, identifying the virus as BPV type 8. This study represents the first report of BPV-8 occurrence in Brazil, what suggests its presence among Brazilian cattle.
Collapse
|
38
|
Nasir L, Campo MS. Bovine papillomaviruses: their role in the aetiology of cutaneous tumours of bovids and equids. Vet Dermatol 2008; 19:243-54. [PMID: 18927950 DOI: 10.1111/j.1365-3164.2008.00683.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bovine papillomavirus (BPV) is perhaps the most extensively studied animal papillomavirus. In cattle BPVs induce benign tumours of cutaneous or mucosal epithelia, called papillomas or warts. Cattle papillomas are benign tumours and generally regress without eliciting any serious clinical problems in the host, but occasionally persist and provide the focus for malignant transformation to squamous cell carcinoma, as in the case of cancer of the urinary bladder and cancer of the upper alimentary canal. BPV is the only papillomavirus that jumps species: the virus also infects equids, and gives rise to fibroblastic tumours called sarcoids. Sarcoids very rarely regress, more often they persist and can be locally aggressive. These tumours are the most common dermatological tumour of equids worldwide. The purpose of this review is to discuss the biology of BPV, the biology of bovine tumours and equine sarcoids, and present the current understanding of BPV in tumour pathogenesis in its natural host, cattle, and in its heterologous host, equids. Finally, the use of anti-BPV vaccines as a therapy for equine sarcoids will be discussed. Only limited information on the clinical or pathological aspects of either bovine or equine tumours will be provided as this subject has been extensively addressed previously.
Collapse
Affiliation(s)
- Lubna Nasir
- Division of Pathological Sciences, Institute of Comparative Medicine, University of Glasgow, Garscube Estate, Glasgow G61 1QH.
| | | |
Collapse
|
39
|
Identification of unreported putative new bovine papillomavirus types in Brazilian cattle herds. Vet Microbiol 2008; 132:396-401. [DOI: 10.1016/j.vetmic.2008.05.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 05/20/2008] [Accepted: 05/26/2008] [Indexed: 11/22/2022]
|
40
|
Borzacchiello G, Roperto F. Bovine papillomaviruses, papillomas and cancer in cattle. Vet Res 2008; 39:45. [PMID: 18479666 DOI: 10.1051/vetres:2008022] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 05/07/2008] [Indexed: 11/14/2022] Open
Abstract
Bovine papillomaviruses (BPV) are DNA oncogenic viruses inducing hyperplastic benign lesions of both cutaneous and mucosal epithelia in cattle. Ten (BPV 1-10) different viral genotypes have been characterised so far. BPV 1-10 are all strictly species-specific but BPV 1/2 may also infect equids inducing fibroblastic tumours. These benign lesions generally regress but may also occasionally persist, leading to a high risk of evolving into cancer, particularly in the presence of environmental carcinogenic co-factors. Among these, bracken fern is the most extensively studied. The synergism between immunosuppressants and carcinogenic principles from bracken fern and the virus has been experimentally demonstrated for both urinary bladder and alimentary canal cancer in cows whose diets were based on this plant. BPV associated tumours have veterinary and agricultural relevance in their own right, although they have also been studied as a relevant model of Human papillomavirus (HPV). Recent insights into BPV biology have paved the way to new fields of speculation on the role of these viruses in neoplastic transformation of cells other than epithelial ones. This review will briefly summarise BPV genome organization, will describe in greater detail the functions of viral oncoproteins, the interaction between the virus and co-carcinogens in tumour development; relevant aspects of immunity and vaccines will also be discussed.
Collapse
Affiliation(s)
- Giuseppe Borzacchiello
- Department of Pathology and Animal health, Faculty of Veterinary Medicine, Naples University Federico II, Via F. Delpino, 1 - 80137, Naples, Italy.
| | | |
Collapse
|
41
|
Hatama S, Nobumoto K, Kanno T. Genomic and phylogenetic analysis of two novel bovine papillomaviruses, BPV-9 and BPV-10. J Gen Virol 2008; 89:158-163. [DOI: 10.1099/vir.0.83334-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Eight bovine papillomavirus (BPV) types, BPV-1–8, have been classified, based on genome nucleotide sequence similarities, in the genera Deltapapillomavirus (BPV-1 and -2), Epsilonpapillomavirus (BPV-5 and -8), Xipapillomavirus (BPV-3, -4 and -6) and an unassigned genus (BPV-7). We report here the complete genome sequence of two new BPV types isolated from separate epithelial squamous papilloma lesions on cattle teats. The genomes are 7303 and 7399 bp in length, respectively, and both have genetic organization and consensus motifs typical of papillomaviruses. A neighbour-joining phylogenetic tree revealed that both viruses cluster with BPV-3, -4 and -6. Nucleotide sequence identities of the BPV L1 major capsid protein of these two new BPVs with BPV-3, their closest relative, are 74.2 and 71.2 %, respectively. These results suggest that both viruses are new BPV types in the genus Xipapillomavirus, and they are designated BPV-9 and BPV-10.
Collapse
Affiliation(s)
- Shinichi Hatama
- Hokkaido Research Station, National Institute of Animal Health, 4 Hitsujigaoka, Toyohira, Sapporo 062-0045, Japan
| | - Kiyoko Nobumoto
- Tokachi Livestock Hygiene Service Center, 59-6 Kisen, Kawanishi, Obihiro 089-1182, Japan
| | - Toru Kanno
- Hokkaido Research Station, National Institute of Animal Health, 4 Hitsujigaoka, Toyohira, Sapporo 062-0045, Japan
| |
Collapse
|