1
|
Hameed A, Rosa C, O’Donnell CA, Rajotte EG. Ecological Interactions among Thrips, Soybean Plants, and Soybean Vein Necrosis Virus in Pennsylvania, USA. Viruses 2023; 15:1766. [PMID: 37632108 PMCID: PMC10458877 DOI: 10.3390/v15081766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Analysis of ecological and evolutionary aspects leading to durability of resistance in soybean cultivars against species Soybean vein necrosis orthotospovirus (SVNV) (Bunyavirales: Tospoviridae) is important for the establishment of integrated pest management (IPM) across the United States, which is a leading exporter of soybeans in the world. SVNV is a seed- and thrips- (vector)-borne plant virus known from the USA and Canada to Egypt. We monitored the resistance of soybean cultivars against SVNV, surveyed thrips species on various crops including soybeans in Pennsylvania, and studied thrips overwintering hibernation behavior under field conditions. Field and lab experiments determined disease incidence and vector abundance in soybean genotypes. The impact of the virus, vector, and their combination on soybean physiology was also evaluated. Seed protein, fiber, oil, and carbohydrate content were analyzed using near infra-red spectroscopy. We found that the variety Channel3917R2x had higher numbers of thrips; hence, it was categorized as preferred, while results showed that no variety was immune to SVNV. We found that thrips infestation alone or in combination with SVNV infection negatively impacted soybean growth and physiological processes.
Collapse
Affiliation(s)
- Asifa Hameed
- Department of Entomology, Pennsylvania State University, State College, PA 16802, USA;
| | - Cristina Rosa
- Plant Pathology and Environmental Microbiology, Pennsylvania State University, State College, PA 16802, USA;
| | - Cheryle A. O’Donnell
- USDA APHIS PPQ National Identification Services National Specialist (Thysanoptera and Psylloidea), Systematic Entomology Laboratory, B-005, Rm 137 BARC-West, 10300 Baltimore Avenue, Beltsville, MD 20705, USA;
| | - Edwin G. Rajotte
- Department of Entomology, Pennsylvania State University, State College, PA 16802, USA;
| |
Collapse
|
2
|
Elmore MG, Groves CL, Hajimorad MR, Stewart TP, Gaskill MA, Wise KA, Sikora E, Kleczewski NM, Smith DL, Mueller DS, Whitham SA. Detection and discovery of plant viruses in soybean by metagenomic sequencing. Virol J 2022; 19:149. [PMID: 36100874 PMCID: PMC9472442 DOI: 10.1186/s12985-022-01872-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Viruses negatively impact soybean production by causing diseases that affect yield and seed quality. Newly emerging or re-emerging viruses can also threaten soybean production because current control measures may not be effective against them. Furthermore, detection and characterization of new plant viruses requires major efforts when no sequence or antibody-based resources are available. METHODS In this study, soybean fields were scouted for virus-like disease symptoms during the 2016-2019 growing seasons. Total RNA was extracted from symptomatic soybean parts, cDNA libraries were prepared, and RNA sequencing was performed using high-throughput sequencing (HTS). A custom bioinformatic workflow was used to identify and assemble known and unknown virus genomes. RESULTS Several viruses were identified in single or mixed infections. Full- or nearly full-length genomes were generated for tobacco streak virus (TSV), alfalfa mosaic virus (AMV), tobacco ringspot virus (TRSV), soybean dwarf virus (SbDV), bean pod mottle virus (BPMV), soybean vein necrosis virus (SVNV), clover yellow vein virus (ClYVV), and a novel virus named soybean ilarvirus 1 (SIlV1). Two distinct ClYVV isolates were recovered, and their biological properties were investigated in Nicotiana benthamiana, broad bean, and soybean. In addition to infections by individual viruses, we also found that mixed viral infections in various combinations were quite common. CONCLUSIONS Taken together, the results of this study showed that HTS-based technology is a valuable diagnostic tool for the identification of several viruses in field-grown soybean and can provide rapid information about expected viruses as well as viruses that were previously not detected in soybean.
Collapse
Affiliation(s)
- Manjula G Elmore
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, 2213 Pammel Drive, Ames, IA, 50011-1101, USA.
| | - Carol L Groves
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - M R Hajimorad
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Tracey P Stewart
- Roy J. Carver High Resolution Microscopy Facility, Iowa State University, Ames, IA, 50011, USA
| | - Mikaela A Gaskill
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, 2213 Pammel Drive, Ames, IA, 50011-1101, USA
| | - Kiersten A Wise
- Department of Plant Pathology, University of Kentucky, Princeton, KY, 43445, USA
| | - Edward Sikora
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, USA
| | | | - Damon L Smith
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Daren S Mueller
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, 2213 Pammel Drive, Ames, IA, 50011-1101, USA
| | - Steven A Whitham
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, 2213 Pammel Drive, Ames, IA, 50011-1101, USA.
| |
Collapse
|
3
|
The Effect of Species Soybean Vein Necrosis Orthotospovirus (SVNV) on Life Table Parameters of Its Vector, Soybean Thrips (Neohydatothrips variabilis Thysanoptera: Thripidae). INSECTS 2022; 13:insects13070632. [PMID: 35886808 PMCID: PMC9324745 DOI: 10.3390/insects13070632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Soybean vein necrosis, caused by soybean vein necrosis virus (SVNV) is an important viral disease of soybeans that can be seed borne or insect vectored. This plant viral disease affects seed qualitative parameters, including seed oil content. Increased damage is observed in late planted soybeans. The disease is widespread, and almost all soybean-growing states in USA are affected. Globally, SVNV is reported in Canada, the United States, Egypt and Pakistan. In order to manage the disease, it is important to understand the vector’s biology and the effect of SVNV on life table parameters (survival, longevity, mortality, doubling time, generation, rate of intrinsic increase) of vector soybean thrips, which can help to establish pest management predictive models. We used an age-stage two-sex life table estimation model to define the effect of SVNV on the life parameters of male and female soybean thrips. Overall, we found that SVNV infection increased viruliferous thrips survival, longevity, gross reproduction rate, life expectancy and decreased population doubling time. Overall viruliferous thrips benefit from SVNV infection and transmission due to better survival, longevity and increased fitness. Abstract Soybean vein necrosis orthotospovirus (SVNV: Tospoviridae: Orthotospovirus), the causal agent of soybean vein necrosis disease, is vectored by soybean thrips Neohydatothrips variabilis (Beach, 1896), and to a lesser extent by five other thrips species. There is increasing incidence of soybean vein necrosis (SVN) disease in all soybean growing states in the United States, Canada, Egypt and Pakistan, necessitating a study of the system’s ecology and management. We addressed the effect of SVNV on the life table parameters of the vector. We used an ‘age-stage two-sex’ life table approach, which provided detailed life stage durations of each larval instar and adults (both sexes). Our results showed that the intrinsic rate of increase (r), finite rate of increase (λ) and mortality index (qx) were higher in the infected population, while the net reproduction rate (Ro), cumulative probability of survival (lx) and gross reproduction rate (GRR) were lower in the uninfected population. Overall, in both infected and uninfected populations, the number of eggs producing haploid males via arrhenotoky ranged from 9–12 per female. Male to female ratio was female biased in the infected population. Overall, our study provided evidence that virus infection, by decreasing the population doubling time, could enhance the virus and vector populations in soybeans.
Collapse
|
4
|
Hameed A, Ulmer JM, Miko I, Rosa C, Rajotte EG. Morphology of the Female Reproductive System of the Soybean Thrips, Neohydatothrips variabilis (Beach, 1896) (Thysanoptera: Thripidae). INSECTS 2022; 13:insects13070566. [PMID: 35886742 PMCID: PMC9317315 DOI: 10.3390/insects13070566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 11/28/2022]
Abstract
Simple Summary Soybean thrips are an important vector of Soybean vein necrosis virus disease, found in all soybean-growing regions of the United States and Canada. The disease reduces the seed oil content and fatty acid profiles in infected plants. It is important to know the morphology of the female reproductive system of soybean thrips to understand the egg-laying mechanism and develop strategies for virus vector management. For this purpose, we used fuchsin staining, paraffin-based histology, dissections, serial block-face scanning electron microscopy and confocal laser scanning microscopy techniques to understand the structure and motorization of the internal and external genitalia of soybean thrips. We also investigated the egg-laying behavior of soybean thrips. The female reproductive system is composed of two ovaries, an oviduct, an accessory gland, an appendage gland, a common oviduct and a vagina. Female soybean thrips lay eggs in the parenchymatous tissues near the veins of the leaves. The appendage gland likely secretes lubrication to facilitate the movement of eggs through the external genitalia. Seven muscles support the movement of eggs from the ovaries to the leaf surface. The anatomy and probable role of each muscle is also described. Abstract Soybean thrips (Neohydatothrips variabilis) are an important phytophagous vector of the widely recognized Soybean vein necrosis orthotospovirus (SVNV). Understanding the egg-laying behavior of these thrips could aid in developing strategies for the management of the vector and virus. In this study, we described the egg-laying behavior of N. variabilis and reconstructed the three-dimensional morphology of the female terminalia by using serial block-face scanning electron microscopy (SBFSEM) and confocal laser scanning microscopy (CLSM). The female reproductive system consists of two panoistic ovaries consisting of eight ovarioles. The appendage gland is connected to the ovaries by two muscles, and to the body wall by a single muscle. The spermatheca is connected to the eighth tergum through four branched muscles, to the basivalvulae of the ovipositor by one muscle and to the vagina by a single muscle. The external genitalia are operated by seven muscles. The movement of the eggs inside the ovipositor is achieved by the back and forth “rocking” movement of the first valvulae and valvifer. Eggs are deposited into the parenchymatous tissue alongside leaf veins. To the best of our knowledge, this is the first study describing the internal and external genitalia of N. variabilis.
Collapse
Affiliation(s)
- Asifa Hameed
- Entomology, The Pennsylvania State University, 501 ASI, University Park, State College, PA 16802, USA;
- Correspondence: ; Tel.: +1-923-051-546-083
| | - Jonah M. Ulmer
- Entomology, State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany;
| | - Istvan Miko
- Biological Sciences, University of New Hampshire Durham, Spaulding Hall Rm 266, Durham, NH 03824, USA;
| | - Cristina Rosa
- Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, State College, PA 16802, USA;
| | - Edwin G. Rajotte
- Entomology, The Pennsylvania State University, 501 ASI, University Park, State College, PA 16802, USA;
| |
Collapse
|
5
|
El-Wahab ASA. Molecular characterization and incidence of new tospovirus: Soybean Vein Necrosis Virus (SVNV) in Egypt. BRAZ J BIOL 2021; 84:e246460. [PMID: 34878000 DOI: 10.1590/1519-6984.246460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 07/24/2021] [Indexed: 11/22/2022] Open
Abstract
Field survey study was conducted season (2017). Soybeans and weeds were weekly sampled randomly. Thrips adults were identified and counted. Detection of the virus isolate and the natural incidence was determined using; Mechanical transmission, host range, DAS-ELISA, RT-PCR. The natural incidence thrips individuals was detected depending on the SVNV% in thrips individuals and weeds hosts. Ten thrips species were associated with soybean plants in the field. The most abundant species was T. tabaci, average 256.5 average no.of individuals, followed by F. occidentalis (142.5 average no. of individuals), then N. variabilis (86.6/ average no. of individuals). Fourteen thrips species occurred on 5 legumes field crops and 41 weed plant species within soybean field. The highest average number 40.6.of individuals were recorded on Ammi majus. While the lowest one 3.3 average no. of individuals were on Urtica urens. Only 21diagnostic plant species were susceptible to infection with SVNV. G. max and Vigna radiate, were the highest percentage of infection 80% followed by V. unguilata & N. benthamiana, 75%. Egyptian isolate of Soybean vein necrosis virus (SVNV) in this study showed a high degree of similarity and it is closely related to TSWV from Egypt (DQ479968) and TCSV from USA (KY820965) with nucleotide sequence identity of 78%. Four thrips species transmitted SVNV (F. fusca 4.0%, F. schultzei 4.3%, F. tritici 3.3% and N. variabilis 68.0% transmission). Both C. phaseoli and M. sjostedti can acquire the virus but unable to transmit it. The following species; T. tabaci, F. occidentalis, S. dorsallis and T. palmi cannot acquire or transmit SVNV. The incidence of SVNV in the field started by the end of July then increased gradualy from 12.7 to 71.3% by the end of the season. In conclusion, few thrips individuals invaded soybean crops are enough to transmit high rate of SVNV within the crop. Furthermore, several vector species are also abundant on weeds, which are the major sources of soybean viruses transmitted to the crops. This information might be important for control and reduce the incidence of SVNV infection.
Collapse
Affiliation(s)
- A S Abd El-Wahab
- Cairo University, Faculty of Agriculture, Department of Economic Entomology and Pesticides, Cairo, Egypt
| |
Collapse
|
6
|
Zhang Z, Zheng K, Zhao L, Su X, Zheng X, Wang T. Occurrence, Distribution, Evolutionary Relationships, Epidemiology, and Management of Orthotospoviruses in China. Front Microbiol 2021; 12:686025. [PMID: 34421843 PMCID: PMC8371445 DOI: 10.3389/fmicb.2021.686025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
Orthotospoviruses are responsible for serious crop losses worldwide. Orthotospoviral diseases have spread rapidly in China over the past 10 years and are now found in 19 provinces. Currently, 17 Orthotospovirus species have been reported in China, including eight newly identified species from this genus. The number of new highly pathogenic Orthotospovirus strains or species has increased, likely because of the virus species diversity, the wide range of available hosts, adaptation of the viruses to different climates, and multiple transmission routes. This review describes the distribution of Orthotospovirus species, host plants, typical symptoms of infection under natural conditions, the systemic infection of host plants, spatial clustering characteristics of virus particles in host cells, and the orthotospoviral infection cycle in the field. The evolutionary relationships of orthotospoviruses isolated from China and epidemiology are also discussed. In order to effectively manage orthotospoviral disease, future research needs to focus on deciphering the underlying mechanisms of systemic infection, studying complex/mixed infections involving the same or different Orthotospovirus species or other viruses, elucidating orthotospovirus adaptative mechanisms to multiple climate types, breeding virus-resistant plants, identifying new strains and species, developing early monitoring and early warning systems for plant infection, and studying infection transmission routes.
Collapse
Affiliation(s)
- Zhongkai Zhang
- Key Lab of Agricultural Biotechnology of Yunnan Province, Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | | | | | | | | | | |
Collapse
|
7
|
Lagos-Kutz D, Pawlowski ML, Haudenshield J, Han J, Domier LL, Hartman GL. Evaluation of Soybean for Resistance to Neohyadatothrips variabilis (Thysanoptera: Thripidae) Noninfected and Infected With Soybean Vein Necrosis Virus. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:949-955. [PMID: 31800083 DOI: 10.1093/jee/toz318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Indexed: 06/10/2023]
Abstract
Soybean vein necrosis virus (SVNV) was first identified in Arkansas and Tennessee in 2008 and is now known to be widespread in the United States and Canada. Multiple species of thrips transmit this and other tospoviruses with Neohydatothrips variabilis (Beach) (soybean thrips) cited as the most efficient vector for SVNV. In this study, 18 soybean, Glycine max (L.) Merr., genotypes were evaluated in four experiments by infesting plants with noninfected and SVNV-infected thrips using choice and no-choice assays. In both choice experiments with noninfected and SVNV-infected thrips, the lowest number of immature soybean thrips occurred on plant introductions (PIs) 229358 and 604464 while cultivars Williams 82 and Williamsfield Illini 3590N supported higher counts of mature thrips. The counts between the two assays (noninfected and SVNV-infected thrips) were positively correlated. In both no-choice experiments with noninfected and SVNV-infected thrips, counts of thrips did not differ by soybean genotypes. Further studies are needed to characterize the inheritance and mechanisms involved in the resistance found in the choice assay.
Collapse
Affiliation(s)
- D Lagos-Kutz
- United States Department of Agriculture-Agricultural Research Service, Urbana, IL
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - M L Pawlowski
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - J Haudenshield
- United States Department of Agriculture-Agricultural Research Service, Urbana, IL
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - J Han
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - L L Domier
- United States Department of Agriculture-Agricultural Research Service, Urbana, IL
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - G L Hartman
- United States Department of Agriculture-Agricultural Research Service, Urbana, IL
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
8
|
Zhou J, Tzanetakis IE. Soybean vein necrosis orthotospovirus can move systemically in soybean in the presence of bean pod mottle virus. Virus Genes 2020; 56:104-107. [PMID: 31745745 DOI: 10.1007/s11262-019-01715-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 11/13/2019] [Indexed: 11/27/2022]
Abstract
Soybean vein necrosis virus (SVNV), the causal agent of the homonymous disease, is a ubiquitous virus in North America. The widespread presence of the virus has led to the hypothesis that mixed infections with other viruses could alter disease symptoms, localization in the plant and even epidemiology. The potential interaction between bean pod mottle virus (BPMV), soybean mosaic virus (SMV), the most economically important soybean viruses in the U.S., and SVNV was assessed in the work presented here. Results revealed that soybean, a local lesion host for SVNV, becomes permissive in the presence of BPMV; whereas there where no obvious interactions observed in mixed infections with SMV.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR, 72701, USA
| | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR, 72701, USA.
| |
Collapse
|
9
|
Zhou J, Tzanetakis IE. Transmission blockage of an orthotospovirus using synthetic peptides. J Gen Virol 2020; 101:112-121. [PMID: 31724933 DOI: 10.1099/jgv.0.001352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Orthotospoviruses are acquired by thrips during feeding on infected tissue. Virions travel through the foregut and enter midgut epithelial cells through the interaction between the viral glycoproteins and cellular receptors. Glycoprotein RGD motifs and N-linked glycosylation sites have been predicted to mediate receptor binding or play important roles in virus entry into host cells, yet their function needs to be validated. In this study, peptides derived from the soybean vein necrosis virus N glycoprotein were utilized to identify critical regions in virus-vector interactions. Transmission mediated by single Neohydatothrips variabilis dropped by more than 2/3 when thrips were fed on peptide NASIAAAHEVSQE or the combination of NASIRGDHEVSQE and RLTGECNITKVSLTN when compared to the controls; indicating that this strategy could significantly reduce transmission efficiency, opening new avenues in the control of diseases caused by orthotospoviruses.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, USA
| | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, USA
| |
Collapse
|
10
|
Abudurexiti A, Adkins S, Alioto D, Alkhovsky SV, Avšič-Županc T, Ballinger MJ, Bente DA, Beer M, Bergeron É, Blair CD, Briese T, Buchmeier MJ, Burt FJ, Calisher CH, Cháng C, Charrel RN, Choi IR, Clegg JCS, de la Torre JC, de Lamballerie X, Dèng F, Di Serio F, Digiaro M, Drebot MA, Duàn X, Ebihara H, Elbeaino T, Ergünay K, Fulhorst CF, Garrison AR, Gāo GF, Gonzalez JPJ, Groschup MH, Günther S, Haenni AL, Hall RA, Hepojoki J, Hewson R, Hú Z, Hughes HR, Jonson MG, Junglen S, Klempa B, Klingström J, Kòu C, Laenen L, Lambert AJ, Langevin SA, Liu D, Lukashevich IS, Luò T, Lǚ C, Maes P, de Souza WM, Marklewitz M, Martelli GP, Matsuno K, Mielke-Ehret N, Minutolo M, Mirazimi A, Moming A, Mühlbach HP, Naidu R, Navarro B, Nunes MRT, Palacios G, Papa A, Pauvolid-Corrêa A, Pawęska JT, Qiáo J, Radoshitzky SR, Resende RO, Romanowski V, Sall AA, Salvato MS, Sasaya T, Shěn S, Shí X, Shirako Y, Simmonds P, Sironi M, Song JW, Spengler JR, Stenglein MD, Sū Z, Sūn S, Táng S, Turina M, Wáng B, Wáng C, Wáng H, Wáng J, Wèi T, Whitfield AE, Zerbini FM, Zhāng J, Zhāng L, Zhāng Y, Zhang YZ, Zhāng Y, Zhou X, Zhū L, Kuhn JH. Taxonomy of the order Bunyavirales: update 2019. Arch Virol 2019; 164:1949-1965. [PMID: 31065850 PMCID: PMC6641860 DOI: 10.1007/s00705-019-04253-6] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/16/2019] [Indexed: 10/26/2022]
Abstract
In February 2019, following the annual taxon ratification vote, the order Bunyavirales was amended by creation of two new families, four new subfamilies, 11 new genera and 77 new species, merging of two species, and deletion of one species. This article presents the updated taxonomy of the order Bunyavirales now accepted by the International Committee on Taxonomy of Viruses (ICTV).
Collapse
Affiliation(s)
- Abulikemu Abudurexiti
- Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Ürümqi, China
| | - Scott Adkins
- United States Department of Agriculture, Agricultural Research Service, US Horticultural Research Laboratory, Fort Pierce, FL, USA
| | - Daniela Alioto
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Portici, Italy
| | - Sergey V Alkhovsky
- D. I. Ivanovsky Institute of Virology, N. F. Gamaleya Federal Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | | | - Matthew J Ballinger
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | | | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Éric Bergeron
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Thomas Briese
- Center for Infection and Immunity, and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Michael J Buchmeier
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Felicity J Burt
- Division of Virology, National Health Laboratory Service and Division of Virology, University of the Free State, Bloemfontein, Republic of South Africa
| | | | - Chénchén Cháng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, China
| | - Rémi N Charrel
- Unité des Virus Emergents (Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France
| | - Il Ryong Choi
- Plant Breeding Genetics and Biotechnology Division and International Rice Research Institute, Los Baños, Philippines
| | | | - Juan Carlos de la Torre
- Department of Immunology and Microbiology IMM-6, The Scripps Research Institute, La Jolla, CA, USA
| | - Xavier de Lamballerie
- Unité des Virus Emergents (Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France
| | - Fēi Dèng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | | | - Michael A Drebot
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Xiǎoméi Duàn
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, China
| | - Hideki Ebihara
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Koray Ergünay
- Virology Unit, Department of Medical Microbiology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | | | - Aura R Garrison
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - George Fú Gāo
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jean-Paul J Gonzalez
- Center of Excellence for Emerging and Zoonotic Animal Disease, Kansas State University, Manhattan, KS, USA
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Stephan Günther
- Department of Virology, Bernhard-Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arboviruses and Hemorrhagic Fever Reference and Research, Hamburg, Germany
| | - Anne-Lise Haenni
- Institut Jacques Monod, CNRS-Université Paris-Diderot, Paris, France
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Jussi Hepojoki
- Department of Virology, University of Helsinki, Faculty of Medicine, Medicum, Helsinki, Finland
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Roger Hewson
- Public Health England, Porton Down, Wiltshire, Salisbury, UK
| | - Zhìhóng Hú
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Holly R Hughes
- Centers for Disease Control and Prevention, Division of Vector-Borne Diseases, Fort Collins, CO, USA
| | - Miranda Gilda Jonson
- Department of Agricultural Biotechnology, Center for Fungal Pathogenesis, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Sandra Junglen
- Charité-Universitätsmedizin Berlin, Corporate Member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany
- German Centre for Infection Research, Berlin, Germany
| | - Boris Klempa
- Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Chūn Kòu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, China
| | - Lies Laenen
- KU Leuven, Rega Institute, Zoonotic Infectious Diseases Unit, Leuven, Belgium
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Amy J Lambert
- Centers for Disease Control and Prevention, Division of Vector-Borne Diseases, Fort Collins, CO, USA
| | | | - Dan Liu
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Igor S Lukashevich
- Department of Pharmacology and Toxicology, School of Medicine, and the Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY, USA
| | - Tāo Luò
- Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Ürümqi, China
| | - Chuánwèi Lǚ
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Piet Maes
- KU Leuven, Rega Institute, Zoonotic Infectious Diseases Unit, Leuven, Belgium
| | - William Marciel de Souza
- Virology Research Center, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marco Marklewitz
- Charité-Universitätsmedizin Berlin, Corporate Member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany
- German Centre for Infection Research, Berlin, Germany
| | - Giovanni P Martelli
- Department of Plant, Soil, and Food Sciences, University "Aldo Moro", Bari, Italy
| | - Keita Matsuno
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | | | - Maria Minutolo
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Portici, Italy
| | | | - Abulimiti Moming
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, China
| | | | - Rayapati Naidu
- Department of Plant Pathology, Irrigated Agricultural Research and Extension Center, Washington State University, Prosser, WA, USA
| | - Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | | | - Gustavo Palacios
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Anna Papa
- National Reference Centre for Arboviruses and Haemorrhagic Fever Viruses, Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloníki, Greece
| | - Alex Pauvolid-Corrêa
- Flavivirus Laboratory, Oswaldo Cruz Foundation, Ministry of Health, Rio de Janeiro, Brazil
| | - Janusz T Pawęska
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham, South Africa
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Jié Qiáo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Sheli R Radoshitzky
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Renato O Resende
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Víctor Romanowski
- Instituto de Biotecnología y Biología Molecular, Centro Científico Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de La Plata, La Plata, Argentina
| | | | - Maria S Salvato
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Takahide Sasaya
- Division of Argo-Environment Research, Western-region Agricultural Research Center, National Agriculture and Food Food Research Organization, Fukuyama, Japan
| | - Shū Shěn
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xiǎohóng Shí
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, UK
| | - Yukio Shirako
- Asian Center for Bioresources and Environmental Sciences, University of Tokyo, Tokyo, Japan
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Manuela Sironi
- Bioinformatics, Scientific Institute IRCCS "E. Medea", Bosisio Parini, Italy
| | - Jin-Won Song
- Department of Microbiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mark D Stenglein
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Zhèngyuán Sū
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Sùróng Sūn
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, China
| | - Shuāng Táng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Massimo Turina
- Institute for Sustainable Plant Protection, National Research Council, Turin, Italy
| | - Bó Wáng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Chéng Wáng
- Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Ürümqi, China
| | - Huálín Wáng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jūn Wáng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Tàiyún Wèi
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - F Murilo Zerbini
- Departamento de Fitopatologia/Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Jìngyuàn Zhāng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, China
| | - Lěi Zhāng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yànfāng Zhāng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yong-Zhen Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yújiāng Zhāng
- Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Ürümqi, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lìyǐng Zhū
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, Frederick, MD, 21702, USA.
| |
Collapse
|
11
|
Han J, Nalam VJ, Yu IC, Nachappa P. Vector Competence of Thrips Species to Transmit Soybean Vein Necrosis Virus. Front Microbiol 2019; 10:431. [PMID: 30941106 PMCID: PMC6433834 DOI: 10.3389/fmicb.2019.00431] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/19/2019] [Indexed: 11/16/2022] Open
Abstract
Soybean vein necrosis virus (SVNV) is a newly discovered species of tospovirus infecting soybean plants that is transmitted by the primary vector, soybean thrips (Neohydatothrips variabilis), and two additional secondary vectors, tobacco thrips (Frankliniella fusca) and eastern flower thrips (F. tritici). This study was undertaken to elucidate the association between virus acquisition [6, 12, 24, and 48 h acquisition access period (AAP)] and transmission efficiency [12, 24, and 48 h inoculation access period (IAP)] in the primary vector, N. variabilis, and to examine the mechanisms of vector competence by analyzing the effect of AAP (6, 12, and 24 h) on virus infection in various tissues. In addition, we examined virus infection in tissues of the two secondary vectors. We found a significant effect of virus acquisition on transmission efficiency, transmission rate post 6 and 48 h AAP was significantly lower than 12 and 24 h AAP. Our analysis did not reveal a correlation between virus transmission rate and virus RNA in corresponding N. variabilis adults. On the contrary, N. variabilis adults harboring higher accumulation of the virus (>104) resulted in lower transmission rates. Analysis of SVNV infection in the tissues revealed the presence of the virus in the foregut, midgut (region 1, 2, and 3), tubular salivary glands and principal salivary glands (PSG) of adults of all three vector species, however, the frequency of infected tissues was highest in N. variabilis followed by F. fusca and F. tritici. The frequency of SVNV infection in individual tissues specifically the salivary glands was lowest after 6 h AAP compared to 12 and 24 h AAP. This finding is in agreement with the transmission assays, where significantly lower virus transmission rate was observed post 6 h AAP. In addition, N. variabilis adults with high PSG infection (12 and 24 h AAP) were likely to have high percentage of foregut and midgut region 2 infection. Overall, results from the transmission assays and immunolabeling experiments suggest that shorter AAP results in reduced virus infection in the various tissues especially PSG, which are important determinants of vector competence in SVNV-thrips interaction.
Collapse
Affiliation(s)
- Jinlong Han
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Vamsi J Nalam
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, United States
| | - I-Chen Yu
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Punya Nachappa
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
12
|
Zhou J, Tzanetakis IE. Soybean vein necrosis virus: an emerging virus in North America. Virus Genes 2019; 55:12-21. [PMID: 30542841 DOI: 10.1007/s11262-018-1618-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
Abstract
Few diseases have emerged in such a short period of time as soybean vein necrosis. The disease is present in all major producing areas in North America, affecting one of the major row field instead of row crops for the United States. Because of the significance of soybean in the agricultural economy and the widespread presence of the disease, the causal agent, soybean vein necrosis virus has been studied by several research groups. Research in the past 10 years has focused on virus epidemiology, management, and effects on yield and seed quality. This communication provides a review of the current knowledge on the virus and the disease.
Collapse
Affiliation(s)
- Jing Zhou
- Division of Agriculture, Department of Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Ioannis E Tzanetakis
- Division of Agriculture, Department of Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
13
|
Ali A. Rapid detection of fifteen known soybean viruses by dot-immunobinding assay. J Virol Methods 2017; 249:126-129. [PMID: 28887190 DOI: 10.1016/j.jviromet.2017.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 08/16/2017] [Accepted: 09/05/2017] [Indexed: 11/20/2022]
Abstract
A dot-immunobinding assay (DIBA) was optimized and used successfully for the rapid detection of 15 known viruses [Alfalfa mosaic virus (AMV), Bean pod mottle virus (BPMV), Bean yellow mosaic virus (BYMV), Cowpea mild mottle virus (CPMMV), Cowpea severe mosaic virus (CPSMV), Cucumber mosaic virus (CMV), Peanut mottle virus (PeMoV), Peanut stunt virus (PSV), Southern bean mosaic virus (SBMV), Soybean dwarf virus (SbDV), Soybean mosaic virus (SMV), Soybean vein necrosis virus (SVNV), Tobacco ringspot virus (TRSV), Tomato ringspot virus (ToRSV), and Tobacco streak virus (TSV)] infecting soybean plants in Oklahoma. More than 1000 leaf samples were collected in approximately 100 commercial soybean fields in 24 counties of Oklahoma, during the 2012-2013 growing seasons. All samples were tested by DIBA using polyclonal antibodies of the above 15 plant viruses. Thirteen viruses were detected, and 8 of them were reported for the first time in soybean crops of Oklahoma. The highest average incidence was recorded for PeMoV (13.5%) followed by SVNV (6.9%), TSV (6.4%), BYMV, (4.5%), and TRSV (3.9%), while the remaining seven viruses were detected in less than 2% of the samples tested. The DIBA was quick, and economical to screen more than 1000 samples against 15 known plant viruses in a very short time.
Collapse
Affiliation(s)
- Akhtar Ali
- Department of Biological Science, The University of Tulsa, Tulsa, Oklahoma, 74104, USA.
| |
Collapse
|
14
|
Leastro MO, De Oliveira AS, Pallás V, Sánchez-Navarro JA, Kormelink R, Resende RO. The NSm proteins of phylogenetically related tospoviruses trigger Sw-5b-mediated resistance dissociated of their cell-to-cell movement function. Virus Res 2017; 240:25-34. [PMID: 28754561 DOI: 10.1016/j.virusres.2017.07.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/20/2017] [Accepted: 07/22/2017] [Indexed: 10/19/2022]
Abstract
The cell-to-cell movement protein (NSM) of tomato spotted wilt virus (TSWV) has been recently identified as the effector of the single dominant Sw-5b resistance gene from tomato (Solanum lycopersicum L.). Although most TSWV isolates shows a resistance-inducing (RI) phenotype, regular reports have appeared on the emergence of resistance-breaking (RB) isolates in tomato fields, and suggested a strong association with two point mutations (C118Y and T120N) in the NSM protein. In this study the Sw-5b gene has been demonstrated to confer not only resistance against TSWV but to members of five additional, phylogenetically-related classified within the so-called "American" evolutionary clade, i.e., Alstroemeria necrotic streak virus (ANSV), chrysanthemum stem necrosis virus (CSNV), groundnut ringspot virus (GRSV), Impatiens necrotic spot virus (INSV) and tomato chlorotic spot virus (TCSV). Remarkably, bean necrotic mosaic virus (BeNMV), a recently discovered tospovirus classified in a distinct American subclade and circulating on the American continent, did not trigger a Sw-5b-mediated hypersensitive (HR) response. Introduction of point mutations C118Y and T120N into the NSM protein of TSWV, TCSV and CSNV abrogated the ability to trigger Sw-5b-mediated HR in both transgenic-N. benthamiana and tomato isolines harboring the Sw-5b gene whereas it had no effect on BeNMV NSM. Truncated versions of TSWV NSM lacking motifs associated with tubule formation, cell-to-cell or systemic viral movement were made and tested for triggering of resistance. HR was still observed with truncated NSM proteins lacking 50 amino acids (out of 301) from either the amino- or carboxy-terminal end. These data altogether indicate the importance of amino acid residues C118 and T120 in Sw-5b-mediated HR only for the NSM proteins from one cluster of tospoviruses within the American clade, and that the ability to support viral cell-to-cell movement is not required for effector functionality.
Collapse
Affiliation(s)
- Mikhail Oliveira Leastro
- Departamento de Biologia Celular, Universidade de Brasília (UnB), 70910-900 Brasília, Brazil; Instituto de Biología Molecular y Celular de Planta, Universidad Politécnica de Valencia - CISC, E-46022 Valencia, Spain.
| | - Athos Silva De Oliveira
- Departamento de Biologia Celular, Universidade de Brasília (UnB), 70910-900 Brasília, Brazil; Laboratory of Virology, Department of Plant Science, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, Netherlands.
| | - Vicente Pallás
- Instituto de Biología Molecular y Celular de Planta, Universidad Politécnica de Valencia - CISC, E-46022 Valencia, Spain.
| | - Jesús A Sánchez-Navarro
- Instituto de Biología Molecular y Celular de Planta, Universidad Politécnica de Valencia - CISC, E-46022 Valencia, Spain.
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Science, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, Netherlands.
| | - Renato Oliveira Resende
- Departamento de Biologia Celular, Universidade de Brasília (UnB), 70910-900 Brasília, Brazil.
| |
Collapse
|
15
|
Bloomingdale C, Irizarry MD, Groves RL, Mueller DS, Smith DL. Seasonal Population Dynamics of Thrips (Thysanoptera) in Wisconsin and Iowa Soybean Fields. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:133-141. [PMID: 28011679 DOI: 10.1093/jee/tow242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
With the discovery of Neohydatothrips variabilis (Beach) as a vector of Soybean vein necrosis virus (Family Bunyaviridae Genus Tospovirus), a relatively new pathogen of soybean, a multiyear study was initiated in Wisconsin (2013 and 2014) and Iowa (2014 and 2015) to determine the phenology and species composition of thrips in soybean fields. Yellow sticky card traps were used to sample thrips at regular intervals in five counties within each state's primary soybean-growing region. The assemblage of species present in Wisconsin was determined in all site-years, revealing that N. variabilis and other known vectors of tospoviruses were a relatively small percentage of the total thrips captures in 2013 (1.6%) and 2014 (3.6%). A repeated measures analysis was conducted on cumulative proportion thrips capture data within each state's sampling year to investigate differences in phenology, and standardized cumulative insect days were analyzed between sampling years within each state to determine differences in the relative magnitude of populations. Distinct seasonal trends were not detected based on location, as originally hypothesized, and thrips populations varied significantly among locations and between years. These results suggest that thrips populations may be overwintering in northern climates instead of relying solely on migrations to colonize northern soybean fields.
Collapse
Affiliation(s)
- Chris Bloomingdale
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Russell L Groves
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - Daren S Mueller
- Department of Plant Pathology, Iowa State University, Ames, IA, USA
| | - Damon L Smith
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
16
|
Keough S, Han J, Shuman T, Wise K, Nachappa P. Effects of Soybean Vein Necrosis Virus on Life History and Host Preference of Its Vector, Neohydatothrips variabilis, and Evaluation of Vector Status of Frankliniella tritici and Frankliniella fusca. JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:1979-87. [PMID: 27417640 DOI: 10.1093/jee/tow145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/01/2016] [Indexed: 06/06/2023]
Abstract
Soybean vein necrosis virus (SVNV) is an emerging Tospovirus that is now considered to be the most widespread soybean virus in the United States. SVNV is transmitted from plant-to-plant by soybean thrips, Neohydatothrips variabilis (Beach). We hypothesized that a positive interaction between the host plant, SVNV, and the vector may have resulted in the widespread distribution of the virus in a short span of time. Our study found that SVNV-infected N. variabilis females produced significantly more offspring compared with non-infected females. No other life-history trait varied between SVNV-infected and non-infected thrips. There was considerable variation in SVNV copy number in infected thrips ranging from 10(2) -10(6) Moreover, there was a significant negative correlation between SVNV copy number and fecundity in infected N. variabilis This suggests that excessive virus accumulation may result in lower viability of N. variabilis In choice tests, SVNV-infected N. variabilis preferred to feed on non-infected leaflets compared with infected leaflets. Vector competence assays indicated that Frankliniella tritici and Frankliniella fusca can transmit SVNV, but at a lower efficiency than N. variabilis Comparison of life history of between the primary and secondary vectors showed that N. variabilis had the highest fecundity, but F. tritici had the shortest development time and greatest larval survival. Taken together, the increased fecundity of SVNV-infected N. variabilis, their apparent preference for non-infected host plants, in conjunction with the ability of secondary vectors to survive and reproduce on soybean may, in part, explain the rapid spread of SVNV in the United States.
Collapse
Affiliation(s)
- Stacy Keough
- Department of Biology, Indiana University-Purdue University Fort Wayne, Fort Wayne, IN 46805 (; ; ; ; )
| | - Jinlong Han
- Department of Biology, Indiana University-Purdue University Fort Wayne, Fort Wayne, IN 46805 (; ; ; ; )
| | - Tyler Shuman
- Department of Biology, Indiana University-Purdue University Fort Wayne, Fort Wayne, IN 46805 (; ; ; ; )
| | - Kiersten Wise
- Department of Botany and Plant Pathology, Purdue University 915 W State Street, W Lafayette, IN 47907
| | - Punya Nachappa
- Department of Biology, Indiana University-Purdue University Fort Wayne, Fort Wayne, IN 46805 (; ; ; ; )
| |
Collapse
|
17
|
Leastro MO, Pallás V, Resende RO, Sánchez-Navarro JA. The functional analysis of distinct tospovirus movement proteins (NS M) reveals different capabilities in tubule formation, cell-to-cell and systemic virus movement among the tospovirus species. Virus Res 2016; 227:57-68. [PMID: 27697453 DOI: 10.1016/j.virusres.2016.09.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 12/22/2022]
Abstract
The lack of infectious tospovirus clones to address reverse genetic experiments has compromised the functional analysis of viral proteins. In the present study we have performed a functional analysis of the movement proteins (NSM) of four tospovirus species Bean necrotic mosaic virus (BeNMV), Chrysanthemum stem necrosis virus (CSNV), Tomato chlorotic spot virus (TCSV) and Tomato spotted wilt virus (TSWV), which differ biologically and molecularly, by using the Alfalfa mosaic virus (AMV) model system. All NSM proteins were competent to: i) support the cell-to-cell and systemic transport of AMV, ii) generate tubular structures on infected protoplast and iii) transport only virus particles. However, the NSM of BeNMV (one of the most phylogenetically distant species) was very inefficient to support the systemic transport. Deletion assays revealed that the C-terminal region of the BeNMV NSM, but not that of the CSNV, TCSV and TSWV NSM proteins, was dispensable for cell-to-cell transport, and that all the non-functional C-terminal NSM mutants were unable to generate tubular structures. Bimolecular fluorescence complementation analysis revealed that the C-terminus of the BeNMV NSM was not required for the interaction with the cognate nucleocapsid protein, showing a different protein organization when compared with other movement proteins of the '30K family'. Overall, our results revealed clearly differences in functional aspects among movement proteins from divergent tospovirus species that have a distinct biological behavior.
Collapse
Affiliation(s)
- Mikhail O Leastro
- Departamento de Biologia Celular, Universidade de Brasília, 70910-900 Brasília, Brazil.
| | - Vicente Pallás
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain.
| | - Renato O Resende
- Departamento de Biologia Celular, Universidade de Brasília, 70910-900 Brasília, Brazil.
| | - Jesús A Sánchez-Navarro
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain.
| |
Collapse
|
18
|
Turina M, Kormelink R, Resende RO. Resistance to Tospoviruses in Vegetable Crops: Epidemiological and Molecular Aspects. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:347-371. [PMID: 27296139 DOI: 10.1146/annurev-phyto-080615-095843] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
During the past three decades, the economic impact of tospoviruses has increased, causing high yield losses in a variety of crops and ornamentals. Owing to the difficulty in combating thrips vectors with insecticides, the best way to limit/prevent tospovirus-induced diseases involves a management strategy that includes virus resistance. This review briefly presents current tospovirus taxonomy, diversity, molecular biology, and cytopathology as an introduction to a more extensive description of the two main resistance genes employed against tospoviruses: the Sw5 gene in tomato and the Tsw in pepper. Natural and experimental resistance-breaking (RB) isolates allowed the identification of the viral avirulence protein triggering each of the two resistance gene products; epidemiology of RB isolates is discussed to reinforce the need for allelic variants and the need to search for new/alternative resistance genes. Ongoing efforts for alternative resistance strategies are described not only for Tomato spotted wilt virus (TSWV) in pepper and tomato but also for other vegetable crops heavily impacted by tospoviruses.
Collapse
Affiliation(s)
- Massimo Turina
- Institute for Sustainable Plant Protection, CNR Torino, 10135 Torino, Italy;
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, 6708PB Wageningen, The Netherlands
| | - Renato O Resende
- Department of Cell Biology, University of Brasília, 70910-900 Brasília, DF, Brazil
| |
Collapse
|
19
|
Hassani-Mehraban A, Westenberg M, Verhoeven JTJ, van de Vossenberg BTLH, Kormelink R, Roenhorst JW. Generic RT-PCR tests for detection and identification of tospoviruses. J Virol Methods 2016; 233:89-96. [PMID: 27036502 DOI: 10.1016/j.jviromet.2016.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/28/2016] [Indexed: 11/15/2022]
Abstract
A set of tests for generic detection and identification of tospoviruses has been developed. Based on a multiple sequence alignment of the nucleocapsid gene and its 5' upstream untranslated region sequence from 28 different species, primers were designed for RT-PCR detection of tospoviruses from all recognized clades, i.e. the American, Asian and Eurasian clades, and from the small group of distinct and floating species. Pilot experiments on isolates from twenty different species showed that the designed primer sets successfully detected all species by RT-PCR, as confirmed by nucleotide sequence analysis of the amplicons. In a final optimized design, the primers were applied in a setting of five RT-PCR tests. Seven different tospoviruses were successfully identified from diagnostic samples and in addition a non-described tospovirus species from alstroemeria plants. The results demonstrate that the newly developed generic RT-PCR tests provide a relevant tool for broad detection and identification of tospoviruses in plant quarantine and diagnostic laboratories.
Collapse
Affiliation(s)
- A Hassani-Mehraban
- National Plant Protection Organization, National Reference Centre, Geertjesweg 15, P.O. Box 9102, 6700HC, Wageningen, The Netherlands
| | - M Westenberg
- National Plant Protection Organization, National Reference Centre, Geertjesweg 15, P.O. Box 9102, 6700HC, Wageningen, The Netherlands
| | - J T J Verhoeven
- National Plant Protection Organization, National Reference Centre, Geertjesweg 15, P.O. Box 9102, 6700HC, Wageningen, The Netherlands
| | - B T L H van de Vossenberg
- National Plant Protection Organization, National Reference Centre, Geertjesweg 15, P.O. Box 9102, 6700HC, Wageningen, The Netherlands
| | - R Kormelink
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - J W Roenhorst
- National Plant Protection Organization, National Reference Centre, Geertjesweg 15, P.O. Box 9102, 6700HC, Wageningen, The Netherlands.
| |
Collapse
|
20
|
Groves C, German T, Dasgupta R, Mueller D, Smith DL. Seed Transmission of Soybean vein necrosis virus: The First Tospovirus Implicated in Seed Transmission. PLoS One 2016; 11:e0147342. [PMID: 26784931 PMCID: PMC4718560 DOI: 10.1371/journal.pone.0147342] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/31/2015] [Indexed: 11/18/2022] Open
Abstract
Soybean vein necrosis virus (SVNV; genus Tospovirus; Family Bunyaviridae) is a negative-sense single-stranded RNA virus that has been detected across the United States and in Ontario, Canada. In 2013, a seed lot of a commercial soybean variety (Glycine max) with a high percentage of discolored, deformed and undersized seed was obtained. A random sample of this seed was planted in a growth room under standard conditions. Germination was greater than 90% and the resulting seedlings looked normal. Four composite samples of six plants each were tested by reverse transcription polymerase chain reaction (RT-PCR) using published primers complimentary to the S genomic segment of SVNV. Two composite leaflet samples retrieved from seedlings yielded amplicons with a size and sequence predictive of SVNV. Additional testing of twelve arbitrarily selected individual plants resulted in the identification of two SVNV positive plants. Experiments were repeated by growing seedlings from the same seed lot in an isolated room inside a thrips-proof cage to further eliminate any external source of infection. Also, increased care was taken to reduce any possible PCR contamination. Three positive plants out of forty-eight were found using these measures. Published and newly designed primers for the L and M RNAs of SVNV were also used to test the extracted RNA and strengthen the diagnosis of viral infection. In experiments, by three scientists, in two different labs all three genomic RNAs of SVNV were amplified in these plant materials. RNA-seq analysis was also conducted using RNA extracted from a composite seedling sample found to be SVNV-positive and a symptomatic sample collected from the field. This analysis revealed both sense and anti-sense reads from all three gene segments in both samples. We have shown that SVNV can be transmitted in seed to seedlings from an infected seed lot at a rate of 6%. To our knowledge this is the first report of seed-transmission of a Tospovirus.
Collapse
Affiliation(s)
- Carol Groves
- Department of Plant Pathology, University of Wisconsin, 1630 Linden Drive, Madison, WI, 53706, United States of America
| | - Thomas German
- Department of Entomology, University of Wisconsin, 1630 Linden Drive, Madison, WI, 53706, United States of America
| | - Ranjit Dasgupta
- Department of Entomology, University of Wisconsin, 1630 Linden Drive, Madison, WI, 53706, United States of America
| | - Daren Mueller
- Department of Plant Pathology and Microbiology, Iowa State University, 351 Bessey Hall, Ames, IA, 50011, United States of America
| | - Damon L. Smith
- Department of Plant Pathology, University of Wisconsin, 1630 Linden Drive, Madison, WI, 53706, United States of America
| |
Collapse
|
21
|
Development of a protocol for the identification of tospoviruses and thrips species in individual thrips. J Virol Methods 2015; 222:206-13. [DOI: 10.1016/j.jviromet.2015.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 03/19/2015] [Accepted: 06/29/2015] [Indexed: 11/20/2022]
|
22
|
Meng J, Liu P, Zhu L, Zou C, Li J, Chen B. Complete Genome Sequence of Mulberry Vein Banding Associated Virus, a New Tospovirus Infecting Mulberry. PLoS One 2015; 10:e0136196. [PMID: 26291718 PMCID: PMC4546196 DOI: 10.1371/journal.pone.0136196] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/30/2015] [Indexed: 11/18/2022] Open
Abstract
Mulberry vein banding associated virus (MVBaV) that infects mulberry plants with typical vein banding symptoms had been identified as a tentative species of the genus Tospovirus based on the homology of N gene sequence to those of tospoviruses. In this study, the complete sequence of the tripartite RNA genome of MVBaV was determined and analyzed. The L RNA has 8905 nucleotides (nt) and encodes the putative RNA-dependent RNA polymerase (RdRp) of 2877 aa amino acids (aa) in the viral complementary (vc) strand. The RdRp of MVBaV shares the highest aa sequence identity (85.9%) with that of Watermelon silver mottle virus (WSMoV), and contains conserved motifs shared with those of the species of the genus Tospovirus. The M RNA contains 4731 nt and codes in ambisense arrangement for the NSm protein of 309 aa in the sense strand and the Gn/Gc glycoprotein precursor (GP) of 1,124 aa in the vc strand. The NSm and GP of MVBaV share the highest aa sequence identities with those of Capsicum chlorosis virus (CaCV) and Groundnut bud necrosis virus (GBNV) (83.2% and 84.3%, respectively). The S RNA is 3294 nt in length and contains two open reading frames (ORFs) in an ambisense coding strategy, encoding a 439-aa non-structural protein (NSs) and the 277-aa nucleocapsid protein (N), respectively. The NSs and N also share the highest aa sequence identity (71.1% and 74.4%, respectively) with those of CaCV. Phylogenetic analysis of the RdRp, NSm, GP, NSs, and N proteins showed that MVBaV is most closely related to CaCV and GBNV and that these proteins cluster with those of the WSMoV serogroup, and that MVBaV seems to be a species bridging the two subgroups within the WSMoV serogroup of tospoviruses in evolutionary aspect, suggesting that MVBaV represents a distinct tospovirus. Analysis of S RNA sequence uncovered the highly conserved 5’-/3’-ends and the coding regions, and the variable region of IGR with divergent patterns among MVBaV isolates.
Collapse
Affiliation(s)
- Jiaorong Meng
- College of Agriculture, Guangxi University, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources (Guangxi University) and Key Laboratory of Ministry of Education of China for Microbial and Plant Genetic Engineering, Nanning, China
| | - Pingping Liu
- College of Agriculture, Guangxi University, Nanning, China
| | - Liling Zhu
- College of Agriculture, Guangxi University, Nanning, China
| | - Chengwu Zou
- College of Agriculture, Guangxi University, Nanning, China
| | - Jieqiu Li
- College of Agriculture, Guangxi University, Nanning, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources (Guangxi University) and Key Laboratory of Ministry of Education of China for Microbial and Plant Genetic Engineering, Nanning, China
- * E-mail:
| |
Collapse
|
23
|
Whitfield AE, Rotenberg D. Disruption of insect transmission of plant viruses. CURRENT OPINION IN INSECT SCIENCE 2015; 8:79-87. [PMID: 32846687 DOI: 10.1016/j.cois.2015.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 06/11/2023]
Abstract
Plant-infecting viruses are transmitted by a diverse array of organisms including insects, mites, nematodes, fungi, and plasmodiophorids. Virus interactions with these vectors are diverse, but there are some commonalities. Generally the infection cycle begins with the vector encountering the virus in the plant and the virus is acquired by the vector. The virus must then persist in or on the vector long enough for the virus to be transported to a new host and delivered into the plant cell. Plant viruses rely on their vectors for breaching the plant cell wall to be delivered directly into the cytosol. In most cases, viral capsid or membrane glycoproteins are the specific viral proteins that are required for transmission and determinants of vector specificity. Specific molecules in vectors also interact with the virus and while there are few-identified to no-identified receptors, candidate recognition molecules are being further explored in these systems. Due to the specificity of virus transmission by vectors, there are defined steps that represent good targets for interdiction strategies to disrupt the disease cycle. This review focuses on new technologies that aim to disrupt the virus-vector interaction and focuses on a few of the well-characterized virus-vector interactions in the field. In closing, we discuss the importance of integration of these technologies with current methods for plant virus disease control.
Collapse
Affiliation(s)
- Anna E Whitfield
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66502, USA.
| | - Dorith Rotenberg
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66502, USA
| |
Collapse
|
24
|
Yin Y, Zheng K, Dong J, Fang Q, Wu S, Wang L, Zhang Z. Identification of a new tospovirus causing necrotic ringspot on tomato in China. Virol J 2014; 11:213. [PMID: 25465801 PMCID: PMC4263035 DOI: 10.1186/s12985-014-0213-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 11/24/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Emerging tospoviruses cause significant yield losses and quality reduction in vegetables, ornamentals, and legumes throughout the world. So far, eight tospoviruses were reported in China. Tomato fruits displaying necrotic and concentric ringspot symptoms were found in Guizhou province of southwest China. FINDING ELISA experiments showed that crude saps of the diseased tomato fruit samples reacted with antiserum against Tomato zonate spot virus (TZSV). Electron microscopy detected presence of quasi-spherical, enveloped particles of 80-100 nm in such saps. The putative virus isolate was designated 2009-GZT. Mechanical back-inoculation showed that 2009-GZT could infect systemically some solanaceous crop and non-crop plants including Capiscum annuum, Datura stramonium, Nicotiana benthamiana, N. rustica, N. tabacum and Solanum lycopersicum. The 3012 nt full-length sequence of 2009-GZT S RNA shared 68.2% nt identity with that of Calla lily chlorotic spot virus (CCSV), the highest among all compared viruses. This RNA was predicted to encode a non-structural protein (NSs) (459 aa, 51.7 kDa) and a nucleocapsid protein (N) (278 aa, 30.3 kDa). The N protein shared 85.8% amino acid identity with that of CCSV. The NSs protein shared 82.7% amino acid identity with that of Tomato zonate spot virus(TZSV). CONCLUSION Our results indicate that the isolate 2009-GZT is a new species of Tospovirus, which is named Tomato necrotic spot virus (TNSV). This finding suggests that a detailed survey in China is warranted to further understand the occurrence and distribution of tospoviruses.
Collapse
Affiliation(s)
- Yueyan Yin
- Yunnan Key Laboratory of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Biotechnology and Germplasm Resources Institute, Ministry of Agriculture, Yunnan Academy of Agricultural Sciences, Kunming, 650223, China.
- Institute of Alpine Economic Plants, Yunnan Academy of Agricultural Sciences, Lijiang, 674100, China.
| | - Kuanyu Zheng
- Yunnan Key Laboratory of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Biotechnology and Germplasm Resources Institute, Ministry of Agriculture, Yunnan Academy of Agricultural Sciences, Kunming, 650223, China.
| | - Jiahong Dong
- Yunnan Key Laboratory of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Biotechnology and Germplasm Resources Institute, Ministry of Agriculture, Yunnan Academy of Agricultural Sciences, Kunming, 650223, China.
| | - Qi Fang
- Yunnan Key Laboratory of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Biotechnology and Germplasm Resources Institute, Ministry of Agriculture, Yunnan Academy of Agricultural Sciences, Kunming, 650223, China.
| | - Shiping Wu
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China.
| | - Lishuang Wang
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China.
| | - Zhongkai Zhang
- Yunnan Key Laboratory of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Biotechnology and Germplasm Resources Institute, Ministry of Agriculture, Yunnan Academy of Agricultural Sciences, Kunming, 650223, China.
| |
Collapse
|
25
|
Chang S, Thurber CS, Brown PJ, Hartman GL, Lambert KN, Domier LL. Comparative mapping of the wild perennial Glycine latifolia and soybean (G. max) reveals extensive chromosome rearrangements in the genus Glycine. PLoS One 2014; 9:e99427. [PMID: 24937645 PMCID: PMC4061007 DOI: 10.1371/journal.pone.0099427] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/14/2014] [Indexed: 12/22/2022] Open
Abstract
Soybean (Glycine max L. Mer.), like many cultivated crops, has a relatively narrow genetic base and lacks diversity for some economically important traits. Glycine latifolia (Benth.) Newell & Hymowitz, one of the 26 perennial wild Glycine species related to soybean in the subgenus Glycine Willd., shows high levels of resistance to multiple soybean pathogens and pests including Alfalfa mosaic virus, Heterodera glycines Ichinohe and Sclerotinia sclerotiorum (Lib.) de Bary. However, limited information is available on the genomes of these perennial Glycine species. To generate molecular resources for gene mapping and identification, high-density linkage maps were constructed for G. latifolia using single nucleotide polymorphism (SNP) markers generated by genotyping by sequencing and evaluated in an F2 population and confirmed in an F5 population. In each population, greater than 2,300 SNP markers were selected for analysis and segregated to form 20 large linkage groups. Marker orders were similar in the F2 and F5 populations. The relationships between G. latifolia linkage groups and G. max and common bean (Phaseolus vulgaris L.) chromosomes were examined by aligning SNP-containing sequences from G. latifolia to the genome sequences of G. max and P. vulgaris. Twelve of the 20 G. latifolia linkage groups were nearly collinear with G. max chromosomes. The remaining eight G. latifolia linkage groups appeared to be products of multiple interchromosomal translocations relative to G. max. Large syntenic blocks also were observed between G. latifolia and P. vulgaris. These experiments are the first to compare genome organizations among annual and perennial Glycine species and common bean. The development of molecular resources for species closely related to G. max provides information into the evolution of genomes within the genus Glycine and tools to identify genes within perennial wild relatives of cultivated soybean that could be beneficial to soybean production.
Collapse
Affiliation(s)
- Sungyul Chang
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Carrie S. Thurber
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Patrick J. Brown
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Glen L. Hartman
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
- United States Department of Agriculture, Agricultural Research Service, Urbana, Illinois, United States of America
| | - Kris N. Lambert
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Leslie L. Domier
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
- United States Department of Agriculture, Agricultural Research Service, Urbana, Illinois, United States of America
| |
Collapse
|
26
|
Charoenvilaisiri S, Seepiban C, Bhunchoth A, Warin N, Luxananil P, Gajanandana O. Development of a multiplex RT-PCR-ELISA to identify four distinct species of tospovirus. J Virol Methods 2014; 202:54-63. [PMID: 24642237 DOI: 10.1016/j.jviromet.2014.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 03/05/2014] [Accepted: 03/07/2014] [Indexed: 11/26/2022]
Abstract
In this study, a multiplex RT-PCR-ELISA was developed to detect and differentiate four tospovirus species found in Thailand, namely Capsicum chlorosis virus (CaCV), Melon yellow spot virus (MYSV), Tomato necrotic ringspot virus (TNRV), and Watermelon silver mottle virus (WSMoV). In this system, nucleocapsid (N) gene fragments of four tospoviruses were simultaneously amplified and labeled with digoxigenin (DIG) in a single RT-PCR reaction using a pair of degenerate primers binding to the same conserved regions in all four tospovirus N genes. The DIG-labeled amplicons were distinguished into species by four parallel hybridizations to species-specific biotinylated probes in streptavidin-coated microtiter wells followed by ELISA detection using a peroxidase-conjugated anti-DIG antibody. Results indicated that the multiplex RT-PCR-ELISA assay could specifically identify each of these four tospoviruses without cross-reactivity between species or reactivity to healthy plant negative controls. Assay sensitivity was 10- to 1000-fold higher than conventional RT-PCR. When applied to naturally infected plants, all samples yielded concordant results between RT-PCR-ELISA and the reference RT-PCR. In conclusion, the multiplex RT-PCR-ELISA developed in this study has superior specificity, sensitivity, and high-throughput capacity compared to conventional RT-PCR and is an attractive alternative for the identification of different tospovirus species.
Collapse
Affiliation(s)
- Saengsoon Charoenvilaisiri
- Monoclonal Antibody Production Laboratory, Agricultural Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, Thailand Science Park, Pathumthani 12120, Thailand.
| | - Channarong Seepiban
- Monoclonal Antibody Production Laboratory, Agricultural Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, Thailand Science Park, Pathumthani 12120, Thailand
| | - Anjana Bhunchoth
- Plant Research Laboratory, Agricultural Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, Kamphaengsaen, Nakornpathom, Thailand
| | - Nuchnard Warin
- Plant Research Laboratory, Agricultural Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, Kamphaengsaen, Nakornpathom, Thailand
| | - Plearnpis Luxananil
- Microbial Cell Factory Laboratory, Bioresource Technology Unit, National Center for Genetic Engineering and Biotechnology, Thailand Science Park, Pathumthani 12120, Thailand
| | - Oraprapai Gajanandana
- Monoclonal Antibody Production Laboratory, Agricultural Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, Thailand Science Park, Pathumthani 12120, Thailand
| |
Collapse
|
27
|
Abstract
Soybean, one of the world's most important sources of animal feed and vegetable oil, can be infected by numerous viruses. However, only a small number of the viruses that can potentially infect soybean are considered as major economic problems to soybean production. Therefore, we consider management options available to control diseases caused by eight viruses that cause, or have the potential to cause, significant economic loss to producers. We summarize management tactics in use and suggest direction for the future. Clearly, the most important tactic is disease resistance. Several resistance genes are available for three of the eight viruses discussed. Other options include use of virus-free seed and avoidance of alternative virus hosts when planting. Attempts at arthropod vector control have generally not provided consistent disease management. In the future, disease management will be considerably enhanced by knowledge of the interaction between soybean and viral proteins. Identification of genes required for soybean defense may represent key regulatory hubs that will enhance or broaden the spectrum of basal resistance to viruses. It may be possible to create new recessive or dominant negative alleles of host proteins that do not support viral functions but perform normal cellular function. The future approach to virus control based on gene editing or exploiting allelic diversity points to necessary research into soybean-virus interactions. This will help to generate the knowledge needed for rational design of durable resistance that will maximize global production.
Collapse
Affiliation(s)
- John H Hill
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA.
| | - Steven A Whitham
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
28
|
Abstract
Soybean vein necrosis-associated virus has been linked to an emerging soybean disease in the United States and Canada. Virus distribution and population structure in major growing areas were evaluated. Data were employed to design and develop sensitive detection protocols, able to detect all virus isolates available in databases. The host range for the virus was assessed and several species were found to sustain virus replication, including ivyleaf morning glory, a common weed species in soybean-growing areas in the United States. Koch's postulates were fulfilled using soybean thrips and transmission efficiency was determined. This article provides significant insight into the biology of the most widespread soybean virus in the United States.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville 72701, USA
| | | |
Collapse
|
29
|
Xu Y, Lou SG, Li XL, Zheng YX, Wang WC, Liu YT. The complete S RNA and M RNA nucleotide sequences of a hippeastrum chlorotic ringspot virus (HCRV) isolate from Hymenocallis littoralis (Jacq.) Salisb in China. Arch Virol 2013; 158:2597-601. [DOI: 10.1007/s00705-013-1756-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 05/02/2013] [Indexed: 10/26/2022]
|
30
|
Tzanetakis IE, Martin RR, Wintermantel WM. Epidemiology of criniviruses: an emerging problem in world agriculture. Front Microbiol 2013; 4:119. [PMID: 23730300 PMCID: PMC3656352 DOI: 10.3389/fmicb.2013.00119] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 04/26/2013] [Indexed: 11/13/2022] Open
Abstract
The genus Crinivirus includes the whitefly-transmitted members of the family Closteroviridae. Whitefly-transmitted viruses have emerged as a major problem for world agriculture and are responsible for diseases that lead to losses measured in the billions of dollars annually. Criniviruses emerged as a major agricultural threat at the end of the twentieth century with the establishment and naturalization of their whitefly vectors, members of the genera Trialeurodes and Bemisia, in temperate climates around the globe. Several criniviruses cause significant diseases in single infections whereas others remain asymptomatic and only cause disease when found in mixed infections with other viruses. Characterization of the majority of criniviruses has been done in the last 20 years and this article provides a detailed review on the epidemiology of this important group of viruses.
Collapse
Affiliation(s)
- Ioannis E. Tzanetakis
- Department of Plant Pathology, Division of Agriculture, University of ArkansasFayetteville, AR, USA
| | - Robert R. Martin
- Horticultural Crops Research Laboratory, United States Department of Agriculture-Agricultural Research ServiceCorvallis, OR, USA
| | - William M. Wintermantel
- Crop Improvement and Protection Research Unit, United States Department of Agriculture-Agricultural Research ServiceSalinas, CA, USA
| |
Collapse
|
31
|
Chen TC, Li JT, Fan YS, Yeh YC, Yeh SD, Kormelink R. Molecular characterization of the full-length L and M RNAs of Tomato yellow ring virus, a member of the genus Tospovirus. Virus Genes 2013; 46:487-95. [PMID: 23334441 DOI: 10.1007/s11262-013-0880-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/11/2013] [Indexed: 01/26/2023]
Abstract
Tomato yellow ring virus (TYRV), first isolated from tomato in Iran, was classified as a non-approved species of the genus Tospovirus based on the characterization of its genomic S RNA. In the current study, the complete sequences of the genomic L and M RNAs of TYRV were determined and analyzed. The L RNA has 8,877 nucleotides (nt) and codes in the viral complementary (vc) strand for the putative RNA-dependent RNA polymerase (RdRp) of 2,873 amino acids (aa) (331 kDa). The RdRp of TYRV shares the highest aa sequence identity (88.7 %) with that of Iris yellow spot virus (IYSV), and contains conserved motifs shared with those of the animal-infecting bunyaviruses. The M RNA contains 4,786 nt and codes in ambisense arrangement for the NSm protein of 308 aa (34.5 kDa) in viral sense, and the Gn/Gc glycoprotein precursor (GP) of 1,310 aa (128 kDa) in vc-sense. Phylogenetic analyses indicated that TYRV is closely clustered with IYSV and Polygonum ringspot virus (PolRSV). The NSm and GP of TYRV share the highest aa sequence identity with those of IYSV and PolRSV (89.9 and 80.2-86.5 %, respectively). Moreover, the GPs of TYRV, IYSV, and PolRSV share highly similar characteristics, among which an identical deduced N-terminal protease cleavage site that is distinct from all tospoviral GPs analyzed thus far. Taken together, the elucidation of the complete genome sequence and biological features of TYRV support a close ancestral relationship with IYSV and PolRSV.
Collapse
Affiliation(s)
- Tsung-Chi Chen
- Department of Biotechnology, Asia University, Wufeng, Taichung, 41354, Taiwan.
| | | | | | | | | | | |
Collapse
|
32
|
Dong JH, Yin YY, Fang Q, McBeath JH, Zhang ZK. A new tospovirus causing chlorotic ringspot on Hippeastrum sp. in China. Virus Genes 2013; 46:567-70. [PMID: 23306942 DOI: 10.1007/s11262-012-0873-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 12/27/2012] [Indexed: 11/26/2022]
Abstract
A new tospovirus, HCRV 2007-ZDH, was isolated from a Hippeastrum sp. plant displaying necrotic and chlorotic ringspot symptoms in Yunnan province. This virus isolate was characterized based on particle morphology and RNA sequences analyses. Quasi-spherical, enveloped particles measuring about 70-100 nm, typical of tospoviruses, were observed in sap and cells of the infected plants. Transmission studies by inoculating this isolate mechanically to Hippeastrum sp. confirmed that 2007-ZDH is the causal agent of the chlorotic ringspot disease of Hippeastrum sp. The complete sequence of S RNA of 2007-ZDH was 2,744 nucleotides in length, sharing 74.4 % nucleotide identity with Tomato yellow ring virus (TYRV) isolate tomato (AY686718). The S RNA encoded a non-structural protein (NSs) (444 aa, 50.4 kDa) and the nucleocapsid (N) protein (273 aa, 30.1 kDa).The deduced NSs protein shared amino acid identities of 78.6, 76.3, and 74.9 % with that of TYRV, IYSV, and PolRSV, respectively. The deduced N protein shared amino acid identities of 86.1, 84.7, and 70.0 % with that of PolRSV, TYRV, and IYSV, respectively. These results suggest that the chlorotic ringspot virus belongs to a new tospovirus species, for which the name Hippeastrum chlorotic ringspot virus (HCRV) is proposed.
Collapse
Affiliation(s)
- J H Dong
- Yunnan Key Laboratory of Agricultural Biotechnology, Biotechnology and Genetic Germplasm Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650223, China.
| | | | | | | | | |
Collapse
|
33
|
Bag S, Mitter N, Eid S, Pappu HR. Complementation between two tospoviruses facilitates the systemic movement of a plant virus silencing suppressor in an otherwise restrictive host. PLoS One 2012; 7:e44803. [PMID: 23077485 PMCID: PMC3473055 DOI: 10.1371/journal.pone.0044803] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 08/14/2012] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND New viruses pathogenic to plants continue to emerge due to mutation, recombination, or reassortment among genomic segments among individual viruses. Tospoviruses cause significant economic damage to a wide range of crops in many parts of the world. The genetic or molecular basis of the continued emergence of new tospoviruses and new hosts is not well understood though it is generally accepted that reassortment and/or genetic complementation among the three genomic segments of individual viruses could be contributing to this variability since plants infected with more than one tospovirus are not uncommon in nature. METHODOLOGY/PRINCIPAL FINDINGS Two distinct and economically important tospoviruses, Iris yellow spot virus (IYSV) and Tomato spotted wilt virus (TSWV), were investigated for inter-virus interactions at the molecular level in dually-infected plants. Datura (Datura stramonium) is a permissive host for TSWV, while it restricts the movement of IYSV to inoculated leaves. In plants infected with both viruses, however, TSWV facilitated the selective movement of the viral gene silencing suppressor (NSs) gene of IYSV to the younger, uninoculated leaves. The small RNA expression profiles of IYSV and TSWV in single- and dually-infected datura plants showed that systemic leaves of dually-infected plants had reduced levels of TSWV N gene-specific small interfering RNAs (siRNAs). No TSWV NSs-specific siRNAs were detected either in the inoculated or systemic leaves of dually-infected datura plants indicating a more efficient suppression of host silencing machinery in the presence of NSs from both viruses as compared to the presence of only TSWV NSs. CONCLUSION/SIGNIFICANCE Our study identifies a new role for the viral gene silencing suppressor in potentially modulating the biology and host range of viruses and underscores the importance of virally-coded suppressors of gene silencing in virus infection of plants. This is the first experimental evidence of functional complementation between two distinct tospoviruses in the Bunyaviridae family.
Collapse
Affiliation(s)
- Sudeep Bag
- Department of Plant Pathology, Washington State University, Pullman, Washington, United States of America
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St. Lucia, Queensland, Australia
| | - Sahar Eid
- Department of Plant Pathology, Washington State University, Pullman, Washington, United States of America
| | - Hanu R. Pappu
- Department of Plant Pathology, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
34
|
|
35
|
de Oliveira AS, Melo FL, Inoue-Nagata AK, Nagata T, Kitajima EW, Resende RO. Characterization of bean necrotic mosaic virus: a member of a novel evolutionary lineage within the Genus Tospovirus. PLoS One 2012; 7:e38634. [PMID: 22715400 PMCID: PMC3371012 DOI: 10.1371/journal.pone.0038634] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/08/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Tospoviruses (Genus Tospovirus, Family Bunyaviridae) are phytopathogens responsible for significant worldwide crop losses. They have a tripartite negative and ambisense RNA genome segments, termed S (Small), M (Medium) and L (Large) RNA. The vector-transmission is mediated by thrips in a circulative-propagative manner. For new tospovirus species acceptance, several analyses are needed, e.g., the determination of the viral protein sequences for enlightenment of their evolutionary history. METHODOLOGY/PRINCIPAL FINDINGS Biological (host range and symptomatology), serological, and molecular (S and M RNA sequencing and evolutionary studies) experiments were performed to characterize and differentiate a new tospovirus species, Bean necrotic mosaic virus (BeNMV), which naturally infects common beans in Brazil. Based upon the results, BeNMV can be classified as a novel species and, together with Soybean vein necrosis-associated virus (SVNaV), they represent members of a new evolutionary lineage within the genus Tospovirus. CONCLUSION/SIGNIFICANCES: Taken together, these evidences suggest that two divergent lineages of tospoviruses are circulating in the American continent and, based on the main clades diversity (American and Eurasian lineages), new tospovirus species related to the BeNMV-SVNaV clade remain to be discovered. This possible greater diversity of tospoviruses may be reflected in a higher number of crops as natural hosts, increasing the economic impact on agriculture. This idea also is supported since BeNMV and SVNaV were discovered naturally infecting atypical hosts (common bean and soybean, respectively), indicating, in this case, a preference for leguminous species. Further studies, for instance a survey focusing on crops, specifically of leguminous plants, may reveal a greater tospovirus diversity not only in the Americas (where both viruses were reported), but throughout the world.
Collapse
Affiliation(s)
| | - Fernando Lucas Melo
- Department of Cell Biology, University of Brasília, Brasília, Distrito Federal, Brazil
| | | | - Tatsuya Nagata
- Department of Cell Biology, University of Brasília, Brasília, Distrito Federal, Brazil
| | | | - Renato Oliveira Resende
- Department of Cell Biology, University of Brasília, Brasília, Distrito Federal, Brazil
- * E-mail:
| |
Collapse
|
36
|
Hallwass M, Leastro MO, Lima MF, Inoue-Nagata AK, Resende RO. Sequence determination and analysis of the NSs genes of two tospoviruses. Arch Virol 2011; 157:591-6. [PMID: 22187101 DOI: 10.1007/s00705-011-1196-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Accepted: 12/06/2011] [Indexed: 10/14/2022]
Abstract
The tospoviruses groundnut ringspot virus (GRSV) and zucchini lethal chlorosis virus (ZLCV) cause severe losses in many crops, especially in solanaceous and cucurbit species. In this study, the non-structural NSs gene and the 5'UTRs of these two biologically distinct tospoviruses were cloned and sequenced. The NSs sequence of GRSV and ZLCV were both 1,404 nucleotides long. Pairwise comparison showed that the NSs amino acid sequence of GRSV shared 69.6% identity with that of ZLCV and 75.9% identity with that of TSWV, while the NSs sequence of ZLCV and TSWV shared 67.9% identity. Phylogenetic analysis based on NSs sequences confirmed that these viruses cluster in the American clade.
Collapse
Affiliation(s)
- Mariana Hallwass
- Departamento de Biologia Celular, Universidade de Brasília, Brasilia, DF 70910-900, Brazil
| | | | | | | | | |
Collapse
|
37
|
An RNA-dependent RNA polymerase gene of a distinct Brazilian tospovirus. Virus Genes 2011; 43:385-9. [PMID: 21720732 DOI: 10.1007/s11262-011-0639-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 06/15/2011] [Indexed: 10/18/2022]
Abstract
The tospoviral RNA-dependent RNA polymerases (RdRp), or L proteins, perform several conserved functions during virus replication in host cells. In this study, an L segment sequence of 9,040 bp from a new tospovirus (family Bunyaviridae) naturally infecting bean (Phaseolus vulgaris L.) plants was characterized. It encodes the largest RdRp gene known yet for this genus, with deduced 2932aa and a molecular mass of approximately 336 kDa. A Lysine-rich C-terminal extension was found, which apart from our isolate, was only recognized in another recently discovered tospovirus infecting Fabaceae, Soybean vein necrosis associated virus (SVNaV). Due to its distinct biological features and L protein-based phylogenetic analysis showing an almost equidistant position in comparison to Eurasian and American Tospovirus groups, as well as the clustering with SVNaV, we suggest the tentative name Bean necrotic mosaic virus for this unique isolate.
Collapse
|