1
|
França Y, Medeiros RS, Viana E, de Azevedo LS, Guiducci R, da Costa AC, Luchs A. Genetic diversity and evolution of G12P[6] DS-1-like and G12P[9] AU-1-like Rotavirus strains in Brazil. Funct Integr Genomics 2024; 24:92. [PMID: 38733534 DOI: 10.1007/s10142-024-01360-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/31/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
In the early 2000s, the global emergence of rotavirus (RVA) G12P[8] genotype was noted, while G12P[6] and G12P[9] combinations remained rare in humans. This study aimed to characterize and phylogenetically analyze three Brazilian G12P[9] and four G12P[6] RVA strains from 2011 to 2020, through RT-PCR and sequencing, in order to enhance our understanding of the genetic relationship between human and animal-origin RVA strains. G12P[6] strains displayed a DS-1-like backbone, showing a distinct genetic clustering. G12P[6] IAL-R52/2020, IAL-R95/2020 and IAL-R465/2019 strains clustered with 2019 Northeastern G12P[6] Brazilian strains and a 2018 Benin strain, whereas IAL-R86/2011 strain grouped with 2010 Northern G12P[6] Brazilian strains and G2P[4] strains from the United States and Belgium. These findings suggest an African genetic ancestry and reassortments with co-circulating American strains sharing the same DS-1-like constellation. No recent zoonotic reassortment was observed, and the DS-1-like constellation detected in Brazilian G12P[6] strains does not seem to be genetically linked to globally reported intergenogroup G1/G3/G9/G8P[8] DS-1-like human strains. G12P[9] strains exhibited an AU-1-like backbone with two different genotype-lineage constellations: IAL-R566/2011 and IAL-R1151/2012 belonged to a VP3/M3.V Lineage, and IAL-R870/2013 to a VP3/M3.II Lineage, suggesting two co-circulating strains in Brazil. This genetic diversity is not observed elsewhere, and the VP3/M3.II Lineage in G12P[9] strains seems to be exclusive to Brazil, indicating its evolution within the country. All three G12P[9] AU-1-like strains were closely relate to G12P[9] strains from Paraguay (2006-2007) and Brazil (2010). Phylogenetic analysis also highlighted that all South American G12P[9] AU-1-like strains had a common origin and supports the hypothesis of their importation from Asia, with no recent introduction from globally circulating G12P[9] strains or reassortments with local G12 strains P[8] or P[6]. Notably, certain genes in the Brazilian G12P[9] AU-1-like strains share ancestry with feline/canine RVAs (VP3/M3.II, NSP4/E3.IV and NSP2/N3.II), whereas NSP1/A3.VI likely originated from artiodactyls, suggesting a history of zoonotic transmission with human strains. This genomic data adds understanding to the molecular epidemiology of G12P[6] and G12P[9] RVA strains in Brazil, offering insights into their genetic diversity and evolution.
Collapse
Affiliation(s)
- Yasmin França
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo, Brazil
| | | | - Ellen Viana
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo, Brazil
| | | | - Raquel Guiducci
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo, Brazil
| | - Antonio Charlys da Costa
- Medical Parasitology Laboratory (LIM/46), São Paulo Tropical Medicine Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Adriana Luchs
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo, Brazil.
| |
Collapse
|
2
|
Ahmad Malla B, Dubal ZB, Kadwalia A, Abass G, Vinodh Kumar OR, Kumar A, Rajak KK, Maqbool I, Mohmad A, Rangaraju V, Fayaz A. Seasonal pattern in occurrence of rotavirus infection (RV) in diarrheic children, calves and piglets from Bareilly, India. Anim Biotechnol 2022; 33:1730-1737. [PMID: 33345713 DOI: 10.1080/10495398.2020.1859520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Rapid and reliable diagnosis for diarrhoeal disease is critically important for the differentiation of etiological agents and subsequent suitable treatment modalities. The objective of the study is to reveal the seasonal pattern in the occurrence of rotavirus in diarrheic children, calves and piglets from Bareilly, Uttar Pradesh, India. A total of 115 diarrhoeal samples were collected, out of which 51 were collected during post-monsoon/autumn (September 2018-November 2018) and 64 during the winter season (December 2018-February 2019). The samples were collected from children <5 years (n = 50), piglets <3 months (n = 35) and calves <6 months of age (n = 30). These samples were screened by ribonucleic acid-polyacrylamide gel electrophoresis (RNA-PAGE) and reverse transcriptase-polymerase chain reaction (RT-PCR) by targeting the VP6 gene of rotavirus A (RVA) and the two were compared. In RNA-PAGE 29.4% (5/17), 6.3% (1/16) and 0% (0/18) samples collected from children, calves and piglets, respectively were rotavirus positive during the autumn season while 45.5% (15/33), 21.4% (3/14) and 17.7% (3/17) samples in the winter season. In RT-PCR, 41.2% (7/17), 12.5% (2/16) and 0% (0/18) samples were rotavirus positive in the autumn season while 51.5% (17/33), 28.6% (4/14) and 29.4% (5/17) samples in winter season collected from children, calves and piglets, respectively. On statistical analysis, no significant difference between the season and number of positives in children and calves (p > 0.05) was observed, however in piglets significantly higher number of RVA positives were detected in the winter season than autumn (p < 0.01). The diagnostic test comparison of RNA-PAGE and RT-PCR showed no statistically significant difference in detecting the RVA positives (p > 0.05). Overall the percent positivity showed a seasonal pattern with higher positivity in winter as compared to autumn season.
Collapse
Affiliation(s)
- Bilal Ahmad Malla
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Zunjar Baburao Dubal
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Anukampa Kadwalia
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Gazanfar Abass
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | | | - Ashok Kumar
- Division of Veterinary Virology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Kaushal Kishore Rajak
- Division of Veterinary Virology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Ishfaq Maqbool
- Department of Veterinary Parasitology, GADVASU, Ludhiana, India
| | - Aquil Mohmad
- Division of Veterinary Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Vivekanandhan Rangaraju
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Arfa Fayaz
- Division of Veterinary Microbiology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
3
|
Sircar S, Malik YS, Kumar P, Ansari MI, Bhat S, Shanmuganathan S, Kattoor JJ, Vinodhkumar O, Rishi N, Touil N, Ghosh S, Bányai K, Dhama K. Genomic Analysis of an Indian G8P[1] Caprine Rotavirus-A Strain Revealing Artiodactyl and DS-1-Like Human Multispecies Reassortment. Front Vet Sci 2021; 7:606661. [PMID: 33585597 PMCID: PMC7873603 DOI: 10.3389/fvets.2020.606661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/14/2020] [Indexed: 12/03/2022] Open
Abstract
The surveillance studies for the presence of caprine rotavirus A (RVA) are limited in India, and the data for the whole-genome analysis of the caprine RVA is not available. This study describes the whole-genome-based analysis of a caprine rotavirus A strain, RVA/Goat-wt/IND/K-98/2015, from a goat kid in India. The genomic analysis revealed that the caprine RVA strain K-98, possess artiodactyl-like and DS-1 human-like genome constellation G8P[1]-I2-R2-C2-M2-A3-N2-T6-E2-H3. The three structural genes (VP2, VP4, and VP7) were close to caprine host having nucleotide-based identity range between 97.5 and 98.9%. Apart from them, other gene segments showed similarity with either bovine or human like genes, ultimately pointing toward a common evolutionary origin having an artiodactyl-type backbone of strain K-98. Phylogenetically, the various genes of the current study isolate also clustered inside clades comprising Human-Bovine-Caprine isolates from worldwide. The current findings add to the knowledge on caprine rotaviruses and might play a substantial role in designing future vaccines or different alternative strategies combating such infections having public health significance. To the best of our knowledge, this is the first report on the whole-genome characterization of a caprine RVA G8P[1] strain from India. Concerning the complex nature of the K-98 genome, whole-genome analyses of more numbers of RVA strains from different parts of the country are needed to comprehend the genomic nature and genetic diversity among caprine RVA.
Collapse
Affiliation(s)
- Shubhankar Sircar
- Division of Biological Standardization, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Bareilly, India
- Amity Institute of Virology and Immunology, J-3 Block, Amity University, Noida, India
| | - Yashpal Singh Malik
- Division of Biological Standardization, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Bareilly, India
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Prashant Kumar
- Amity Institute of Virology and Immunology, J-3 Block, Amity University, Noida, India
| | - Mohd Ikram Ansari
- Division of Biological Standardization, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Bareilly, India
| | - Sudipta Bhat
- Division of Biological Standardization, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Bareilly, India
| | - S. Shanmuganathan
- Division of Biological Standardization, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Bareilly, India
| | - Jobin Jose Kattoor
- Animal Disease Diagnsotic Laboratory, Purdue University, West Lafayette, IN, United States
| | - O.R. Vinodhkumar
- Division of Epidemiology, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Bareilly, India
| | - Narayan Rishi
- Amity Institute of Virology and Immunology, J-3 Block, Amity University, Noida, India
| | - Nadia Touil
- Laboratoire de Recherche et de Biosécurité, Hôpital Militaire d'instruction Med V de Rabat, Rabat, Morocco
| | - Souvik Ghosh
- Department of Biomedical Sciences, One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Krisztián Bányai
- Centre for Agricultural Research, Institute for Veterinary Medical Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Kuldeep Dhama
- Division of Pathology, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
4
|
Li Z, Zhao F, Tang T, Wang M, Yu X, Wang R, Li Y, Xu Y, Tang L, Wang L, Zhou H, Jiang Y, Cui W, Qiao X. Development of a Colloidal Gold Immunochromatographic Strip Assay for Rapid Detection of Bovine Rotavirus. Viral Immunol 2019; 32:393-401. [PMID: 31596683 DOI: 10.1089/vim.2019.0071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Bovine rotavirus (BRV) is one of main pathogens responsible for diarrhea, fever, and vomiting. In this study, we developed a colloidal gold immunochromatographic test strip for detecting BRV according to the principle of double-antibody sandwich. The monoclonal antibodies (mAbs) and polyclonal antibodies (pAbs) were prepared and purified. On the strip, the purified mAbs labeled with the colloidal gold were used as the detector, and the goat anti-mouse antibodies and purified pAbs were coated on the nitrocellulose membranes as the control line and the test line, respectively. We optimized different reaction conditions, including the amount of mAbs, the pH of colloidal gold solution, coating solution, blocking solution, sample pad treatment solution, antibody concentration in control line, and antibody concentration in detection line. In specificity assay, the strip had high specificity in detecting BRV. No cross-reaction was observed in detecting other viruses. The detection sensitivity of the strip was found to be 1 × 103 TCID50/0.1 mL. Two hundred twenty clinical samples were detected with the strip compared to reverse transcription-polymerase chain reaction. No false-negative or false-positive results were found, and the results obtained by the two methods were similar. In conclusion, we developed a novel immunochromatographic strip to rapidly detect BRV. The strip developed exhibited high sensitivity and specificity for BRV detection. It could be a rapid, convenient, and effective method for the rapid diagnosis of BRV infection in the fields.
Collapse
Affiliation(s)
- Zhenxue Li
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Feipeng Zhao
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tingting Tang
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Mengmeng Wang
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaoli Yu
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ruichong Wang
- Heilongjiang Province Center for Disease Control and Prevention, Department of Radiological Protection, Harbin, China
| | - Yijing Li
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yigang Xu
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Lijie Tang
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Li Wang
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Han Zhou
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yanping Jiang
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wen Cui
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xinyuan Qiao
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
5
|
Oem JK, Lee SY, Kim YS, Na EJ, Choi KS. Genetic characteristics and analysis of a novel rotavirus G3P[22] identified in diarrheic feces of Korean rabbit. INFECTION GENETICS AND EVOLUTION 2019; 73:368-377. [PMID: 31173932 PMCID: PMC7106088 DOI: 10.1016/j.meegid.2019.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 01/22/2023]
Abstract
Group A rotaviruses (RVAs) are important gastroenteric pathogens that infect humans and animals. This study aimed to analyze the complete genome sequence, i.e., 11 genome segments of the lapine rotavirus (LRV) identified in the intestine of a dead rabbit in the Republic of Korea (ROK) and to describe the genetic relationships between this lapine isolate [RVA/Rabbit-wt/KOR/Rab1404/2014/G3P[22] (Rab1404)] and other lapine isolates/strains. Rab1404 possessed the following genotype constellation: G3-P[22]-I2-R3-C3-M3-A9-N2-T3-E3-H3. The P[22] genotype was found to originate from rabbits and was for the first time identified in the ROK. Phylogenetic analysis showed that Rab1404 possessed VP1-3 and VP7 genes, which were closely related to those of the bat strain LZHP2; NSP1-4 genes, which were closely related to those of the simian strain RRV; and VP4, VP6, and NSP5 genes, which were closely related to the genes obtained from other rabbits. Interestingly, a close relationship between Rab1404 and simian RVA strain RVA/Simian-tc/USA/RRV/1975/G3P[3] for 8 gene segments was observed. RRV is believed to be a reassortant between bovine-like RVA strain and canine/feline RVA strains. Rab1404 and canine/feline RVAs shared the genes encoding VP1, VP3, VP7, NSP3, and NSP4. Additionally, the genome segments VP6 (I2), NSP1 (N2), and NSP5 (H3) of Rab1404 were closely related to those of bovine RVAs. This is the first report describing the complete genome sequence of an LRV detected in the ROK. These results indicate that Rab1404 could be a result of interspecies transmission, possibly through multiple reassortment events in the strains of various animal species and the subsequent transmission of the virus to a rabbit. Additional studies are required to determine the evolutionary source and to identify possible reservoirs of RVAs in nature. This is the first report to describe the complete genome sequence of a rabbit rotavirus (Rab1404) detected in the ROK. The 11 genome segments of Rab1404 were determined; G3-P[22]-I2-R3-C3-M3-A9-N2-T3-E3-H3. G3P[22] identified in this study is found to originate from rabbit and may have more species specificity. Rab1404 could be a result of multiple reassortment events from strains originating from various animal species and transmitted to the rabbit.
Collapse
Affiliation(s)
- Jae-Ku Oem
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Soo-Young Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Young-Sik Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Eun-Jee Na
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Kyoung-Seong Choi
- College of Ecology and Environmental Science, Kyungpook National University, Sangju 37224, Republic of Korea.
| |
Collapse
|
6
|
Ogden KM, Tan Y, Akopov A, Stewart LS, McHenry R, Fonnesbeck CJ, Piya B, Carter MH, Fedorova NB, Halpin RA, Shilts MH, Edwards KM, Payne DC, Esona MD, Mijatovic-Rustempasic S, Chappell JD, Patton JT, Halasa NB, Das SR. Multiple Introductions and Antigenic Mismatch with Vaccines May Contribute to Increased Predominance of G12P[8] Rotaviruses in the United States. J Virol 2019; 93:e01476-18. [PMID: 30333170 PMCID: PMC6288334 DOI: 10.1128/jvi.01476-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/09/2018] [Indexed: 01/19/2023] Open
Abstract
Rotavirus is the leading global cause of diarrheal mortality for unvaccinated children under 5 years of age. The outer capsid of rotavirus virions consists of VP7 and VP4 proteins, which determine viral G and P types, respectively, and are primary targets of neutralizing antibodies. Successful vaccination depends upon generating broadly protective immune responses following exposure to rotaviruses presenting a limited number of G- and P-type antigens. Vaccine introduction resulted in decreased rotavirus disease burden but also coincided with the emergence of uncommon G and P genotypes, including G12. To gain insight into the recent predominance of G12P[8] rotaviruses in the United States, we evaluated 142 complete rotavirus genome sequences and metadata from 151 clinical specimens collected in Nashville, TN, from 2011 to 2013 through the New Vaccine Surveillance Network. Circulating G12P[8] strains were found to share many segments with other locally circulating strains but to have distinct constellations. Phylogenetic analyses of G12 sequences and their geographic sources provided evidence for multiple separate introductions of G12 segments into Nashville, TN. Antigenic epitopes of VP7 proteins of G12P[8] strains circulating in Nashville, TN, differ markedly from those of vaccine strains. Fully vaccinated children were found to be infected with G12P[8] strains more frequently than with other rotavirus genotypes. Multiple introductions and significant antigenic mismatch may in part explain the recent predominance of G12P[8] strains in the United States and emphasize the need for continued monitoring of rotavirus vaccine efficacy against emerging rotavirus genotypes.IMPORTANCE Rotavirus is an important cause of childhood diarrheal disease worldwide. Two immunodominant proteins of rotavirus, VP7 and VP4, determine G and P genotypes, respectively. Recently, G12P[8] rotaviruses have become increasingly predominant. By analyzing rotavirus genome sequences from stool specimens obtained in Nashville, TN, from 2011 to 2013 and globally circulating rotaviruses, we found evidence of multiple introductions of G12 genes into the area. Based on sequence polymorphisms, VP7 proteins of these viruses are predicted to present themselves to the immune system very differently than those of vaccine strains. Many of the sick children with G12P[8] rotavirus in their diarrheal stools also were fully vaccinated. Our findings emphasize the need for continued monitoring of circulating rotaviruses and the effectiveness of the vaccines against strains with emerging G and P genotypes.
Collapse
Affiliation(s)
- Kristen M Ogden
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yi Tan
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- J. Craig Venter Institute, Rockville, Maryland, USA
| | - Asmik Akopov
- J. Craig Venter Institute, Rockville, Maryland, USA
| | - Laura S Stewart
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rendie McHenry
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Bhinnata Piya
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Maximilian H Carter
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | - Meghan H Shilts
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kathryn M Edwards
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Daniel C Payne
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mathew D Esona
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - James D Chappell
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John T Patton
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Natasha B Halasa
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Suman R Das
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- J. Craig Venter Institute, Rockville, Maryland, USA
| |
Collapse
|
7
|
Increasing predominance of G8P[8] species A rotaviruses in children admitted to hospital with acute gastroenteritis in Thailand, 2010-2013. Arch Virol 2018; 163:2165-2178. [DOI: 10.1007/s00705-018-3848-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 04/04/2018] [Indexed: 01/05/2023]
|
8
|
Pellegrinelli L, Ianiro G, Pariani E, Monini M, Ruggeri FM, Binda S. Molecular characterization of rotavirus disclosed the first introduction of G12P[8] strain in northern Italy. Future Virol 2018. [DOI: 10.2217/fvl-2017-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: This paper discusses the unexpected findings from the RotaNet-Italy hospital-based surveillance study carried out in northern Italy. Materials & methods: From September 2015 to August 2016, 51 rotavirus-A (RVA) positive fecal samples were collected from children aged less than 15 years, who were hospitalized for acute gastroenteritis in Lombardy, northern Italy. Results: Molecular characterization revealed the predominance of the uncommon G12P[8] RVA strain, which was detected in 49% of cases. Phylogenetic analysis showed that these G12 strains clustered into lineage 3. Conclusion: To our knowledge, this is the first study on the G12P[8] genotype’s introduction in northern Italy. Our findings emphasize the importance of the surveillance of RVA gastroenteritis with the aim of obtaining new insight into the unusual newly emerging RVA strains.
Collapse
Affiliation(s)
- Laura Pellegrinelli
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Giovanni Ianiro
- Department of Veterinary Public Health & Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Elena Pariani
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Marina Monini
- Department of Veterinary Public Health & Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Franco Maria Ruggeri
- Department of Veterinary Public Health & Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Sandro Binda
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
9
|
Diseases of the Alimentary Tract. Vet Med (Auckl) 2017. [PMCID: PMC7167529 DOI: 10.1016/b978-0-7020-5246-0.00007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Yodmeeklin A, Khamrin P, Chuchaona W, Kumthip K, Kongkaew A, Vachirachewin R, Okitsu S, Ushijima H, Maneekarn N. Analysis of complete genome sequences of G9P[19] rotavirus strains from human and piglet with diarrhea provides evidence for whole-genome interspecies transmission of nonreassorted porcine rotavirus. INFECTION GENETICS AND EVOLUTION 2016; 47:99-108. [PMID: 27894992 DOI: 10.1016/j.meegid.2016.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 11/22/2016] [Accepted: 11/22/2016] [Indexed: 12/22/2022]
Abstract
Whole genomes of G9P[19] human (RVA/Human-wt/THA/CMH-S070-13/2013/G9P[19]) and porcine (RVA/Pig-wt/THA/CMP-015-12/2012/G9P[19]) rotaviruses concurrently detected in the same geographical area in northern Thailand were sequenced and analyzed for their genetic relationships using bioinformatic tools. The complete genome sequence of human rotavirus RVA/Human-wt/THA/CMH-S070-13/2013/G9P[19] was most closely related to those of porcine rotavirus RVA/Pig-wt/THA/CMP-015-12/2012/G9P[19] and to those of porcine-like human and porcine rotaviruses reference strains than to those of human rotavirus reference strains. The genotype constellation of G9P[19] detected in human and piglet were identical and displayed as the G9-P[19]-I5-R1-C1-M1-A8-N1-T1-E1-H1 genotypes with the nucleotide sequence identities of VP7, VP4, VP6, VP1, VP2, VP3, NSP1, NSP2, NSP3, NSP4, and NSP5 at 99.0%, 99.5%, 93.2%, 97.7%, 97.7%, 85.6%, 89.5%, 93.2%, 92.9%, 94.0%, and 98.1%, respectively. The findings indicate that human rotavirus strain RVA/Human-wt/THA/CMH-S070-13/2013/G9P[19] containing the genome segments of porcine genetic backbone is most likely a human rotavirus of porcine origin. Our data provide an evidence of interspecies transmission and whole-genome transmission of nonreassorted G9P[19] porcine RVA to human occurring in nature in northern Thailand.
Collapse
Affiliation(s)
- Arpaporn Yodmeeklin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Watchaporn Chuchaona
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kattareeya Kumthip
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Aphisek Kongkaew
- Animal House Unit, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Ratchaya Vachirachewin
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Shoko Okitsu
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan; Department of Developmental Medical Sciences, School of International Health, Graduate School of Medicine, The University of Tokyo, Japan
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan; Department of Developmental Medical Sciences, School of International Health, Graduate School of Medicine, The University of Tokyo, Japan
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
11
|
Aida S, Nahar S, Paul SK, Hossain MA, Kabir MR, Sarkar SR, Ahmed S, Ghosh S, Urushibara N, Kawaguchiya M, Aung MS, Sumi A, Kobayashi N. Whole genomic analysis of G2P[4] human Rotaviruses in Mymensingh, north-central Bangladesh. Heliyon 2016; 2:e00168. [PMID: 27722206 PMCID: PMC5047856 DOI: 10.1016/j.heliyon.2016.e00168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 08/25/2016] [Accepted: 09/21/2016] [Indexed: 12/16/2022] Open
Abstract
Rotavirus A (RVA) is a dominant causative agent of acute gastroenteritis in children worldwide. G2P[4] is one of the most common genotypes among human rotavirus (HRV) strains, and has been persistently prevalent in South Asia including Bangladesh. In the present study, whole genome sequences of a total of 16 G2P[4] HRV strains (8 strains each in 2010 and 2013) detected in Mymensingh, north-central Bangladesh were determined. These strains had typical DS-1-like genotype constellation. Most of gene segments from DS-1 genogroup exhibited high level sequence identities to each other (>98%), while slight diversity was observed for VP1, VP3, and NSP4 genes. By phylogenetic analysis, individual RNA segments were classified into one (V) or two-three lineages (V–VI or V–VII). In terms of lineages (sublineages) of 11 gene segments, the 16 Bangladeshi strains could be further classified into four clades (A-D) containing 8 lineage constellations, revealing the presence of three clades (A-C) with three lineage constellations in 2010, and a single clade (D) with four constellations in 2013. Therefore, co-existence of multiple G2P[4] HRV strains with different lineage constellations, and change in clades for the study period were demonstrated. Although amino acids in the antigenic regions on VP7 and VP4 were mostly identical to those of global G2P[4] strains after 2000, VP4 of clade D RVAs in 2013 had alanine and proline at positions 88 and 114, respectively, which are novel substitutions compared with recent global G2P[4] strains. Replacement of lineage constellations associated with unique amino acid changes in the antigenic region in VP4 suggested continuous genetic evolutionary state for emerging new G2P[4] rotavirus strains in Bangladesh.
Collapse
Affiliation(s)
- Satoru Aida
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
- Corresponding author at: Satoru Aida, Department of Hygiene, Sapporo Medical University School of Medicine, S-1 W-17, Chuo-ku, Sapporo 060–8556, Japan.Department of HygieneSapporo Medical University School of MedicineSapporoJapan
| | - Samsoon Nahar
- Department of Microbiology, Mymensingh Medical College, Mymensingh, Bangladesh
| | - Shyamal Kumar Paul
- Department of Microbiology, Mymensingh Medical College, Mymensingh, Bangladesh
| | | | | | - Santana Rani Sarkar
- Department of Microbiology, Mymensingh Medical College, Mymensingh, Bangladesh
| | - Salma Ahmed
- Department of Microbiology, Mymensingh Medical College, Mymensingh, Bangladesh
| | - Souvik Ghosh
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St. Kitts, West Indies
| | - Noriko Urushibara
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Mitsuyo Kawaguchiya
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Meiji Soe Aung
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ayako Sumi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
12
|
Theuns S, Conceição-Neto N, Zeller M, Heylen E, Roukaerts IDM, Desmarets LMB, Van Ranst M, Nauwynck HJ, Matthijnssens J. Characterization of a genetically heterogeneous porcine rotavirus C, and other viruses present in the fecal virome of a non-diarrheic Belgian piglet. INFECTION GENETICS AND EVOLUTION 2016; 43:135-45. [PMID: 27184192 PMCID: PMC7172746 DOI: 10.1016/j.meegid.2016.05.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/15/2016] [Accepted: 05/12/2016] [Indexed: 12/31/2022]
Abstract
Next-generation sequencing (NGS) technologies are becoming increasingly accessible, leading to an expanded interest in the composition of the porcine enteric virome. In the present study, the fecal virome of a non-diarrheic Belgian piglet was determined. Although the virome of only a single piglet was analyzed, some interesting data were obtained, including the second complete genome of a pig group C rotavirus (RVC). This Belgian strain was only distantly related to the only other completely characterized pig RVC strain, Cowden. Its relatedness to RVC strains from other host species was also analyzed and the porcine strain found in our study was only distantly related to RVCs detected in humans and cows. The gene encoding the outer capsid protein VP7 belonged to the rare porcine G3 genotype, which might be serologically distinct from most other pig RVC strains. A putative novel RVC VP6 genotype was identified as well. A group A rotavirus strain also present in this fecal sample contained the rare pig genotype combination G11P[27], but was only partially characterized. Typical pig RVA genotypes I5, A8, and T7 were found for the viral proteins VP6, NSP1, and NSP3, respectively. Interestingly, the fecal virome of the piglet also contained an astrovirus and an enterovirus, of which the complete genomes were characterized. Results of the current study indicate that many viruses may be present simultaneously in fecal samples of non-diarrheic piglets. In this study, these viruses could not be directly associated with any disease, but still they might have had a potential subclinical impact on pig growth performance. The fast evolution of NGS will be a powerful tool for future diagnostics in veterinary practice. Its application will certainly lead to better insights into the relevance of many (sub)clinical enteric viral infections, that may have remained unnoticed using traditional diagnostic techniques. This will stimulate the development of new and durable prophylactic measures to improve pig health and production. The virome of a non-diarrheic Belgian piglet was determined. Porcine group C and A rotaviruses, and an astrovirus and enterovirus were found. The second complete genome of a pig group C rotavirus was fully characterized. The Belgian rotavirus C strain was only distantly related to pig strain Cowden. A putative novel genotype of VP6 of the RVC strains was detected.
Collapse
Affiliation(s)
- Sebastiaan Theuns
- Ghent University, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Laboratory of Virology, Merelbeke B-9820, Belgium.
| | - Nádia Conceição-Neto
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, B-3000 Leuven, Belgium; KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical Virology, B-3000, Leuven, Belgium
| | - Mark Zeller
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, B-3000 Leuven, Belgium
| | - Elisabeth Heylen
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, B-3000 Leuven, Belgium
| | - Inge D M Roukaerts
- Ghent University, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Laboratory of Virology, Merelbeke B-9820, Belgium
| | - Lowiese M B Desmarets
- Ghent University, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Laboratory of Virology, Merelbeke B-9820, Belgium
| | - Marc Van Ranst
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical Virology, B-3000, Leuven, Belgium
| | - Hans J Nauwynck
- Ghent University, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Laboratory of Virology, Merelbeke B-9820, Belgium
| | - Jelle Matthijnssens
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, B-3000 Leuven, Belgium
| |
Collapse
|
13
|
Silva FDF, Gregori F, McDonald SM. Distinguishing the genotype 1 genes and proteins of human Wa-like rotaviruses vs. porcine rotaviruses. INFECTION GENETICS AND EVOLUTION 2016; 43:6-14. [PMID: 27180895 DOI: 10.1016/j.meegid.2016.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/02/2016] [Accepted: 05/10/2016] [Indexed: 11/16/2022]
Abstract
Group A rotaviruses (RVAs) are 11-segmented, double-stranded RNA viruses and important causes of gastroenteritis in the young of many animal species. Previous studies have suggested that human Wa-like RVAs share a close evolutionary relationship with porcine RVAs. Specifically, the VP1-VP3 and NSP2-5/6 genes of these viruses are usually classified as genotype 1 with >81% nucleotide sequence identity. Yet, it remains unknown whether the genotype 1 genes and proteins of human Wa-like strains are distinguishable from those of porcine strains. To investigate this, we performed comprehensive bioinformatic analyses using all known genotype 1 gene sequences. The RVAs analyzed represent wildtype strains isolated from humans or pigs at various geographical locations during the years of 2004-2013, including 11 newly-sequenced porcine RVAs from Brazil. We also analyzed archival strains that were isolated during the years of 1977-1992 as well as atypical strains involved in inter-species transmission between humans and pigs. We found that, in general, the genotype 1 genes of typical modern human Wa-like RVAs clustered together in phylogenetic trees and were separate from those of typical modern porcine RVAs. The only exception was for the NSP5/6 gene, which showed no host-specific phylogenetic clustering. Using amino acid sequence alignments, we identified 34 positions that differentiated the VP1-VP3, NSP2, and NSP3 genotype 1 proteins of typical modern human Wa-like RVAs versus typical modern porcine RVAs and documented how these positions vary in the archival/unusual isolates. No host-specific amino acid positions were identified for NSP4, NSP5, or NSP6. Altogether, the results of this study support the notion that human Wa-like RVAs and porcine RVAs are evolutionarily related, but indicate that some of their genotype 1 genes and proteins have diverged over time possibly as a reflection of sequestered replication and protein co-adaptation in their respective hosts.
Collapse
Affiliation(s)
- Fernanda D F Silva
- Department of Preventive Veterinary Medicine and Animal Health, College of Veterinary Medicine, University of São Paulo, Brazil
| | - F Gregori
- Department of Preventive Veterinary Medicine and Animal Health, College of Veterinary Medicine, University of São Paulo, Brazil
| | - Sarah M McDonald
- Virginia Tech Carilion School of Medicine and Research Institute, Roanoke, VA, USA; Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA.
| |
Collapse
|
14
|
Genomic characterization of G3P[6], G4P[6] and G4P[8] human rotaviruses from Wuhan, China: Evidence for interspecies transmission and reassortment events. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2015; 33:55-71. [PMID: 25891280 DOI: 10.1016/j.meegid.2015.04.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/26/2015] [Accepted: 04/09/2015] [Indexed: 12/22/2022]
Abstract
We report here the whole genomic analyses of two G4P[6] (RVA/Human-wt/CHN/E931/2008/G4P[6], RVA/Human-wt/CHN/R1954/2013/G4P[6]), one G3P[6] (RVA/Human-wt/CHN/R946/2006/G3P[6]) and one G4P[8] (RVA/Human-wt/CHN/E2484/2011/G4P[8]) group A rotavirus (RVA) strains detected in sporadic cases of diarrhea in humans in the city of Wuhan, China. All the four strains displayed a Wa-like genotype constellation. Strains E931 and R1954 shared a G4-P[6]-I1-R1-C1-M1-A8-N1-T1-E1-H1 constellation, whilst the 11 gene segments of strains R946 and E2484 were assigned to G3-P[6]-I1-R1-C1-M1-A1-N1-T1-E1-H1 and G4-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1 genotypes, respectively. Phylogenetically, the VP7 gene of R946, NSP3 gene of E931, and 10 of 11 gene segments of E2484 (except for VP7 gene) belonged to lineages of human RVAs. On the other hand, based on available data, it was difficult to ascertain porcine or human origin of VP3 genes of strains E931 and R946, and NSP2 genes of strains R946 and R1954. The remaining genes of E2484, E931, R946 and R1954 were close to those of porcine RVAs from China, and/or porcine-like human RVAs. Taken together, our observations suggested that strain R1954 might have been derived from porcine RVAs, whilst strains R946 and E931 might be reassortants possessing human RVA-like gene segments on a porcine RVA genetic backbone. Strain E2484 might be derived from reassortment events involving acquisition of a porcine-like VP7 gene by a Wa-like human RVA strain. The present study provided important insights into zoonotic transmission and complex reassortment events involving human and porcine RVAs, reiterating the significance of whole-genomic analysis of RVA strains.
Collapse
|
15
|
Isolation, molecular characterization and evaluation of the pathogenicity of a porcine rotavirus isolated from Jiangsu Province, China. Arch Virol 2015; 160:1333-8. [PMID: 25742930 DOI: 10.1007/s00705-015-2347-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 01/22/2015] [Indexed: 10/23/2022]
Abstract
In this study, a porcine rotavirus was isolated from a fecal sample from a diarrheic piglet in Jiangsu Province, China. Rotavirus-specific cytopathic effects were observed after 12 blind passages on MA-104 cells, yielding a virus titer of 10(6.125) TCID50/ml. By applying an 80 % nucleotide cutoff value and the RotaC(2.0) automated genotyping tool, the Vp4 genotype of the new isolate was identified as P[7]. The Vp7 genotype was identified as G[9], lineage VI, and sublineage c. Experimentally infected piglets showed severe diarrhea symptoms 16-24 h post-inoculation, indicating that this new porcine rotavirus isolate is a pathogenic strain.
Collapse
|
16
|
Nagai M, Shimada S, Fujii Y, Moriyama H, Oba M, Katayama Y, Tsuchiaka S, Okazaki S, Omatsu T, Furuya T, Koyama S, Shirai J, Katayama K, Mizutani T. H2 genotypes of G4P[6], G5P[7], and G9[23] porcine rotaviruses show super-short RNA electropherotypes. Vet Microbiol 2015; 176:250-6. [PMID: 25724331 DOI: 10.1016/j.vetmic.2015.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 01/25/2015] [Accepted: 02/01/2015] [Indexed: 12/01/2022]
Abstract
During group A rotavirus (RVA) surveillance of pig farms in Japan, we detected three RVA strains (G4P[6], G5P[7], and G9P[23] genotypes), which showed super-short RNA patterns by polyacrylamide gel electrophoresis, in samples from a healthy eight-day-old pig and two pigs of seven and eight days old with diarrhea from three farms. Reverse transcription PCR and sequencing revealed that the full-length NSP5 gene of these strains contained 952 or 945 nucleotides, which is consistent with their super-short electropherotypes. Due to a lack of whole genome data on Japanese porcine RVAs, we performed whole genomic analyses of the three strains. The genomic segments of these RVA strains showed typical porcine RVA constellations, except for H2 NSP5 genotype, (G4,5,9-P[6,7,23]-I5-R1-C1-M1-A8-N1-T1-E1-H2 representing VP7-VP4-VP6-VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5 genes). In phylogenetic analyses, these porcine RVA strains clustered with porcine and porcine-like human RVA strains and showed a typical porcine RVA backbone, except for the NSP5 gene; however, intra-genotype reassortment events among porcine and porcine-like human RVA strains were observed. The NSP5 gene segments of these strains were clustered within the H2b genotype with super-short human RVA strains. The H2 genotype has to date only been identified in human and lapine RVA strains. Thus, to our knowledge, this report presents the first case of H2 NSP5 genotype showing a super-short RNA pattern in porcine RVA. These data suggest the possibility of interspecies transmission between pigs and humans and imply that super-short porcine RVA strains possessing H2 genotype are circulating among both asymptomatic and diarrheic porcine populations in Japan.
Collapse
Affiliation(s)
- Makoto Nagai
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan; Department of Veterinary Medicine Faculty and Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan.
| | - Saya Shimada
- Department of Veterinary Medicine Faculty and Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Yoshiki Fujii
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Hiromitsu Moriyama
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Mami Oba
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Yukie Katayama
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Shinobu Tsuchiaka
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Sachiko Okazaki
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Tsutomu Omatsu
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Tetsuya Furuya
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan; Department of Veterinary Medicine Faculty and Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Satoshi Koyama
- Department of Veterinary Medicine Faculty and Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Junsuke Shirai
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan; Department of Veterinary Medicine Faculty and Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Kazuhiko Katayama
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
17
|
Gómez MM, Resque HR, Volotão EDM, Rose TL, Figueira Marques da Silva M, Heylen E, Zeller M, Matthijnssens J, Leite JPG. Distinct evolutionary origins of G12P[8] and G12P[9] group A rotavirus strains circulating in Brazil. INFECTION GENETICS AND EVOLUTION 2014; 28:385-8. [DOI: 10.1016/j.meegid.2014.04.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/04/2014] [Accepted: 04/08/2014] [Indexed: 12/12/2022]
|
18
|
Complete genome characterization of recent and ancient Belgian pig group A rotaviruses and assessment of their evolutionary relationship with human rotaviruses. J Virol 2014; 89:1043-57. [PMID: 25378486 DOI: 10.1128/jvi.02513-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Group A rotaviruses (RVAs) are an important cause of diarrhea in young pigs and children. An evolutionary relationship has been suggested to exist between pig and human RVAs. This hypothesis was further investigated by phylogenetic analysis of the complete genomes of six recent (G2P[27], G3P[6], G4P[7], G5P[7], G9P[13], and G9P[23]) and one historic (G1P[7]) Belgian pig RVA strains and of all completely characterized pig RVAs from around the globe. In contrast to the large diversity of genotypes found for the outer capsid proteins VP4 and VP7, a relatively conserved genotype constellation (I5-R1-C1-M1-A8-N1-T7-E1-H1) was found for the other 9 genes in most pig RVA strains. VP1, VP2, VP3, NSP2, NSP4, and NSP5 genes of porcine RVAs belonged to genotype 1, which is shared with human Wa-like RVAs. However, for most of these gene segments, pig strains clustered distantly from human Wa-like RVAs, indicating that viruses from both species have entered different evolutionary paths. However, VP1, VP2, and NSP3 genes of some archival human strains were moderately related to pig strains. Phylogenetic analysis of the VP6, NSP1, and NSP3 genes, as well as amino acid analysis of the antigenic regions of VP7, further confirmed this evolutionary segregation. The present results also indicate that the species barrier is less strict for pig P[6] strains but that chances for successful spread of these strains in the human population are hampered by the better adaptation of pig RVAs to pig enterocytes. However, future surveillance of pig and human RVA strains is warranted. IMPORTANCE Rotaviruses are an important cause of diarrhea in many species, including pigs and humans. Our understanding of the evolutionary relationship between rotaviruses from both species is limited by the lack of genomic data on pig strains. In this study, recent and ancient Belgian pig rotavirus isolates were sequenced, and their evolutionary relationship with human Wa-like strains was investigated. Our data show that Wa-like human and pig strains have entered different evolutionary paths. Our data indicate that pig P[6] strains form the most considerable risk for interspecies transmission to humans. However, efficient spread of pig strains in the human population is most likely hampered by the adaptation of some crucial viral proteins to the cellular machinery of pig enterocytes. These data allow a better understanding of the risk for direct interspecies transmission events and the emergence of pig rotaviruses or pig-human reassortants in the human population.
Collapse
|
19
|
Komoto S, Wandera Apondi E, Shah M, Odoyo E, Nyangao J, Tomita M, Wakuda M, Maeno Y, Shirato H, Tsuji T, Ichinose Y, Taniguchi K. Whole genomic analysis of human G12P[6] and G12P[8] rotavirus strains that have emerged in Kenya: identification of porcine-like NSP4 genes. INFECTION GENETICS AND EVOLUTION 2014; 27:277-93. [PMID: 25111611 DOI: 10.1016/j.meegid.2014.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/24/2014] [Accepted: 08/01/2014] [Indexed: 02/03/2023]
Abstract
G12 rotaviruses are globally emerging rotavirus strains causing severe childhood diarrhea. However, the whole genomes of only a few G12 strains have been fully sequenced and analyzed, of which only one G12P[4] and one G12P[6] are from Africa. In this study, we sequenced and characterized the complete genomes of three G12 strains (RVA/Human-tc/KEN/KDH633/2010/G12P[6], RVA/Human-tc/KEN/KDH651/2010/G12P[8], and RVA/Human-tc/KEN/KDH684/2010/G12P[6]) identified in three stool specimens from children with acute diarrhea in Kenya, Africa. On whole genomic analysis, all three Kenyan G12 strains were found to have a Wa-like genetic backbone: G12-P[6]-I1-R1-C1-M1-A1-N1-T1-E1-H1 (strains KDH633 and KDH684) and G12-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1 (strain KDH651). Phylogenetic analysis showed that most genes of the three strains examined in this study were genetically related to globally circulating human G1, G9, and G12 strains. Of note is that the NSP4 genes of strains KDH633 and KDH684 appeared to be of porcine origin, suggesting the occurrence of reassortment between human and porcine strains. Furthermore, strains KDH633 and KDH684 were very closely related to each other in all the 11 gene segments, indicating derivation of the two strains from a common origin. On the other hand, strain KDH651 consistently formed distinct clusters of 10 of the 11 gene segments (VP1-2, VP4, VP6-7, and NSP1-5), indicating a distinct origin of strain KDH651 from that of strains KDH633 and KDH684. To our knowledge, this is the first report on whole genome-based characterization of G12 strains that have emerged in Kenya. Our observations will provide important insights into the evolutionary dynamics of emerging G12 rotaviruses in Africa.
Collapse
Affiliation(s)
- Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan.
| | - Ernest Wandera Apondi
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nairobi 19993-00202, Kenya
| | - Mohammad Shah
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nairobi 19993-00202, Kenya
| | - Erick Odoyo
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nairobi 19993-00202, Kenya
| | - James Nyangao
- Center for Virus Research, Kenya Medical Research Institute (KEMRI), Nairobi 54840-00200, Kenya
| | - Mayuko Tomita
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Mitsutaka Wakuda
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Yoshimasa Maeno
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Haruko Shirato
- Department of Virology II, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Takao Tsuji
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Yoshio Ichinose
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nairobi 19993-00202, Kenya
| | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
20
|
Ghosh S, Kobayashi N. Exotic rotaviruses in animals and rotaviruses in exotic animals. Virusdisease 2014; 25:158-72. [PMID: 25674582 DOI: 10.1007/s13337-014-0194-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 01/16/2014] [Indexed: 11/26/2022] Open
Abstract
Group A rotaviruses (RVA) are a major cause of viral diarrhea in the young of mammals and birds. RVA strains with certain genotype constellations or VP7-VP4 (G-P) genotype combinations are commonly found in a particular host species, whilst unusual or exotic RVAs have also been reported. In most cases, these exotic rotaviruses are derived from RVA strains common to other host species, possibly through interspecies transmission coupled with reassortment events, whilst a few other strains exhibit novel genotypes/genetic constellations rarely found in other RVAs. The epidemiology and evolutionary patterns of exotic rotaviruses in humans have been thoroughly reviewed previously. On the other hand, there is no comprehensive review article devoted to exotic rotaviruses in domestic animals and birds so far. The present review focuses on the exotic/unusual rotaviruses detected in livestock (cattle and pigs), horses and companion animals (cats and dogs). Avian rotaviruses (group D, group F and group G strains), including RVAs, which are genetically divergent from mammalian RVAs, are also discussed. Although scattered and limited studies have reported rotaviruses in several exotic animals and birds, including wildlife, these data remain to be reviewed. Therefore, a section entitled "rotaviruses in exotic animals" was included in the present review.
Collapse
Affiliation(s)
- Souvik Ghosh
- Department of Hygiene, Sapporo Medical University School of Medicine, S 1, W 17, Chuo-Ku, Sapporo, Hokkaido 060-8556 Japan
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, S 1, W 17, Chuo-Ku, Sapporo, Hokkaido 060-8556 Japan
| |
Collapse
|
21
|
Molecular characterization of the porcine group A rotavirus NSP2 and NSP5/6 genes from São Paulo State, Brazil, in 2011/12. ScientificWorldJournal 2013; 2013:241686. [PMID: 23970830 PMCID: PMC3730213 DOI: 10.1155/2013/241686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 06/29/2013] [Indexed: 11/18/2022] Open
Abstract
Rotaviruses are responsible for the acute diarrhea in various mammalian and avian species. The nonstructural proteins NSP2 and NSP5 are involved in the rotavirus replication and the formation of viroplasm, cytoplasmic inclusion bodies within which new viral particles morphogenesis and viral RNA replication occur. There are few studies on the genetic diversity of those proteins; thus this study aims at characterizing the diversity of rotavirus based on NSP2 and NSP5 genes in rotaviruses circulating in Brazilian pig farms. For this purpose, 63 fecal samples from pig farms located in six different cities in the São Paulo State, Brazil, were screened by nested RT-PCR. Seven strains had the partial nucleotide sequencing for NSP2, whereas in six, the total sequencing for NSP5. All were characterized as genotype H1 and N1. The nucleotide identity of NSP2 genes ranged from 100% to 86.4% and the amino acid identity from 100% to 91.5%. For NSP5, the nucleotide identity was from 100% to 95.1% and the amino acid identity from 100% to 97.4%. It is concluded that the genotypes of the strains circulating in the region of study are in agreement with those reported in the literature for swine and that there is the possibility of interaction between human and animal rotaviruses.
Collapse
|
22
|
Komoto S, Maeno Y, Tomita M, Matsuoka T, Ohfu M, Yodoshi T, Akeda H, Taniguchi K. Whole genomic analysis of a porcine-like human G5P[6] rotavirus strain isolated from a child with diarrhoea and encephalopathy in Japan. J Gen Virol 2013; 94:1568-1575. [PMID: 23515025 DOI: 10.1099/vir.0.051011-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
An unusual rotavirus strain, Ryukyu-1120, with G5P[6] genotypes (RVA/Human-wt/JPN/Ryukyu-1120/2011/G5P[6]) was identified in a stool specimen from a hospitalized child aged 4 years who showed diarrhoea and encephalopathy. In this study, we sequenced and characterized the complete genome of strain Ryukyu-1120. On whole genomic analysis, this strain was found to have a unique genotype constellation: G5-P[6]-I5-R1-C1-M1-A8-N1-T1-E1-H1. The VP6 and NSP1 genotypes I5 and A8 are those commonly found in porcine strains. Furthermore, phylogenetic analysis indicated that each of the 11 genes of strain Ryukyu-1120 appeared to be of porcine origin. Thus, strain Ryukyu-1120 was found to have a porcine rotavirus genetic backbone and is likely to be of porcine origin. To our knowledge, this is the first report of whole-genome-based characterization of the emerging G5P[6] strains in Asian countries. Our observations will provide important insights into the origin of G5P[6] strains and the dynamic interactions between human and porcine rotavirus strains.
Collapse
Affiliation(s)
- Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Yoshimasa Maeno
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Mayuko Tomita
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Tsuyoshi Matsuoka
- Division of Pediatric Neurology and General, Okinawa Prefectural Nanbu Medical Center and Children's Medical Center, Haebaru-cho, Okinawa 901-1193, Japan
| | - Masaharu Ohfu
- Division of Pediatric Neurology and General, Okinawa Prefectural Nanbu Medical Center and Children's Medical Center, Haebaru-cho, Okinawa 901-1193, Japan
| | - Toshifumi Yodoshi
- Division of Pediatric Neurology and General, Okinawa Prefectural Nanbu Medical Center and Children's Medical Center, Haebaru-cho, Okinawa 901-1193, Japan
| | - Hideki Akeda
- Division of Pediatric Neurology and General, Okinawa Prefectural Nanbu Medical Center and Children's Medical Center, Haebaru-cho, Okinawa 901-1193, Japan
| | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
23
|
Okitsu S, Khamrin P, Thongprachum A, Kongkaew A, Maneekarn N, Mizuguchi M, Hayakawa S, Ushijima H. Whole-genomic analysis of G3P[23], G9P[23] and G3P[13] rotavirus strains isolated from piglets with diarrhea in Thailand, 2006-2008. INFECTION GENETICS AND EVOLUTION 2013; 18:74-86. [PMID: 23681022 DOI: 10.1016/j.meegid.2013.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 05/01/2013] [Accepted: 05/06/2013] [Indexed: 11/30/2022]
Abstract
Group A rotavirus (RVA) is the most common cause of severe acute viral gastroenteritis in humans and animals worldwide. This study characterized the whole genome sequences of porcine RVAs, 2 G3P[23] strains (CMP40/08 and CMP48/08), 1 G9P[23] strain (CMP45/08), and 1 G3P[13] strain (CMP29/08). These strains were collected from diarrheic piglets less than 7weeks of age in 4 pig farms in Chiang Mai, Thailand, in 2008. The VP7-VP4-VP6-VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5 genes of CMP40/08 and CMP48/08 strains were assigned as G3-P[23]-I5-R1-C1-M1-A8-N1-T1-E1-H1 genotypes based on their nucleotide sequences and phylogenetic analyses. The CMP29/08 strain was different from the CMP40/08 and CMP48/08 strains only in the VP4 gene, since it was assigned as P[13] genotype. Furthermore, the VP7 gene of the CMP45/08 strain was classified as genotype G9, and the NSP3 gene as T7 genotype. The finding of this study supports the porcine-origin of T7 genotype, although the NSP3 gene of this strain was similar to the bovine UK strain at the highest nucleotide sequence identity of 92.6%. Whole genome sequence analysis of the porcine RVAs indicated that multiple inter-genotypic and intra-genotypic reassortment events had occurred among the porcine RVAs circulating in this studied area. Interestingly, the VP7 gene of the CMP45/08 strain, and the VP1, NSP2, and NSP4 genes of all four porcine RVAs strains described in this study revealed much similarity to those of two porcine-like human RVA strains (RVA/Human-tc/THA/Mc323/1989/G9P[19] and RVA/Human-tc/THA/Mc345/1989/G9P[19]) detected in Thailand in 1989. The present study provided important information on the evolution of porcine RVA.
Collapse
Affiliation(s)
- Shoko Okitsu
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Maestri RP, Kaiano JHL, Neri DL, Soares LDS, Guerra SDFDS, Oliveira DDS, Farias YN, Gabbay YB, Leite JPG, Linhares ADC, Mascarenhas JDP. Phylogenetic analysis of probable non-human genes of group A rotaviruses isolated from children with acute gastroenteritis in Belém, Brazil. J Med Virol 2013; 84:1993-2002. [PMID: 23080508 DOI: 10.1002/jmv.23364] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rotaviruses (RVs) are the main cause of acute viral gastroenteritis in both humans and young animals of various species such as calves, horses, pigs, dogs, cats, and birds. The genetic diversity of RVs is related to a variety of evolutionary mechanisms, including point mutation, and genome reassortment. The objective of this study was to characterize molecularly genes that encode structural and nonstructural proteins in unusual RV strains. The clinical specimens selected for this study were obtained from children and newborn with RV gastroenteritis, who participated in research projects on viral gastroenteritis conducted at the Evandro Chagas Institute. Structural (VP1-VP4, VP6, and VP7) and nonstructural (NSP1-NSP6) genes were amplified from stool samples by the polymerase chain reaction and subsequently sequenced. Eight unusual RV strains isolated from children and newborn with gastroenteritis were studied. Reassortment between genes of animal origin were observed in 5/8 (62.5%) strains analyzed. These results demonstrate that, although rare, interspecies (animal-human) transmission of RVs occurs in nature, as observed in the present study in strains NB150, HSP034, HSP180, HST327, and RV10109. This study is the first to be conducted in the Amazon region and supports previous data showing a close relationship between genes of human and animal origin, representing a challenge to the large-scale introduction of RV vaccines in national immunization programs.
Collapse
Affiliation(s)
- Régis Piloni Maestri
- Virology Section, Instituto Evandro Chagas, Secretaria de Vigilância em Saúde, Ministério da Saúde, Ananindeua, Pará, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Than VT, Baek IH, Kim W. Whole genomic analysis reveals the co-evolutionary phylodynamics of Korean G9P[8] human rotavirus strains. Arch Virol 2013; 158:1795-803. [DOI: 10.1007/s00705-013-1662-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 02/04/2013] [Indexed: 12/14/2022]
|
26
|
Epidemiology and phylogenetic analysis of VP7 and VP4 genes of rotaviruses circulating in Rawalpindi, Pakistan during 2010. INFECTION GENETICS AND EVOLUTION 2013. [DOI: 10.1016/j.meegid.2012.10.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Full genomic analysis of rabbit rotavirus G3P[14] strain N5 in China: Identification of a novel VP6 genotype. INFECTION GENETICS AND EVOLUTION 2012; 12:1567-76. [DOI: 10.1016/j.meegid.2012.06.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 06/11/2012] [Accepted: 06/18/2012] [Indexed: 11/20/2022]
|
28
|
Shintani T, Ghosh S, Wang YH, Zhou X, Zhou DJ, Kobayashi N. Whole genomic analysis of human G1P[8] rotavirus strains from different age groups in China. Viruses 2012; 4:1289-304. [PMID: 23012626 PMCID: PMC3446763 DOI: 10.3390/v4081289] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 08/13/2012] [Accepted: 08/15/2012] [Indexed: 11/16/2022] Open
Abstract
G1P[8] rotaviruses are an important cause of diarrhea in humans in China. To date, there are no reports on the whole genomic analysis of the Chinese G1P[8] rotaviruses. To determine the origin and overall genetic makeup of the recent Chinese G1P[8] strains, the whole genomes of three strains, RVA/Human-wt/CHN/E1911/2009/G1P[8], RVA/Human-tc/CHN/R588/2005/G1P[8] and RVA/Human-tc/CHN/Y128/2004/G1P[8], detected in an infant, a child and an adult, respectively, were analyzed. Strains E1911, R588 and Y128 exhibited a typical Wa-like genotype constellation. Except for the NSP3 gene of E1911, the whole genomes of strains E1911, R588 and Y128 were found to be more closely related to those of the recent Wa-like common human strains from different countries than those of the prototype G1P[8] strain, or other old strains. On the other hand, the NSP3 gene of E1911 was genetically distinct from those of Y128, R588, or other Wa-like common human strains, and appeared to share a common origin with those of the porcine-like human G9 strains, providing evidence for intergenotype reassortment events. Comparisons of the amino acid residues defining the VP7 and VP4 antigenic domains revealed several mismatches between these Chinese G1P[8] strains and the G1 and P[8] strains contained in the currently licensed rotavirus vaccines Rotarix(TM )and RotaTeq(TM).
Collapse
Affiliation(s)
- Tsuzumi Shintani
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.S.); (N.K.)
| | - Souvik Ghosh
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.S.); (N.K.)
- Author to whom correspondence should be addressed; ; Tel.: +81-11-611-2111 ext. 2733; Fax: +81-11-612-1660
| | - Yuan-Hong Wang
- Wuhan Centers for Disease Prevention and Control, Wuhan 430015, China; (Y.-H.W.); (X.Z.); (D.-J.Z.)
| | - Xuan Zhou
- Wuhan Centers for Disease Prevention and Control, Wuhan 430015, China; (Y.-H.W.); (X.Z.); (D.-J.Z.)
| | - Dun-Jin Zhou
- Wuhan Centers for Disease Prevention and Control, Wuhan 430015, China; (Y.-H.W.); (X.Z.); (D.-J.Z.)
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.S.); (N.K.)
| |
Collapse
|
29
|
Ghosh S, Shintani T, Urushibara N, Taniguchi K, Kobayashi N. Whole-genomic analysis of a human G1P[9] rotavirus strain reveals intergenogroup-reassortment events. J Gen Virol 2012; 93:1700-1705. [DOI: 10.1099/vir.0.043026-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Group A rotavirus (RVA) strain K8 (RVA/Human-tc/JPN/K8/1977/G1P[9]) was found to have Wa-like VP7 and NSP1 genes and AU-1-like VP4 and NSP5 genes. To determine the exact origin and overall genetic makeup of this unusual RVA strain, the remaining genes (VP1–VP3, VP6 and NSP2–NSP4) of K8 were analysed in this study. Strain K8 exhibited a G1-P[9]-I1-R3-C3-M3-A1-N1-T3-E3-H3 genotype constellation, not reported previously. The VP6 and NSP2 genes of strain K8 were related closely to those of common human Wa-like G1P[8] and/or G3P[8] strains, whilst its VP1–VP3, NSP3 and NSP4 genes were related more closely to those of AU-1-like RVAs and/or AU-1-like genes of multi-reassortant strains than to those of other RVAs. Therefore, strain K8 might have originated from intergenogroup-reassortment events involving acquisition of four Wa-like genes, possibly from G1P[8] RVAs, by an AU-1-like P[9] strain. Whole-genomic analysis of strain K8 has provided important insights into the complex genetic diversity of RVAs.
Collapse
Affiliation(s)
- Souvik Ghosh
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tsuzumi Shintani
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Noriko Urushibara
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Koki Taniguchi
- Department of Virology and Parasitology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
30
|
Ghosh S, Shintani T, Kobayashi N. Evidence for the porcine origin of equine rotavirus strain H-1. Vet Microbiol 2012; 158:410-4. [DOI: 10.1016/j.vetmic.2012.02.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/08/2012] [Accepted: 02/23/2012] [Indexed: 10/28/2022]
|
31
|
Molecular characterization of a rare G9P[23] porcine rotavirus isolate from China. Arch Virol 2012; 157:1897-903. [PMID: 22729562 DOI: 10.1007/s00705-012-1363-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 04/26/2012] [Indexed: 10/28/2022]
Abstract
The fifth most important G genotype, G9 rotavirus, is recognized as an emerging genotype that is spreading around the world. Sequence analysis was completed of a rare group A rotavirus, strain G9P[23], that was designated rotavirus A pig/China/NMTL/2008/G9P[23] and abbreviated as NMTL. It was isolated from a piglet with diarrhea in China. Nucleotide sequence analysis revealed that the VP7 gene clustered within the G9 lineage VId. The VP4 gene clustered within the rare P[23] genotype. NMTL is the first porcine G9 stain reported in China. Thus, to further characterize the evolutionary diversity of the NMTL strain, all gene segments were used to draw a phylogenetic tree. Based on the new classification system of rotaviruses, the NMTL sequence revealed a G9-P[23]-I5-R1-C1-M1-A8-N1-T1-E1-H1 genotype with close similarity to human Wa-like and porcine strains. The results showed that (i) NSP2 and NSP4 genes of NMTL exhibited higher genetic relatedness to human group A rotaviruses than to porcine strains, (ii) the VP2 and VP4 genes clustered with porcine and porcine-like human strains, and (iii) VP1 genes clustered apart from the Wa-like human and porcine clusters. In view of rotavirus evolution, this report provides additional evidence to support the notion that the human and porcine rotavirus genomes might be related.
Collapse
|
32
|
Kim HH, Matthijnssens J, Kim HJ, Kwon HJ, Park JG, Son KY, Ryu EH, Kim DS, Lee WS, Kang MI, Yang DK, Hyun BH, Park SI, Park SJ, Cho KO. Full-length genomic analysis of porcine G9P[23] and G9P[7] rotavirus strains isolated from pigs with diarrhea in South Korea. INFECTION GENETICS AND EVOLUTION 2012; 12:1427-35. [PMID: 22613801 DOI: 10.1016/j.meegid.2012.04.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 04/17/2012] [Accepted: 04/23/2012] [Indexed: 10/28/2022]
Abstract
Group A rotaviruses (RVAs) are agents causing severe gastroenteritis in infants and young animals. G9 RVA strains are believed to have originated from pigs. However, this genotype has emerged as the fifth major human RVA genotype worldwide. To better understand the relationship between human and porcine RVA strains, complete RVA genome data are needed. For human RVA strains, the number of complete genome data have grown exponentially. However, there is still a lack of complete genome data on porcine RVA strains. Recently, G9 RVA strains have been identified as the third most important genotype in diarrheic pigs in South Korea in combinations with P[7] and P[23]. This study is the first report on complete genome analyses of 1 G9P[7] and 3 G9P[23] porcine RVA strains, resulting in the following genotype constellation: G9-P[7]/P[23]-I5-R1-C1-M1-A8-N1-T1-E1-H1. By comparisons of these genotype constellations, it was revealed that the Korean G9P[7] and G9P[23] RVA strains possessed a typical porcine RVA backbone, similar to other known porcine RVA strains. However, detailed phylogenetic analyses revealed the presence of intra-genotype reassortments among porcine RVA strains in South Korea. Thus, our data provide genetic information of G9 RVA strains increasingly detected in both humans and pigs, and will help to establish the role of pigs as a source or reservoir for novel human RVA strains.
Collapse
Affiliation(s)
- Ha-Hyun Kim
- Biotherapy Human Resources Center, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ghosh S, Urushibara N, Taniguchi K, Kobayashi N. Whole genomic analysis reveals the porcine origin of human G9P[19] rotavirus strains Mc323 and Mc345. INFECTION GENETICS AND EVOLUTION 2012; 12:471-7. [DOI: 10.1016/j.meegid.2011.12.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 11/25/2011] [Accepted: 12/13/2011] [Indexed: 01/24/2023]
|
34
|
Jere KC, Sawyerr T, Seheri LM, Peenze I, Page NA, Geyer A, Steele AD. A first report on the characterization of rotavirus strains in Sierra Leone. J Med Virol 2011; 83:540-50. [PMID: 21264877 DOI: 10.1002/jmv.21999] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In an effort to reduce the high mortalities associated with rotavirus infections, a number of African countries are considering introducing human rotavirus vaccines. The demonstrated safety and efficacy of the live-attenuate human rotavirus vaccines in several clinical trials worldwide has accelerated such initiatives. Although the percentage-mortality rates for Sierra Leone are top of the list for rotavirus-associated deaths in Africa, no study has reported the prevalent strains circulating within this country. In this study, stool specimens were collected from 128 Sierra Leonean children presenting with diarrhea in 2005. Almost 37.5% (48/128) were rotavirus positive by EIA, of which 89.6% (43/48) revealed a short electropherotype, and a further 6.98% (3/48) could not be assigned a PAGE pattern. Genotyping analysis revealed G2P[4] (30.23%), G2P[6] (13.95%), G8P[6] (11.63%), G2P[8] (4.65%), G8P[4] (4.65%), and G8P[8] (2%) strains. About 11% were only assigned VP7 genotypes (G2), while 20.9% had mixed G and P types. The frequent detection of G2 rotaviruses could be of concern considering data generated from some studies that suggests lower efficacy of Rotarix® vaccine against G2 rotaviruses. This underscores the need for extensive and continuous regional strain surveillance to support rotavirus vaccines introduction and guide future vaccine development efforts. Such information will be useful before considering administration of specific rotavirus vaccine candidates in countries like Sierra Leone where little is known about circulating rotavirus strains.
Collapse
Affiliation(s)
- K C Jere
- MRC Diarrhoeal Pathogens Research Unit, Department of Virology, University of Limpopo (Medunsa Campus), Pretoria, South Africa
| | | | | | | | | | | | | |
Collapse
|
35
|
Jere KC, Mlera L, Page NA, van Dijk AA, O'Neill HG. Whole genome analysis of multiple rotavirus strains from a single stool specimen using sequence-independent amplification and 454® pyrosequencing reveals evidence of intergenotype genome segment recombination. INFECTION GENETICS AND EVOLUTION 2011; 11:2072-82. [PMID: 22019521 DOI: 10.1016/j.meegid.2011.09.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 09/27/2011] [Accepted: 09/28/2011] [Indexed: 12/12/2022]
Abstract
Infection of a single host cell with two or more different rotavirus strains creates conditions favourable for evolutionary mechanisms like reassortment and recombination that can generate novel strains. Despite numerous reports describing mixed rotavirus infections, whole genome characterisation of rotavirus strains in a mixed infection case has not been reported. Double-stranded RNA, exhibiting a long electropherotype pattern only, was extracted from a single human stool specimen (RVA/Human-wt/ZAF/2371WC/2008/G9P[8]). Both short and long electropherotype profiles were however detected in the sequence-independent amplified cDNA derived from the dsRNA, suggesting infection with more than one rotavirus strain. 454® pyrosequencing of the amplified cDNA revealed co-infection of at least four strains. Both genotype 1 (Wa-like) and genotype 2 (DS-1-like) were assigned to the consensus sequences obtained from the nine genome segments encoding NSP1-NSP5, VP1-VP3 and VP6. Genotypes assigned to the genome segments encoding VP4 were P[4] (DS-1-like), P[6] (ST3-like) and P[8] (Wa-like) genotypes. Since four distinct genotypes [G2 (DS-1-like), G8, G9 (Wa-like) and G12] were assigned to the four consensus nucleotide sequences obtained for genome segment 9 (VP7), it was concluded that at least four distinct rotaviruses were present in the stool. Intergenotype genome recombination events were observed in genome segments encoding NSP2, NSP4 and VP6. The close similarities of some of the genome segments encoding NSP2, VP6 and VP7 to artiodactyl rotaviruses suggest that some of the infecting strains shared common ancestry with animal strains, or that interspecies transmission occurred previously. The sequence-independent genome amplification technology coupled with 454® pyrosequencing used in this study enabled the characterisation of the whole genomes of multiple rotavirus strains in a single stool specimen that was previously assigned single genotypes, i.e. G9P[8], by sequence-dependent RT-PCR.
Collapse
Affiliation(s)
- Khuzwayo C Jere
- Biochemistry Division, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | | | | | | | | |
Collapse
|
36
|
Ghosh S, Adachi N, Gatheru Z, Nyangao J, Yamamoto D, Ishino M, Urushibara N, Kobayashi N. Whole-genome analysis reveals the complex evolutionary dynamics of Kenyan G2P[4] human rotavirus strains. J Gen Virol 2011; 92:2201-2208. [DOI: 10.1099/vir.0.033001-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Although G2P[4] rotaviruses are common causes of acute childhood diarrhoea in Africa, to date there are no reports on whole genomic analysis of African G2P[4] strains. In this study, the nearly complete genome sequences of two Kenyan G2P[4] strains, AK26 and D205, detected in 1982 and 1989, respectively, were analysed. Strain D205 exhibited a DS-1-like genotype constellation, whilst strain AK26 appeared to be an intergenogroup reassortant with a Wa-like NSP2 genotype on the DS-1-like genotype constellation. The VP2-4, VP6-7, NSP1, NSP3 and NSP5 genes of strain AK26 and the VP2, VP4, VP7 and NSP1–5 genes of strain D205 were closely related to those of the prototype or other human G2P[4] strains. In contrast, their remaining genes were distantly related, and, except for NSP2 of AK26, appeared to originate from or share a common origin with rotavirus genes of artiodactyl (ruminant and camelid) origin. These observations highlight the complex evolutionary dynamics of African G2P[4] rotaviruses.
Collapse
Affiliation(s)
- Souvik Ghosh
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | - Zipporah Gatheru
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - James Nyangao
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Dai Yamamoto
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masaho Ishino
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Noriko Urushibara
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
37
|
Ghosh S, Paul SK, Yamamoto D, Nagashima S, Kobayashi N. Full genomic analyses of human rotavirus strains possessing the rare P[8]b VP4 subtype. INFECTION GENETICS AND EVOLUTION 2011; 11:1481-6. [DOI: 10.1016/j.meegid.2011.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 05/16/2011] [Accepted: 05/18/2011] [Indexed: 11/30/2022]
|
38
|
Detection and full genomic analysis of G6P[9] human rotavirus in Japan. Virus Genes 2011; 43:215-23. [DOI: 10.1007/s11262-011-0624-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 05/11/2011] [Indexed: 11/26/2022]
|
39
|
Matthijnssens J, Ciarlet M, McDonald SM, Attoui H, Bányai K, Brister JR, Buesa J, Esona MD, Estes MK, Gentsch JR, Iturriza-Gómara M, Johne R, Kirkwood CD, Martella V, Mertens PPC, Nakagomi O, Parreño V, Rahman M, Ruggeri FM, Saif LJ, Santos N, Steyer A, Taniguchi K, Patton JT, Desselberger U, Van Ranst M. Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG). Arch Virol 2011; 156:1397-413. [PMID: 21597953 DOI: 10.1007/s00705-011-1006-z] [Citation(s) in RCA: 740] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 04/19/2011] [Indexed: 12/31/2022]
Abstract
In April 2008, a nucleotide-sequence-based, complete genome classification system was developed for group A rotaviruses (RVs). This system assigns a specific genotype to each of the 11 genome segments of a particular RV strain according to established nucleotide percent cutoff values. Using this approach, the genome of individual RV strains are given the complete descriptor of Gx-P[x]-Ix-Rx-Cx-Mx-Ax-Nx-Tx-Ex-Hx. The Rotavirus Classification Working Group (RCWG) was formed by scientists in the field to maintain, evaluate and develop the RV genotype classification system, in particular to aid in the designation of new genotypes. Since its conception, the group has ratified 51 new genotypes: as of April 2011, new genotypes for VP7 (G20-G27), VP4 (P[28]-P[35]), VP6 (I12-I16), VP1 (R5-R9), VP2 (C6-C9), VP3 (M7-M8), NSP1 (A15-A16), NSP2 (N6-N9), NSP3 (T8-T12), NSP4 (E12-E14) and NSP5/6 (H7-H11) have been defined for RV strains recovered from humans, cows, pigs, horses, mice, South American camelids (guanaco), chickens, turkeys, pheasants, bats and a sugar glider. With increasing numbers of complete RV genome sequences becoming available, a standardized RV strain nomenclature system is needed, and the RCWG proposes that individual RV strains are named as follows: RV group/species of origin/country of identification/common name/year of identification/G- and P-type. In collaboration with the National Center for Biotechnology Information (NCBI), the RCWG is also working on developing a RV-specific resource for the deposition of nucleotide sequences. This resource will provide useful information regarding RV strains, including, but not limited to, the individual gene genotypes and epidemiological and clinical information. Together, the proposed nomenclature system and the NCBI RV resource will offer highly useful tools for investigators to search for, retrieve, and analyze the ever-growing volume of RV genomic data.
Collapse
Affiliation(s)
- Jelle Matthijnssens
- Laboratory of Clinical & Epidemiological Virology, Department of Microbiology & Immunology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ghosh S, Paul SK, Hossain MA, Alam MM, Ahmed MU, Kobayashi N. Full genomic analyses of two human G2P[4] rotavirus strains detected in 2005: identification of a caprine-like VP3 gene. J Gen Virol 2011; 92:1222-1227. [DOI: 10.1099/vir.0.029868-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Although G2P[4] rotaviruses are common causes of infantile diarrhoea, to date only the full genomes of the prototype (strain DS-1) and another old strain, TB-Chen, have been analysed. We report here the full genomic analyses of two Bangladeshi G2P[4] strains, MMC6 and MMC88, detected in 2005. Both the strains exhibited a DS-1-like genotype constellation. Excluding the VP4 and VP7 genes, and except for VP3 of MMC88, the MMC strains were genetically more closely related to the contemporary G2P[4] and several non-G2P[4] human strains than the prototype G2P[4] strain. However, by phylogenetic analyses, the VP2, VP3 (except MMC88), NSP1 and NSP3–5 genes of these strains appeared to share a common origin with those of the prototype strain, whilst their VP1, VP6 and NSP2 genes clustered near a caprine strain. The VP3 gene of MMC88 exhibited maximum relatedness to a local caprine strain, representing the first reported human G2P[4] strain with a gene of animal origin.
Collapse
Affiliation(s)
- Souvik Ghosh
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shyamal Kumar Paul
- Department of Microbiology, Mymensingh Medical College, Mymensingh, Bangladesh
| | | | - Mohammed Mahbub Alam
- Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Muzahed Uddin Ahmed
- Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
41
|
Ghosh S, Gatheru Z, Nyangao J, Adachi N, Urushibara N, Kobayashi N. Full genomic analysis of a G8P[1] rotavirus strain isolated from an asymptomatic infant in Kenya provides evidence for an artiodactyl-to-human interspecies transmission event. J Med Virol 2011; 83:367-76. [PMID: 21181935 DOI: 10.1002/jmv.21974] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Group A rotavirus (GAR) G8P[1] strains, found sometimes in cattle, have been reported rarely from humans. Therefore, analysis of the full genomes of human G8P[1] strains are of significance in the context of studies on interspecies transmission of rotaviruses. However, to date, only partial-length nucleotide sequences are available for the 11 genes of a single human G8P[1] strain, while the partial sequences of two other strains have been reported. The present study reports the first complete genome sequence of a human G8P[1] strain, B12, detected from an asymptomatic infant in Kenya in 1987. By nucleotide sequence identities and phylogenetic analyses, the full-length nucleotide sequences of VP7-VP4-VP6-VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5 genes of strain B12 were assigned to G8-P[1]-I2-R2-C2-M2-A3-N2-T6-E2-H3 genotypes, respectively. Each of the 11 genes of strain B12 appeared to be more related to cognate genes of artiodactyl (ruminant and/or camelid) and/or artiodactyl-derived human GAR strains than those of most other rotaviruses. Strain B12 exhibited low levels of genetic relatedness to canonical human GAR strains, such as Wa and DS-1, ruling out the possibility of its origin from reassortment events between artiodactyl-like human and true human strains. These observations suggest that strain B12 might have been directly transmitted from artiodactyls to humans. Unhygienic conditions and close proximity of humans to livestock at the sampling site might have facilitated this rare event. This is the first report on a full genomic analysis of a rotavirus strain from Kenya. To our knowledge, strain B12 might be the oldest G8 strain characterized molecularly from the Africa continent.
Collapse
Affiliation(s)
- Souvik Ghosh
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | | | | | | | | | | |
Collapse
|
42
|
Than VT, Le VP, Lim I, Kim W. Complete genomic characterization of cell culture adapted human G12P[6] rotaviruses isolated from South Korea. Virus Genes 2011; 42:317-22. [DOI: 10.1007/s11262-011-0576-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 01/17/2011] [Indexed: 01/24/2023]
|
43
|
Abe M, Ito N, Masatani T, Nakagawa K, Yamaoka S, Kanamaru Y, Suzuki H, Shibano KI, Arashi Y, Sugiyama M. Whole genome characterization of new bovine rotavirus G21P[29] and G24P[33] strains provides evidence for interspecies transmission. J Gen Virol 2011; 92:952-60. [DOI: 10.1099/vir.0.028175-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
44
|
Ghosh S, Alam MM, Ahmed MU, Talukdar RI, Paul SK, Kobayashi N. Complete genome constellation of a caprine group A rotavirus strain reveals common evolution with ruminant and human rotavirus strains. J Gen Virol 2010; 91:2367-73. [PMID: 20505013 DOI: 10.1099/vir.0.022244-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study reports the first complete genome sequence of a caprine group A rotavirus (GAR) strain, GO34. The VP7-VP4-VP6-VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5 genes of strain GO34, detected in Bangladesh, were assigned to the G6-P[1]-I2-R2-C2-M2-A11-N2-T6-E2-H3 genotypes, respectively. Strain GO34 was closely related to the VP4, VP6-7 and NSP4-5 genes of bovine GARs and the NSP1 gene of GO34 to an ovine GAR. Strain GO34 shared low nucleotide sequence identities (<90 %) with VP2-3 genes of other GARs, and was equally related to NSP3 genes of human, ruminant and camelid strains. The VP1, VP6 and NSP2 genes of strain GO34 also exhibited a close genetic relatedness to human G2, G6, G8 and G12 DS-1-like GARs, whereas the NSP1 of GO34 was also closely related to human G6P[14] strains. All these findings point to a common evolutionary origin of GO34 and bovine, ovine, antelope, guanaco and human G6P[14] GARs, although phylogenetically GO34 is not particularly closely related to any other rotavirus strains known to date.
Collapse
Affiliation(s)
- Souvik Ghosh
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | | | | | | | | | | |
Collapse
|